Isolation and Characterization Through Whole-Genome Sequencing of STEC Strains from Free-Ranging Red Deer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Deer Sampling
2.2. Bacteriological Analysis and STEC Detection
2.3. Whole-Genome Sequencing and Strains Characterization
2.4. Statistical Analysis
3. Results
3.1. Detection of STEC in Animals
3.2. Molecular Serotyping, Multi-Locus Sequence Typing, Virulence Genes Assets
3.3. Comparison of STEC Strains Sequences from Red Deer and Human from the Same Region
3.4. STEC Distribution and Risk Factors for STEC Colonization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | allelic distances |
BPW | buffered peptone water |
CAC1 | Alpine Hunting District of Ponte di Legno |
cgMLST | core genome multilocus sequence typing |
EAEC | enteroaggregative E. coli |
EIEC | enteroinvasive E. coli |
ETEC | enterotoxigenic E. coli |
HUS | hemolytic uremic syndrome |
MLST | multilocus sequence typing |
SNP | Stelvio National park |
ST | sequence type |
STEC | Shiga toxin-producing Escherichia coli |
UPEC | uropathogenic E. coli |
WGS | Whole-genome sequencing |
References
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2023 Zoonoses Report. EFSA J. 2024, 22, e9106. [Google Scholar] [CrossRef]
- FAO/WHO (World Health Organization & Food and Agriculture Organization of the United Nations). Shiga Toxin-Producing Escherichia coli (STEC) and Food: Attribution, Characterization, and Monitoring: Report; World Health Organization: Geneva, Switzerland, 2018; Available online: https://apps.who.int/iris/handle/10665/272871 (accessed on 25 June 2025).
- European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). The European Union One Health 2018 Zoonoses Report. EFSA J. 2019, 17, 5296. [Google Scholar] [CrossRef]
- EFSA BIOHAZ Panel; Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; et al. Pathogenicity assessment of Shiga toxin-producing Escherichia coli (STEC) and the Public health risk posed by contamination of food with STEC. EFSA J. 2020, 18, 5967. [Google Scholar] [CrossRef]
- Espinosa, L.; Gray, A.; Duffy, G.; Fanning, S.; McMahon, B.J. A scoping review on the prevalence of Shiga-toxigenic Escherichia coli in wild animal species. Zoon. Public Health 2018, 65, 911–920. [Google Scholar] [CrossRef]
- Kintz, E.; Brainard, J.; Hooper, L.; Hunter, P. Transmission pathways for sporadic Shiga-toxin producing E. coli infections: A systematic review and meta-analysis. Int. J. Hyg. Environ. Health 2017, 220, 57–67. [Google Scholar] [CrossRef]
- Seleem, A.; Sabry, M.A.; Abdel-Moein, K.A. Migratory birds as a potential overseas transmitter of Shiga toxin-producing Escherichia coli. Int. J. Vet. Sci. Med. 2021, 9, 52–58. [Google Scholar] [CrossRef]
- Caprioli, A.; Morabito, S.; Brugre, H.; Oswald, E. Enterohaemorrhagic Escherichia coli: Emerging issues on virulence and modes of transmission. Vet. Res. 2005, 36, 289–311. [Google Scholar] [CrossRef]
- Kruse, H.; Kirkemo, A.-M.; Handeland, K. Wildlife as source of zoonotic infections. Emerg. Infect. Dis. 2004, 10, 2067–2072. [Google Scholar] [CrossRef]
- Dias, D.; Caetano, T.; Torres, R.T.; Fonseca, C.; Mendo, S. Shiga toxin-producing Escherichia coli in wild ungulates. Sci. Total Environ. 2019, 651, 203–209. [Google Scholar] [CrossRef]
- Szczerba-Turek, A.; Siemionek, J.; Socha, P.; Bancerz-Kisiel, A.; Platt-Samoraj, A.; Lipczynska-Ilczuk, K.; Szweda, W. Shiga toxin-producing Escherichia coli isolates from red deer (Cervus elaphus), roe deer (Capreolus capreolus) and fallow deer (Dama dama) in Poland. Food Microbiol. 2020, 86, 103352. [Google Scholar] [CrossRef]
- Lauzi, S.; Luzzago, C.; Chiani, P.; Michelacci, V.; Knijn, A.; Pedrotti, L.; Corlatti, L.; Buccheri Pederzoli, C.; Scavia, G.; Morabito, S.; et al. Free-ranging red deer (Cervus elaphus) as carriers of potentially zoonotic Shiga toxin-producing Escherichia coli. Transbound. Emerg. Dis. 2022, 69, 1902–1911. [Google Scholar] [CrossRef]
- Topalcengiz, Z.; Jeamsripong, S.; Spanninger, P.M.; Persad, A.K.; Wang, F.; Buchanan, R.L.; LeJeune, J.; Kniel, K.E.; Jay-Russell, M.T.; Danyluk, M.D. Survival of Shiga toxin–producing Escherichia coli in various wild animal feces that may contaminate produce. J. Food Prot. 2020, 83, 1420–1429. [Google Scholar] [CrossRef]
- Sauvala, M.; Laaksonen, S.; Laukkanen-Ninios, R.; Jalava, K.; Stephan, R.; Fredriksson-Ahomaa, M. Microbial contamination of moose (Alces alces) and white-tailed deer (Odocoileus virginianus) carcasses harvested by hunters. Food Microbiol. 2019, 78, 82–88. [Google Scholar] [CrossRef]
- Costa, H.; Mafra, I.; Oliveira, M.B.P.P.; Amaral, J.S. Game: Types and composition. In Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 177–183. ISBN 978-0-12-384953-3. [Google Scholar]
- Díaz-Sánchez, S.; Sánchez, S.; Herrera-León, S.; Porrero, C.; Blanco, J.; Dahbi, G.; Blanco, J.E.; Mora, A.; Mateo, R.; Hanning, I.; et al. Prevalence of Shiga toxin-producing Escherichia coli, Salmonella spp. and Campylobacter spp. in large game animals intended for consumption: Relationship with management practices and livestock influence. Vet. Microbiol. 2013, 163, 274–281. [Google Scholar] [CrossRef]
- Fitzgerald, S.F.; Mitchell, M.C.; Holmes, A.; Allison, L.; Chase-Topping, M.; Lupolova, N.; Wells, B.; Gally, D.L.; McNeilly, T.N. Prevalence of Shiga toxin-producing Escherichia coli O157 in wild Scottish deer with high human pathogenic potential. Animals 2023, 13, 2795. [Google Scholar] [CrossRef]
- Dias, D.; Costa, S.; Fonseca, C.; Baraúna, R.; Caetano, T.; Mendo, S. Pathogenicity of Shiga toxin-producing Escherichia coli (STEC) from wildlife: Should we care? Sci. Total Environ. 2022, 812, 152324. [Google Scholar] [CrossRef]
- Galiero, A.; Leo, S.; Garbarino, C.; Arrigoni, N.; Russo, S.; Giacomelli, S.; Bianchi, A.; Trevisiol, K.; Idrizi, I.; Daka, G.; et al. Mycobacterium avium subsp. paratuberculosis isolated from wild red deer (Cervus elaphus) in Northern Italy. Vet. Microbiol. 2018, 217, 167–172. [Google Scholar] [CrossRef]
- Corlatti, L.; Gugiatti, A.; Pedrotti, L. Spring spotlight counts provide reliable indices to track changes in population size of mountain-dwelling red deer Cervus elaphus. Wildl. Biol. 2016, 22, 268–276. [Google Scholar] [CrossRef]
- ISO/TS 13136:2012; Microbiology of Food and Animal Feed Real-Time Polymerase Chain Reaction (PCR)-Based Method for the Detection of Food-Borne Pathogens Horizontal Method for the Detection of Shiga Toxin-Producing Escherichia coli (STEC) and the Ddetermination of O157, O111, O26, O103 and O145 Serogroups. ISO: Geneva, Switzerland, 2012.
- Perelle, S.; Dilasser, F.; Grout, J.; Fach, P. Detection by 5′-Nuclease PCR of Shiga-toxin producing Escherichia coli O26, O55, O91, O103, O111, O113, O145 and O157:H7, associated with the world’s most frequent clinical cases. Mol. Cell. Probes 2004, 18, 185–192. [Google Scholar] [CrossRef]
- Scheutz, F.; Teel, L.D.; Beutin, L.; Piérard, D.; Buvens, G.; Karch, H.; Mellmann, A.; Caprioli, A.; Tozzoli, R.; Morabito, S.; et al. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing stx nomenclature. J. Clin. Microbiol. 2012, 50, 2951–2963. [Google Scholar] [CrossRef]
- Paton, A.W.; Paton, J.C. Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, Enterohemorrhagic E. coli hlyA, RfbO111, and RfbO157. J. Clin. Microbiol. 1998, 36, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF Mass Spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015, 6, 791. [Google Scholar] [CrossRef]
- Knijn, A.; Michelacci, V.; Gigliucci, F.; Tozzoli, R.; Chiani, P.; Minelli, F.; Scavia, G.; Ventola, E.; Morabito, S. IRIDA-ARIES Genomics, a key player in the One Health surveillance of diseases caused by infectious agents in Italy. Front. Public Health 2023, 11, 1151568. [Google Scholar] [CrossRef]
- Knijn, A.; Michelacci, V.; Orsini, M.; Morabito, S. Advanced Research Infrastructure for Experimentation in genomicS (ARIES): A lustrum of Galaxy experience. bioRxiv 2020. [Google Scholar] [CrossRef]
- Morabito, S.; Tozzoli, R.; Oswald, E.; Caprioli, A. A Mosaic Pathogenicity Island made up of the Locus of Enterocyte Effacement and a pathogenicity island of Escherichia coli O157:H7 is frequently present in Attaching and Effacing E. coli. Infect. Immun. 2003, 71, 3343–3348. [Google Scholar] [CrossRef]
- Karmali, M.A.; Mascarenhas, M.; Shen, S.; Ziebell, K.; Johnson, S.; Reid-Smith, R.; Isaac-Renton, J.; Clark, C.; Rahn, K.; Kaper, J.B. Association of Genomic O Island 122 of Escherichia coli EDL 933 with Verocytotoxin-producing Escherichia coli seropathotypes that are linked to epidemic and/or serious disease. J. Clin. Microbiol. 2003, 41, 4930–4940. [Google Scholar] [CrossRef]
- Nüesch-Inderbinen, M.; Treier, A.; Stevens, M.J.A.; Stephan, R. Whole Genome Sequence-based characterisation of Shiga toxin-producing Escherichia coli isolated from game meat originating from several European Countries. Sci. Rep. 2023, 13, 3247. [Google Scholar] [CrossRef]
- Dudley, E.G.; Thomson, N.R.; Parkhill, J.; Morin, N.P.; Nataro, J.P. Proteomic and microarray characterization of the AggR regulon identifies a pheU Pathogenicity Island in Enteroaggregative Escherichia coli. Mol. Microbiol. 2006, 61, 1267–1282. [Google Scholar] [CrossRef]
- Toma, C.; Martínez Espinosa, E.; Song, T.; Miliwebsky, E.; Chinen, I.; Iyoda, S.; Iwanaga, M.; Rivas, M. Distribution of putative adhesins in different seropathotypes of Shiga toxin-producing Escherichia coli. J. Clin. Microbiol. 2004, 42, 4937–4946. [Google Scholar] [CrossRef]
- Michelacci, V.; Tozzoli, R.; Caprioli, A.; Martínez, R.; Scheutz, F.; Grande, L.; Sánchez, S.; Morabito, S. A new Pathogenicity Island carrying an allelic variant of the Subtilase Cytotoxin is common among Shiga toxin producing Escherichia coli of human and ovine origin. Clin. Microbiol. Infect. 2013, 19, E149–E156. [Google Scholar] [CrossRef]
- Bien, J.; Sokolova, O.; Bozko, P. Role of Uropathogenic Escherichia coli virulence factors in development of Urinary Tract Infection and Kidney Damage. Int. J. Nephrol. 2012, 2012, 681473. [Google Scholar] [CrossRef]
- Sidorczuk, K.; Aleksandrowicz, A.; Burdukiewicz, M.; Kingsley, R.A.; Kolenda, R. Genomic characterization of Enterohaemolysin-Encoding Haemolytic Escherichia coli of animal and human Origin. Microb. Genom. 2023, 9, 000999. [Google Scholar] [CrossRef]
- Hasan, R.N.; Jasim, S.A.; Ali, Y.H. Detection of fimH, kpsMTII, hlyA, and traT genes in Escherichia coli isolated from Iraqi patients with cystitis. Gene Rep. 2022, 26, 101468. [Google Scholar] [CrossRef]
- Li, Y.; Dai, J.; Zhuge, X.; Wang, H.; Hu, L.; Ren, J.; Chen, L.; Li, D.; Tang, F. Iron-Regulated gene ireA in Avian Pathogenic Escherichia coli participates in adhesion and stress-resistance. BMC Vet. Res. 2016, 12, 167. [Google Scholar] [CrossRef]
- Mundy, R.; Jenkins, C.; Yu, J.; Smith, H.; Frankel, G. Distribution of espI among clinical Enterohaemorrhagic and Enteropathogenic Escherichia coli isolates. J. Med. Microbiol. 2004, 53, 1145–1149. [Google Scholar] [CrossRef]
- Cusumano, C.K.; Hung, C.S.; Chen, S.L.; Hultgren, S.J. Virulence plasmid harbored by Uropathogenic Escherichia coli functions in acute stages of pathogenesis. Infect. Immun. 2010, 78, 1457–1467. [Google Scholar] [CrossRef]
- Navarro-Garcia, F.; Gutierrez-Jimenez, J.; Garcia-Tovar, C.; Castro, L.A.; Salazar-Gonzalez, H.; Cordova, V. Pic, an autotransporter protein secreted by different pathogens in the Enterobacteriaceae family, is a potent mucus secretagogue. Infect. Immun. 2010, 78, 4101–4109. [Google Scholar] [CrossRef] [PubMed]
- Schouler, C.; Koffmann, F.; Amory, C.; Leroy-Sétrin, S.; Moulin-Schouleur, M. Genomic subtraction for the identification of putative new virulence factors of an Avian Pathogenic Escherichia coli strain of O2 serogroup. Microbiology 2004, 150, 2973–2984. [Google Scholar] [CrossRef] [PubMed]
- Díaz, J.M.; Dozois, C.M.; Avelar-González, F.J.; Hernández-Cuellar, E.; Pokharel, P.; De Santiago, A.S.; Guerrero-Barrera, A.L. The Vacuolating Autotransporter Toxin (Vat) of Escherichia coli causes cell cytoskeleton changes and produces non-lysosomal vacuole formation in bladder epithelial cells. Front. Cell. Infect. Microbiol. 2020, 10, 299. [Google Scholar] [CrossRef]
- Tran, M.L.; Delannoy, S.; Fach, P. Enhancing detection of STEC in the meat industry: Insights into virulence of priority STEC. Front. Microbiol. 2025, 16, 1543686. [Google Scholar] [CrossRef]
- Szczerba-Turek, A.; Chierchia, F.; Socha, P.; Szweda, W. Shiga toxin-producing Escherichia coli in faecal samples from wild ruminants. Animals 2023, 13, 901. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Sha, Q.; Lacher, D.W.; Del Valle, J.; Mosci, R.E.; Moore, J.A.; Scribner, K.T.; Manning, S.D. Characterization of Enteropathogenic and Shiga toxin-producing Escherichia coli in cattle and deer in a shared agroecosystem. Front. Cell. Infect. Microbiol. 2015, 5, 29. [Google Scholar] [CrossRef]
- Sánchez, S.; García-Sánchez, A.; Martínez, R.; Blanco, J.; Blanco, J.E.; Blanco, M.; Dahbi, G.; Mora, A.; Hermoso De Mendoza, J.; Alonso, J.M.; et al. Detection and characterisation of Shiga toxin-producing Escherichia coli other than Escherichia coli O157:H7 in wild ruminants. Vet. J. 2009, 180, 384–388. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. STEC infection. In ECDC Annual Epidemiological Report for 2022; ECDC: Stockholm, Sweden, 2024. [Google Scholar]
- Listorti, V.; Guardone, L.; Piccinini, C.; Martini, I.; Ferraris, C.; Ligotti, C.; Cristina, M.L.; Pussini, N.; Pitti, M.; Razzuoli, E. Shiga toxin-producing Escherichia coli isolated from wild ruminants in Liguria, North-West Italy. Pathogens 2024, 13, 576. [Google Scholar] [CrossRef]
- Pedrotti, L.; Gugiatti, A.; Corlatti, L. Piano di conservazione e gestione del cervo nel settore Lombardo del Parco Nazionale dello Stelvio, Settembre 2017. Rapporto di sintesi delle attività di controllo numerico 2011–2016 e proposta di piano di controllo numerico delle popolazioni di cervo del UG Alta Valtellina-Quinquennio 2017–2021. 2017. (In Italian) [Google Scholar]
- Soare, C.; Mazeri, S.; McAteer, S.; McNeilly, T.N.; Seguino, A.; Chase-Topping, M. The microbial condition of Scottish wild deer carcasses collected for human consumption and the hygiene risk factors associated with Escherichia coli and Total Coliforms Contamination. Food Microbiol. 2022, 108, 104102. [Google Scholar] [CrossRef]
- Gill, C.O. Microbiological conditions of meats from large game animals and birds. Meat Sci. 2007, 77, 149–160. [Google Scholar] [CrossRef]
- Venegas-Vargas, C.; Henderson, S.; Khare, A.; Mosci, R.E.; Lehnert, J.D.; Singh, P.; Ouellette, L.M.; Norby, B.; Funk, J.A.; Rust, S.; et al. Factors associated with Shiga toxin-producing Escherichia coli shedding by dairy and beef cattle. Appl. Environ. Microbiol. 2016, 82, 5049–5056. [Google Scholar] [CrossRef] [PubMed]
- Bonardi, S.; Maggi, E.; Bottarelli, A.; Pacciarini, M.L.; Ansuini, A.; Vellini, G.; Morabito, S.; Caprioli, A. Isolation of Verocytotoxin-producing Escherichia coli O157:H7 from cattle at slaughter in Italy. Vet. Microbiol. 1999, 67, 203–211. [Google Scholar] [CrossRef]
Category | Sub-Category | No (%) | STEC Positive No (%) * |
---|---|---|---|
Sex | Female | 46 (50) | 7 (15) |
Male | 46 (50) | 4 (9) | |
Age category | Calves | 23 (25) | 4 (17) |
Yearling | 17 (18) | 0 (0) | |
Adult | 52 (57) | 7 (13) | |
Month of sampling | September | 11 (12) | 1 (9) |
October | 23 (25) | 2 (9) | |
November | 30 (33) | 3 (10) | |
December | 28 (30) | 5 (18) |
Strain Code | Sample ID | Serotype | Sequence Type | stx Genes Profile | stx Subtype | Other Virulence Factors |
---|---|---|---|---|---|---|
ED1682 | 129_RNo*_213 | O21:H21 | ST56 | stx1 | stx1c | cia, ehxA, espI, gad, iha, ireA, lpfA, mchB, mchC, mchF, subAB, terC, tia, traT |
ED1675 | 46_RNo*_59 | O26:H11 | ST29 | stx2 | stx2a | astA, cba, cif, cma, eae, efa1, ehxA, espA, espB, espF, espJ, etpD, fyuA, gad, iha, iss, iucC, iutA, lpfA, nleA, nleB, tccP, terC, tir, traT |
ED1680 | 69_RNo*_261 | O27:H30 | ST753 | stx2 | stx2b | air, cba, chuA, eilA, espI, gad, hra, iha, ireA, iss, mchB, mchC, mchF, subAB, terC, tia, traT |
ED1683 | 102_RNo*_313 | O27:H30 | ST753 | stx2 | stx2b | air, chuA, eilA, espI, gad, iha, ireA, iss, mchB, mchC, mchF, subAB, terC, tia, traT |
ED1685 | 111_RNo*_726 | O27:H30 | ST753 | stx2 | stx2b | air, cba, chuA, eilA, espI, gad, iha, ireA, iss, mchB, mchC, mchF, subAB, terC, tia, traT |
ED1667 | 151_RNo*_117 | O54:H45 | ST491 | stx2 | stx2b | astA, cba, celB, chuA, espI, gad, ireA, iss, mchB, mchC, mchF, ompT, papC, pic, senB, sitA, subAB, terC, tia, traT, vat, yfcV |
ED1678 | 104_RNo*_11 | O91:H14 | ST33 | stx1 stx2 | stx1a stx2b | cba, cea, ehxA, espI, espP, gad, iha, ireA, iss, kpsE, kpsMII, lpfA, saa, subAB, terC, tia, traT |
ED1679 | 77_RNo*_48 | O104:H7 | ST10075 | stx1 | stx1c | aaiC, celB, gad, lpfA, mcbA, neuC, terC, traT |
ED1684 | 16_RNo*_314 | O117:H4 | ST56 | stx2 | stx2b | astA, cba, cia, cma, cvaC, ehxA, espI, fyuA, gad, ireA, iss, lpfA, mchB, mchC, mchF, ompT, subAB, terC, tia, traT |
ED1666 | 178_RNo*_94 | O146:H28 | ST738 | stx2 | stx2b | astA, chuA, espI, gad, hra, iha, ireA, lpfA, mchB, mchC, mchF, ompT, subAB, terC, traT, usp |
ED1676 | 48_RNo*_191 | O?:H8 | ST26 | stx2 | stx2b | astA, cba, cia, cma, ehxA, eilA, espI, gad, iha, ireA, iss, lpfA, mchB, mchC, mchF, subAB, terC, tia, traT |
Category | Sub-Category | O21:H21 (ST56) (n = 1) | O26:H11 (ST29) (n = 1) | O27:H30 (ST753) (n = 3) | O54:H5 (ST491) (n = 1) | O91:H14 (ST33) (n = 1) | O104:H7 (ST10075) (n = 1) | O117:H4 (ST nd) (n = 1) | O146:H28 (ST738) (n = 1) | ONT:H8 (ST26) (n = 1) |
---|---|---|---|---|---|---|---|---|---|---|
Sex | Female | 1 | 2 | 1 | 1 | 1 | 1 | |||
Male | 1 | 1 | 1 | 1 | ||||||
Age category | Calves | 1 | 1 | 1 | 1 | |||||
Yearling | ||||||||||
Adult | 1 | 1 | 2 | 1 | 1 | 1 | ||||
Month of sampling | September | 1 | ||||||||
October | 1 | 1 | ||||||||
November | 1 | 1 | 1 | |||||||
December | 1 | 2 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauzi, S.; Tozzoli, R.; Chiani, P.; Nava, M.; Knijn, A.; Michelacci, V.; Giacomelli, S.; Scavia, G.; Morabito, S.; Luzzago, C. Isolation and Characterization Through Whole-Genome Sequencing of STEC Strains from Free-Ranging Red Deer. Vet. Sci. 2025, 12, 929. https://doi.org/10.3390/vetsci12100929
Lauzi S, Tozzoli R, Chiani P, Nava M, Knijn A, Michelacci V, Giacomelli S, Scavia G, Morabito S, Luzzago C. Isolation and Characterization Through Whole-Genome Sequencing of STEC Strains from Free-Ranging Red Deer. Veterinary Sciences. 2025; 12(10):929. https://doi.org/10.3390/vetsci12100929
Chicago/Turabian StyleLauzi, Stefania, Rosangela Tozzoli, Paola Chiani, Matteo Nava, Arnold Knijn, Valeria Michelacci, Stefano Giacomelli, Gaia Scavia, Stefano Morabito, and Camilla Luzzago. 2025. "Isolation and Characterization Through Whole-Genome Sequencing of STEC Strains from Free-Ranging Red Deer" Veterinary Sciences 12, no. 10: 929. https://doi.org/10.3390/vetsci12100929
APA StyleLauzi, S., Tozzoli, R., Chiani, P., Nava, M., Knijn, A., Michelacci, V., Giacomelli, S., Scavia, G., Morabito, S., & Luzzago, C. (2025). Isolation and Characterization Through Whole-Genome Sequencing of STEC Strains from Free-Ranging Red Deer. Veterinary Sciences, 12(10), 929. https://doi.org/10.3390/vetsci12100929