Spleen Histopathological Evaluation of Broiler Chickens Challenged with Escherichia coli and Its Effect Towards the Combination of Javanese Cardamom and Turmeric Herbs
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Herb Extractions
2.2. Bacterial Suspension and In Vitro Experiment
- A0 (negative control): Saline;
- A1 (positive control): Ciprofloxacin;
- A2: A combination of JCEO and DT;
- A3: JCEO;
- A4: DT.
2.3. Animal Experiment Design
2.4. Histopathology Preparation
2.5. Spleen Organ Scoring System
3. Results
3.1. Data Analyses of Herbs’ Bioactive Compounds, MIC, and MIZ Results
3.2. Scoring Results
3.3. Histopathology Assessment
4. Discussion
4.1. Systemic Route of APEC Infection of the Spleen and Its Effect on Vascularisation
4.2. APEC Toxins’ Effect on the Spleen’s Inner Structure
4.3. Roles and Mechanisms of JCEO and DT in Protecting Spleen Cells
4.4. The Effect on Other Organs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A | artery or splenic artery |
ANOVA | Analysis of Variance |
APEC | Avian Pathogenic Escherichia coli |
BW | body weight |
°C | Celsius |
CA | central arteriole |
COX-2 | cyclooxygenase 2 |
CNF | cytotoxic necrotizing factors |
CFU | colony-forming unit |
DAMPs | Damage-Associated Molecular Patterns |
DT | dried turmeric ethanol extract |
ecp | Escherichia common pilli |
ECM | extracellular matrix |
F | follicle or splenic follicle |
g | gram |
Irb-toxin | iron-binding toxin |
H&E | hematoxylin and eosin |
IP | intraperitoneal |
JCEO | Javanese cardamom essential oil |
MIC | minimum inhibitory concentration |
MIZ | minimum inhibitory zone |
mL/kg | milliliter per kilogram |
mg/kg | milligram per kilogram |
NaCl | natrium chloride |
PALS | periarterial lymphoid sheath |
RBC | red blood cells |
ROS | reactive oxygen species radicals |
RP | red pulp |
TPC | total plate count |
tsh | temperature-sensitive haemagglutinin |
yad | Yad fimbriae |
V | vasculitis |
VAT | vacuolating autotransporter toxin |
WP | white pulp |
References
- Lutful Kabir, S.M. Avian colibacillosis and salmonellosis: A closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. Int. J. Environ. Res. Public Health 2010, 7, 89–114. [Google Scholar] [CrossRef]
- Panth, Y. Colibacillosis in poultry: A review. J. Agric. Nat. Resour. 2019, 2, 301–311. [Google Scholar] [CrossRef]
- Sharma, R.N.; Sharma, N. Avian Pathology: A Colour Handbook; New India Publishing Agency: New Delhi, India, 2018. [Google Scholar]
- Brugère-Picoux, J.; Vaillancourt, J.P.; Bouzouaia, M. Manual of Poultry Diseases; AFAS: Amsterdam, The Netherlands, 2015; pp. 301–316. [Google Scholar]
- Shah, S.A.; Mir, M.S.; Wani, B.M.; Kamil, S.A.; Goswami, P.; Amin, U.; Shafi, M.; Rather, M.A.; Beigh, A.B. Pathological studies on avian pathogenic Escherichia coli infection in broilers. Pharma Innov. J. 2019, 8, 68–73. [Google Scholar]
- Ceccopieri, C.; Madej, J.P. Chicken Secondary Lymphoid Tissues—Structure and Relevance in Immunological Research. Animals 2024, 14, 2439. [Google Scholar] [CrossRef]
- Taunde, P.A.; Bianchi, M.V.; Mathai, V.M.; Lorenzo, C.D.; Gaspar, B.D.C.B.; Correia, I.M.S.M.; Laisse, C.J.M.; Driemeier, D. Pathological, microbiological and immunohistochemical characterization of avian colibacillosis in broiler chickens of Mozambique. Pesqui. Veterinária Bras. 2021, 41, e06831. [Google Scholar] [CrossRef]
- Abalaka, S.; Sani, N.; Idoko, I.; Tenuche, O.; Oyelowo, F.; Ejeh, S.; Enem, S. Pathological changes associated with an outbreak of colibacillosis in a commercial broiler flock. Sokoto J. Vet. Sci. 2017, 15, 95–102. [Google Scholar] [CrossRef]
- Wibisono, F.J.; Sumiarto, B.; Kusumastuti, T.A. Economic Losses Estimation of Pathogenic Escherichia coli Infection in Indonesian Poultry Farming. Bul. Peternak. 2018, 42, 341–345. [Google Scholar] [CrossRef]
- Kurnia, R.S.; Indrawati, A.; Mayasari, N.; Priadi, A. Molecular detection of genes encoding resistance to tetracycline and determination of plasmid-mediated resistance to quinolones in avian pathogenic Escherichia coli in Sukabumi, Indonesia. Vet. World 2018, 11, 1581–1586. [Google Scholar] [CrossRef] [PubMed]
- Hartady, T.; Balia, R.L.; Syamsunarno, M.R.A.A.; Jasni, S.; Priosoeryanto, B.P. Bioactivity of Amomum compactum Soland Ex Maton (Java Cardamom) as a Natural Antibacterial. Syst. Rev. Pharm. 2020, 11, 384–387. Available online: https://www.sysrevpharm.org/abstract/bioactivity-of-amomum-compactum-soland-ex-maton-java-cardamom-as-a-natural-antibacterial-66183.html (accessed on 16 September 2025).
- Galli, G.M.; Griss, L.G.; Boiago, M.M.; Petrolli, T.G.; Glombowsky, P.; Bissacotti, B.F.; Copetti, P.M.; Silva, A.D.d.; Schetinger, M.R.; Sareta, L.; et al. Effects of curcumin and yucca extract addition in feed of broilers on microorganism control (anticoccidial and antibacterial), health, performance and meat quality. Res. Vet. Sci. 2020, 132, 156–166. [Google Scholar] [CrossRef]
- Mutmainah; Susilowati, R.; Rahmawati, N.; Nugroho, A.E. Gastroprotective effects of combination of hot water extracts of turmeric (Curcuma domestica L.), cardamom pods (Ammomum compactum S.) and sembung leaf (Blumea balsamifera DC.) against aspirin–induced gastric ulcer model in rats. Asian Pac. J. Trop. Biomed. 2014, 4, S500–S504. [Google Scholar] [CrossRef]
- Hull Vance, S.; Tucci, M.; Benghuzzi, H. Evaluation of the antimicrobial efficacy of green tea extract (egcg) against streptococcus pyogenes in vitro—Biomed 2011. Biomed. Sci. Instrum. 2011, 47, 177–182. [Google Scholar]
- Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 2003, 67, 593–656. [Google Scholar] [CrossRef]
- Raissa, R.; Amalia, W.C.; Ayurini, M.; Khumaini, K.; Ratri, P.J. The Optimization of Essential Oil Extraction from Java Cardamom. J. Trop. Pharm. Chem. 2020, 5, 125–129. [Google Scholar] [CrossRef]
- Malahayati, N.; Widowati, T.W.; Febrianti, A. Karakterisasi Ekstrak Kurkumin dari Kunyit Putih (Kaemferia rotunda L.) dan Kunyit Kuning (Curcuma domestica Val.). agriTECH 2021, 41, 134. [Google Scholar] [CrossRef]
- Younis, G.; Awad, A.; Mohamed, N. Phenotypic and genotypic characterization of antimicrobial susceptibility of avian pathogenic Escherichia coli isolated from broiler chickens. Vet. World 2017, 10, 1167–1172. [Google Scholar] [CrossRef]
- Barry, A.L. Methods for Determining Bactericidal Activity of Antimicrobial Agents: Approved Guideline; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 1999; Volume 19, p. 32. Available online: https://catalog.nlm.nih.gov/discovery/fulldisplay/alma9917559253406676/01NLM_INST:01NLM_INST (accessed on 16 September 2025).
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Afrianti Rahayu, S.; Muhammad Hidayat Gumilar, M. Uji Cemaran Air Minum Masyarakat Sekitar Margahayu Raya Bandung Dengan Identifikasi Bakteri Escherichia coli. Indones. J. Pharm. Sci. Technol. 2017, 4, 50–56. [Google Scholar] [CrossRef]
- Vantress, C. Cobb Broiler Management Guide. Available online: https://www.cobbgenetics.com/assets/Cobb-Files/Broiler-Guide_English-2021-min.pdf (accessed on 25 September 2025).
- Slaoui, M.; Bauchet, A.-L.; Fiette, L. Tissue Sampling and Processing for Histopathology Evaluation. In Drug Safety Evaluation: Methods and Protocols; Gautier, J.-C., Ed.; Springer: New York, NY, USA, 2017; pp. 101–114. [Google Scholar]
- Schafer, K.A.; Eighmy, J.; Fikes, J.D.; Halpern, W.G.; Hukkanen, R.R.; Long, G.G.; Meseck, E.K.; Patrick, D.J.; Thibodeau, M.S.; Wood, C.E.; et al. Use of Severity Grades to Characterize Histopathologic Changes. Toxicol. Pathol. 2018, 46, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Shackelford, C.; Long, G.; Wolf, J.; Okerberg, C.; Herbert, R. Qualitative and Quantitative Analysis of Nonneoplastic Lesions in Toxicology Studies. Toxicol. Pathol. 2002, 30, 93–96. [Google Scholar] [CrossRef]
- Landmann, M.; Scheibner, D.; Graaf, A.; Gischke, M.; Koethe, S.; Fatola, O.; Raddatz, B.; Mettenleiter, T.; Beer, M.; Grund, C.; et al. A Semiquantitative Scoring System for Histopathological and Immunohistochemical Assessment of Lesions and Tissue Tropism in Avian Influenza. Viruses 2021, 13, 868. [Google Scholar] [CrossRef] [PubMed]
- Gibson-Corley, K.N.; Olivier, A.K.; Meyerholz, D.K. Principles for Valid Histopathologic Scoring in Research. Vet. Pathol. 2013, 50, 1007–1015. [Google Scholar] [CrossRef]
- Hu, J.; Afayibo, D.J.A.; Zhang, B.; Zhu, H.; Yao, L.; Guo, W.; Wang, X.; Wang, Z.; Wang, D.; Peng, H.; et al. Characteristics, pathogenic mechanism, zoonotic potential, drug resistance, and prevention of avian pathogenic Escherichia coli (APEC). Front. Microbiol. 2022, 13, 1049391. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Jiang, S.; Wang, Q.; Dong, J.; Zhu, H.; Wang, P.; Meng, S.; Zhang, Z.; Chang, L.; Wang, G.; et al. Spleen-based proteogenomics reveals that Escherichia coli infection induces activation of phagosome maturation pathway in chicken. Virulence 2023, 14, 2150453. [Google Scholar] [CrossRef] [PubMed]
- Kostakioti, M.; Stathopoulos, C. Functional Analysis of the Tsh Autotransporter from an Avian Pathogenic Escherichia coli Strain. Infect. Immun. 2004, 72, 5548–5554. [Google Scholar] [CrossRef]
- Miller, M.A.; Zachary, J.F. Chapter 1—Mechanisms and Morphology of Cellular Injury, Adaptation, and Death11For a glossary of abbreviations and terms used in this chapter see E-Glossary 1-1. In Pathologic Basis of Veterinary Disease, 6th ed.; Zachary, J.F., Ed.; Elsevier: St. Louis, MO, USA, 2017; pp. 2–43.e19. [Google Scholar]
- Kharat, M.; Du, Z.; Zhang, G.; McClements, D.J. Physical and Chemical Stability of Curcumin in Aqueous Solutions and Emulsions: Impact of pH, Temperature, and Molecular Environment. J. Agric. Food Chem. 2017, 65, 1525–1532. [Google Scholar] [CrossRef]
- Shubin, A.V.; Demidyuk, I.V.; Komissarov, A.A.; Rafieva, L.M.; Kostrov, S.V. Cytoplasmic vacuolization in cell death and survival. Oncotarget 2016, 7, 55863–55889. [Google Scholar] [CrossRef]
- Williams, D.W.; Engle, E.L.; Shirk, E.N.; Queen, S.E.; Gama, L.; Mankowski, J.L.; Zink, M.C.; Clements, J.E. Splenic Damage during SIV Infection. Am. J. Pathol. 2016, 186, 2068–2087. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Song, X.; Fang, C.; Xing, R.; Liu, L.; Zhao, X.; Zou, Y.; Li, L.; Jia, R.; et al. 1,8-Cineole inhibits biofilm formation and bacterial pathogenicity by suppressing luxS gene expression in Escherichia coli. Front. Pharmacol. 2022, 13, 988245. [Google Scholar] [CrossRef]
- Lee, J.A.; Lee, M.Y.; Shin, I.S.; Seo, C.S.; Ha, H.; Shin, H.K. Anti-inflammatory effects of Amomum compactum on RAW 264.7 cells via induction of heme oxygenase-1. Arch. Pharmacal Res. 2012, 35, 739–746. [Google Scholar] [CrossRef]
- Hafez, M.H.; El-Kazaz, S.E.; Alharthi, B.; Ghamry, H.I.; Alshehri, M.A.; Sayed, S.; Shukry, M.; El-Sayed, Y.S. The Impact of Curcumin on Growth Performance, Growth-Related Gene Expression, Oxidative Stress, and Immunological Biomarkers in Broiler Chickens at Different Stocking Densities. Animals 2022, 12, 958. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Han, M.; Zhang, Y.; Ishfaq, M.; Liu, R.; Wei, G.; Zhang, X.; Zhang, X. Effect of Curcumin as Feed Supplement on Immune Response and Pathological Changes of Broilers Exposed to Aflatoxin B1. Biomolecules 2022, 12, 1188. [Google Scholar] [CrossRef] [PubMed]
- Hartady, T.; Ghozali, M.; Parsonodihardjo, C. Histopathological Picture of Lung Organs Towards Combination of Java Cardamom Seed Extract and Turmeric Rhizome as Anti-Colibacillosis in Broiler Chickens. Vet. Sci. 2025, 12, 726. [Google Scholar] [CrossRef]
- Hartady, T.; Sugandi, S.D.; Septiyani; Hiroyuki, A.; Goenawan, H. Effects of Javanese Cardamom and Turmeric on the Prevention of Colibacillosis and Its Impact on Broiler Chickens’ Hearts. World’s Vet. J. 2025, 15, 421–433. [Google Scholar] [CrossRef]
- Elmore, S.A. Enhanced Histopathology of the Spleen. Toxicol. Pathol. 2006, 34, 648–655. [Google Scholar] [CrossRef]
- Haley, P.; Perry, R.; Ennulat, D.; Frame, S.; Johnson, C.; Lapointe, J.M.; Nyska, A.; Snyder, P.; Walker, D.; Walter, G. STP position paper: Best practice guideline for the routine pathology evaluation of the immune system. Toxicol. Pathol. 2005, 33, 404–407; discussion 408. [Google Scholar] [CrossRef] [PubMed]
- Kwiecien, S.; Magierowski, M.; Majka, J.; Ptak-Belowska, A.; Wojcik, D.; Sliwowski, Z.; Magierowska, K.; Brzozowski, T. Curcumin: A potent protectant against esophageal and gastric disorders. Int. J. Mol. Sci. 2019, 20, 1477. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.A.; Silva, R.M.; Campos, A.R.; De Araujo, R.P.; Júnior, R.L.; Rao, V.S. 1,8- cineole (eucalyptol), a monoterpene oxide attenuates the colonic damage in rats on acute TNBS-colitis. Food Chem. Toxicol. 2004, 42, 579–584. [Google Scholar] [CrossRef]
Groups | Treatments |
---|---|
C1 | Received an oral 0.5 mL saline solution only (0.9% NaCl) without any infection or treatment |
C2 | Challenged with 0.5 mL E. coli O78 suspension IP and received an oral 0.5 mL saline solution only (0.9% NaCl) |
C3 | Challenged with 0.5 mL E. coli O78 suspension IP and received 0.06 mL/kg BW of JCEO + 400 mg/kg feed/day of DT orally. |
C4 | Challenged with 0.5 mL E. coli O78 suspension IP and received 0.1 mL/kg BW of JCEO + 400 mg/kg feed/day of DT orally. |
C5 | Challenged with 0.5 mL E. coli O78 suspension IP and received 0.06 mL/kg BW of JCEO orally |
C6 | Challenged with 0.5 mL E. coli O78 suspension IP and received 0.1 mL/kg BW of JCEO orally |
C7 | Challenged with 0.5 mL E. coli O78 suspension IP and received 400 mg/kg feed/day of DT orally. |
C8 * | Challenged with 0.5 mL E. coli O78 suspension IP and received Ciprofloxacin (10 mg/kg BW in 1g/2 L water) orally. |
Type of Lesions | Descriptions | Correlation to APEC Pathogenesis (Modified from [28,29]) |
---|---|---|
Congestion | A blood clot, infiltration of a macrophage, or the presence of any bacterial-stained colonies is found inside the blood vessels. The vessel wall remains intact. | The bacteria may already be present systemically, but not potent enough to damage the spleen’s inner structure. |
Vasculitis | Blood vessel inflammation. This can be in the primary portal or the capillary portal. The vessel wall becomes thickened and disorganized due to the presence of a fibrin matrix. | The bacteria adhered to the vessel cell wall, releasing an endotoxin that caused cell membrane disruption and damage, resulting in an immune response to repair the wall |
Cell degeneration | Cells such as those in the vessel epithelium and lymphoid cells undergo a disruption. The nucleus is still present. White pulp remains well structured. | If vasculitis occurs, lymphoid cells would most likely be affected by endotoxin and CNF released from the bacteria. |
Necrosis of lymphoid | The cell’s nucleus is either absent or undergoing karyohexis, karyolysis, or pyknosis. | The vasculitides are severe, and bacterial endotoxins are potent in damaging cells. |
Lymphoid depletion | The overall structure of the white pulp is disintegrated, smaller, and more abstract due to the presence of necrotic lymphoid cells. | The vessel wall is severely infected. Thus, bacteria colonize the spleen’s inner structure |
Score | Area Affected | Severity |
---|---|---|
0 | Normal | Not marked |
1 | <1% | Low |
2 | 1–20% | Mild |
3 | 21–60% | Moderate |
4 | 61–80% | Severe |
5 | >81% | Highly severe |
Groups 1 | Histopathological Parameters Severity Grade (Mean ± SD) * | ||||
---|---|---|---|---|---|
Vasculitis | Congestion | Cell Degeneration | Necrosis | Lymphoid Depletion | |
C1 | 1.25 ± 0.5 | 1.00 ± 0.577 | 1.50 ± 0 | 1.00 ± 0 | 1.00 ± 0 |
C2 | 4.25 ± 0.5 | 1.50 ± 0.577 | 2.5 ± 1.291 | 3.00 ± 0.816 | 3.75 ± 0.500 |
C3 | 2.75 ± 0.5 | 2.75 ± 0.5 | 2.5 ± 0.577 | 1.25 ± 0.5 | 1.75 ± 0.5 |
C4 | 2 ± 0.8165 | 0.75 ± 0.5 | 2 ± 0.8165 | 1.75 ± 0.957 | 1.75 ± 0.60 |
C5 | 3.25 ± 0.5 | 1.25 ± 0.957 | 1.75 ± 0.5 | 1.5 ± 0.557 | 1.5 ± 0.557 |
C6 | 2.25 ± 0.5 | 1.25 ± 0.5 | 1.75 ± 1.708 | 1.5 ± 0.577 | 1.5 ± 0.577 |
C7 | 4 ± 0.816 | 1.25 ± 0.5 | 2.75 ± 0.957 | 3 ± 1.826 | 2.5 ± 0.577 |
C8 | 3 ± 0.816 | 1 ± 0.816 | 2 ± 0.816 | 4 ± 0.816 | 3.75 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartady, T.; Syamsunarno, M.R.A.A.; Basyirasaniyanti, B.; Khairani, S.; Rosdianto, A.M. Spleen Histopathological Evaluation of Broiler Chickens Challenged with Escherichia coli and Its Effect Towards the Combination of Javanese Cardamom and Turmeric Herbs. Vet. Sci. 2025, 12, 975. https://doi.org/10.3390/vetsci12100975
Hartady T, Syamsunarno MRAA, Basyirasaniyanti B, Khairani S, Rosdianto AM. Spleen Histopathological Evaluation of Broiler Chickens Challenged with Escherichia coli and Its Effect Towards the Combination of Javanese Cardamom and Turmeric Herbs. Veterinary Sciences. 2025; 12(10):975. https://doi.org/10.3390/vetsci12100975
Chicago/Turabian StyleHartady, Tyagita, Mas Rizky A. A. Syamsunarno, Belgia Basyirasaniyanti, Shafia Khairani, and Aziiz Mardanarian Rosdianto. 2025. "Spleen Histopathological Evaluation of Broiler Chickens Challenged with Escherichia coli and Its Effect Towards the Combination of Javanese Cardamom and Turmeric Herbs" Veterinary Sciences 12, no. 10: 975. https://doi.org/10.3390/vetsci12100975
APA StyleHartady, T., Syamsunarno, M. R. A. A., Basyirasaniyanti, B., Khairani, S., & Rosdianto, A. M. (2025). Spleen Histopathological Evaluation of Broiler Chickens Challenged with Escherichia coli and Its Effect Towards the Combination of Javanese Cardamom and Turmeric Herbs. Veterinary Sciences, 12(10), 975. https://doi.org/10.3390/vetsci12100975