Organic Glycinate Trace Minerals Improve Hatchability, Bone and Eggshell Breaking Strength, and Mineral Uptake During Late Laying Cycle in Layer Breeders
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Consent
2.2. Experiment Design
2.3. Bird Husbandry
2.4. Egg Quality and Shell Breaking Strength
2.5. Hatching Traits
2.6. Tibial Breaking Strength
2.7. Mineral Analysis of Feed, Excreta, and Bone Samples
2.8. Statistical Analysis
3. Results
3.1. Egg Quality Parameters
3.2. Hatching Traits
3.3. Bone Quality Characteristics
3.4. Tibia Mineral Deposition
3.5. Excreta Mineral Excretion
4. Discussion
4.1. Egg Quality Characteristics
4.2. Hatching Traits
4.3. Tibia Quality Characteristics
4.4. Tibia Mineral Deposition
4.5. Excreta Mineral Excretion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leenstra, F.; Ten Napel, J.; Visscher, J.; Van Sambeek, F. Layer Breeding Programmes in Changing Production Environments: A Historic Perspective. World’s Poult. Sci. J. 2016, 72, 21–36. [Google Scholar] [CrossRef]
- Scanes, C.G.; Butler, L.D.; Kidd, M.T. Chapter 20—Reproductive Management of Poultry. In Animal Agriculture; Bazer, F.W., Lamb, C., Wu, G., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 349–366. [Google Scholar]
- Hamilton, R.M.G.; Bryden, W.L. Relationship between Egg Shell Breakage and Laying Hen Housing Systems—An Overview. World’s Poult. Sci. J. 2021, 77, 249–266. [Google Scholar] [CrossRef]
- Bao, Y.M.; Choct, M.; Iji, P.A.; Bruerton, K. Effect of Organically Complexed Copper, Iron, Manganese, and Zinc on Broiler Performance, Mineral Excretion, and Accumulation in Tissues. J. Appl. Poult. Res. 2007, 16, 448–455. [Google Scholar] [CrossRef]
- Avila, L.P.; Sweeney, K.M.; Roux, M.; Buresh, R.E.; White, D.L.; Kim, W.K.; Wilson, J.L. Evaluation of Industry Strategies to Supply Dietary Chelated Trace Minerals (Zn, Mn, and Cu) and Their Impact on Broiler Breeder Hen Reproductive Performance, Egg Quality, and Early Offspring Performance. J. Appl. Poult. Res. 2023, 32, 100354. [Google Scholar] [CrossRef]
- Arsi, K.; Donoghue, A.M.; Woo-Ming, A.; Blore, P.J.; Donoghue, D.J. The Efficacy of Selected Probiotic and Prebiotic Combinations in Reducing Campylobacter Colonization in Broiler Chickens. J. Appl. Poult. Res. 2015, 24, 327–334. [Google Scholar] [CrossRef]
- Ashmead, H.D. The Role of Iron Amino Acid Chelate in Pig Performance; Comparative Intestinal Absorption and Subsequent Metabolism of Metal Amino Acid Chelates and Inorganic Metal Salts. In The Roles of Amino Acid Chelates in Animal Nutrition; Noyes Publications: Park Ridge, NJ, USA, 1993. [Google Scholar]
- Byrne, L.; Murphy, R.A. Relative Bioavailability of Trace Minerals in Production Animal Nutrition: A Review. Animals 2022, 12, 1981. [Google Scholar] [CrossRef] [PubMed]
- Ao, T.; Pierce, J. The Replacement of Inorganic Mineral Salts with Mineral Proteinates in Poultry Diets. World’s Poult. Sci. J. 2013, 69, 5–16. [Google Scholar] [CrossRef]
- Świątkiewicz, S.; Arczewska-Włosek, A.; Józefiak, D. The Efficacy of Organic Minerals in Poultry Nutrition: Review and Implications of Recent Studies. World’s Poult. Sci. J. 2014, 70, 475–486. [Google Scholar] [CrossRef]
- Ghasemi, H.A.; Hajkhodadadi, I.; Hafizi, M.; Fakharzadeh, S.; Abbasi, M.; Kalanaky, S.; Nazaran, M.H. Effect of Advanced Chelate Compounds-Based Mineral Supplement in Laying Hen Diet on the Performance, Egg Quality, Yolk Mineral Content, Fatty Acid Composition, and Oxidative Status. Food Chem. 2022, 366, 130636. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.K.; Han, M.M.; Dong, Y.Y.; Miao, Z.Q.; Zhang, J.Z.; Song, X.Y.; Feng, Y.; Li, H.F.; Zhang, L.H.; Wei, Q.Y. Low Levels of Organic Compound Trace Elements Improve the Eggshell Quality, Antioxidant Capacity, Immune Function, and Mineral Deposition of Aged Laying Hens. Animal 2021, 15, 100401. [Google Scholar] [CrossRef]
- Zafar, M.H.; Fatima, M. Efficiency Comparison of Organic and Inorganic Minerals in Poultry Nutrition: A Review. PSM Vet. Res. 2018, 3, 53–59. [Google Scholar]
- Qiu, J.L.; Zhou, Q.; Zhu, J.M.; Lu, X.T.; Liu, B.; Yu, D.Y.; Lin, G.; Ao, T.; Xu, J.M. Organic Trace Minerals Improve Eggshell Quality by Improving the Eggshell Ultrastructure of Laying Hens during the Late Laying Period. Poult. Sci. 2020, 99, 1483–1490. [Google Scholar] [CrossRef] [PubMed]
- Stefanello, C.; Santos, T.C.; Murakami, A.E.; Martins, E.N.; Carneiro, T.C. Productive Performance, Eggshell Quality, and Eggshell Ultrastructure of Laying Hens Fed Diets Supplemented with Organic Trace Minerals. Poult. Sci. 2014, 93, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Pierce, J.; Ao, T.; Charlton, P.; Tucker, L.A. Organic Minerals for Broilers and Laying Hens: Reviewing the Status of Research So Far. World’s Poult. Sci. J. 2009, 65, 493–498. [Google Scholar] [CrossRef]
- Elnesr, S.S.; Mahmoud, B.Y.; Pires, P.G.d.S.; Moraes, P.; Elwan, H.A.M.; El-Shall, N.A.; El-Kholy, M.S.; Alagawany, M. Trace Minerals in Laying Hen Diets and Their Effects on Egg Quality. Biol. Trace Elem. Res. 2024, 202, 5664–5679. [Google Scholar] [CrossRef]
- Lohmann Breeders. Lohmann Tierzucht GmbH Germany; Management Guide; Lohmann: Cuxhaven, Germany, 2025. [Google Scholar]
- Yaqoob, M.U.; Wang, G.; Sun, W.; Pei, X.; Liu, L.; Tao, W.; Xiao, Z.; Wang, M.; Huai, M.; Li, L.; et al. Effects of Inorganic Trace Minerals Replaced by Complexed Glycinates on Reproductive Performance, Blood Profiles, and Antioxidant Status in Broiler Breeders. Poult. Sci. 2020, 99, 2718–2726. [Google Scholar] [CrossRef]
- McDaniel, C.D.; Hannah, J.L.; Parker, H.M.; Smith, T.W.; Schultz, C.D.; Zumwalt, C.D. Use of a Sperm Analyzer for Evaluating Broiler Breeder Males. 1. Effects of Altering Sperm Quality and Quantity on the Sperm Motility Index. Poult. Sci. 1998, 77, 888–893. [Google Scholar] [CrossRef]
- Saeed, A.; Mehmood, S.; Zahoor, M.S.; Khan, E.U.; Usman, M.; Hashmi, S.G.M.D.; Saleem, K.; Ahmad, S. Comparative Evaluation of Different Moulting Methods on Productive Performance, Egg Quality, and Antibody Response of Leghorn Hens. Trop. Anim. Health Prod. 2023, 55, 304. [Google Scholar] [CrossRef]
- Roberts, J.R. Factors Affecting Egg Internal Quality and Egg Shell Quality in Laying Hens. J. Poult. Sci. 2004, 41, 161–177. [Google Scholar] [CrossRef]
- Xiao, J.F.; Zhang, Y.N.; Wu, S.G.; Zhang, H.J.; Yue, H.Y.; Qi, G.H. Manganese Supplementation Enhances the Synthesis of Glycosaminoglycan in Eggshell Membrane: A Strategy to Improve Eggshell Quality in Laying Hens. Poult. Sci. 2014, 93, 380–388. [Google Scholar] [CrossRef]
- Oketch, E.O.; Yu, M.; Nawarathne, S.R.; Chaturanga, N.C.; Maniraguha, V.; Sta Cruz, B.G.; Seo, E.; Lee, J.; Park, H.; Lee, H.; et al. Multiprotease Supplementation in Laying Hen Diets: Impact on Performance, Egg Quality, Digestibility, Gut Histomorphology, and Sustainability. Poult. Sci. 2025, 104, 104977. [Google Scholar] [CrossRef]
- Voisey, P.W.; Hunt, J.R. Measurement of Eggshell Strength. J. Texture Stud. 1974, 5, 135–182. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, J.; Schroyen, M.; Zhang, H.; Wu, S.; Qi, G.; Wang, J. Decreased Eggshell Strength Caused by Impairment of Uterine Calcium Transport Coincide with Higher Bone Minerals and Quality in Aged Laying Hens. J. Anim. Sci. Biotechnol. 2024, 15, 37. [Google Scholar] [CrossRef] [PubMed]
- Dikmen, B.Y.; Sözcü, A.; İpek, A.; Şahan, Ü. Effects of Supplementary Mineral Amino Acid Chelate (ZnAA-MnAA) on the Laying Performance, Egg Quality and Some Blood Parameters of Late Laying Period Layer Hens. Vet Fak Derg 2015, 21, 155–162. [Google Scholar]
- Almeida, J.; Vieira, S.; Reis, R.; Berres, J.; Barros, R.; Ferreira, A.; Furtado, F. Hatching Distribution and Embryo Mortality of Eggs Laid by Broiler Breeders of Different Ages. Braz. J. Poult. Sci. 2008, 10, 89–96. [Google Scholar] [CrossRef]
- Park, S.Y.; Birkhold, S.G.; Kubena, L.F.; Nisbet, D.J.; Ricke, S.C. Effect of Storage Condition on Bone Breaking Strength and Bone Ash in Laying Hens at Different Stages in Production Cycles. Poult. Sci. 2003, 82, 1688–1691. [Google Scholar] [CrossRef]
- Alfonso-Carrillo, C.; Benavides-Reyes, C.; Mozos, J.d.L.; Dominguez-Gasca, N.; Sanchez-Rodríguez, E.; Garcia-Ruiz, A.I.; Rodriguez-Navarro, A.B. Relationship between Bone Quality, Egg Production and Eggshell Quality in Laying Hens at the End of an Extended Production Cycle (105 Weeks). Animals 2021, 11, 623. [Google Scholar] [CrossRef]
- Eusemann, B.K.; Ulrich, R.; Sanchez-Rodriguez, E.; Benavides-Reyes, C.; Dominguez-Gasca, N.; Rodriguez-Navarro, A.B.; Petow, S. Bone Quality and Composition Are Influenced by Egg Production, Layer Line, and Oestradiol-17ß in Laying Hens. Avian Pathol. 2022, 51, 267–282. [Google Scholar] [CrossRef]
- Song, O.Y.; Islam, A.; Son, J.H.; Jeong, J.Y.; Kim, H.E.; Yeon, L.S.; Khan, N.; Jamila, N.; Kim, K.S. Elemental Composition of Pork Meat from Conventional and Animal Welfare Farms by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) and ICP-Mass Spectrometry (ICP-MS) and Their Authentication Via Multivariate Chemometric Analysis. Meat Sci. 2021, 172, 108344. [Google Scholar] [CrossRef]
- Van Acker, T.; Theiner, S.; Bolea-Fernandez, E.; Vanhaecke, F.; Koellensperger, G. Inductively Coupled Plasma Mass Spectrometry. Nat. Rev. Methods Primers 2023, 3, 52. [Google Scholar] [CrossRef]
- Ellis, R., Jr.; Hanway, J.J.; Holmgren, G.; Keeney, D.R. Sampling and Analysis of Soils, Plants, Waste Waters, and Sludge: Suggested Standardization and Methodology; Research Publication, Agricultural Experiment Station, Kansas State University: Manhattan, KS, USA, 1975; No. 170; 20p. [Google Scholar]
- Haynes, R.J. A Comparison of Two Modified Kjeldahl Digestion Techniques for Multi-Element Plant Analysis with Conventional Wet and Dry Ashing Methods. Commun. Soil Sci. Plant Anal. 1980, 11, 459–467. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Wang, J.; Zhang, H.J.; Wu, S.G.; Qi, G.H. Effect of Dietary Supplementation of Organic or Inorganic Manganese on Eggshell Quality, Ultrastructure, and Components in Laying Hens. Poult. Sci. 2017, 96, 2184–2193. [Google Scholar] [CrossRef]
- Engelbrecht, P. Production and Egg Quality of Lohmann Brown Lite Laying Hens as Influenced by Source and Dietary Inclusion Concentration of Zinc, Copper, and Manganese. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2022. [Google Scholar]
- Innocenti, A.; Zimmerman, S.; Ferry, J.G.; Scozzafava, A.; Supuran, C.T. Carbonic Anhydrase Inhibitors. Inhibition of the Zinc and Cobalt Γ-Class Enzyme from the Archaeon Methanosarcina thermophila with Anions. Bioorganic Med. Chem. Lett. 2004, 14, 3327–3331. [Google Scholar] [CrossRef]
- Arbabi-Motlagh, M.M.; Ghasemi, H.A.; Hajkhodadadi, I.; Ebrahimi, M. Effect of Chelated Source of Additional Zinc and Selenium on Performance, Yolk Fatty Acid Composition, and Oxidative Stability in Laying Hens Fed with Oxidised Oil. Br. Poult. Sci. 2022, 63, 680–690. [Google Scholar] [CrossRef] [PubMed]
- Faghih-Mohammadi, F.; Seidavi, A.; Bouyeh, M. The Effect of the Chelated Form of Trace Elements in Diet on Weight Gain, Production Traits, Egg Specific Gravity, Immune System, Blood Parameters, Liver Enzymes, and Progesterone Hormone in Ross 308 Broiler Breeder Chickens. Ital. J. Anim. Sci. 2023, 22, 524–536. [Google Scholar] [CrossRef]
- Saleh, A.A.; Eltantawy, M.S.; Gawish, E.M.; Younis, H.H.; Amber, K.A.; El-Moneim, A.E.-M.E.A.; Ebeid, T.A. Impact of Dietary Organic Mineral Supplementation on Reproductive Performance, Egg Quality Characteristics, Lipid Oxidation, Ovarian Follicular Development, and Immune Response in Laying Hens under High Ambient Temperature. Biol. Trace Elem. Res. 2020, 195, 506–514. [Google Scholar] [CrossRef]
- Likittrakulwong, W.; Moonsatan, S.; Incharoen, T. Enhancement of Tibia Bone and Eggshell Hardness through the Supplementation of Bio-Calcium Derived from Fish Bone Mixed with Chelated Trace Minerals and Vitamin D3 in Laying Duck Diet. Vet. Anim. Sci. 2021, 14, 100204. [Google Scholar] [CrossRef]
- Saber, S.; Kutlu, H.A.; Uzun, Y.; Celik, L.Ü.; Yucelt, O.; Baylan, M. Effects of Form 726 of Dietary Trace Mineral Premix on Fertility and Hatchability of Broiler Breeder Hens and Post-Hatch 727 Performance and Carcass Parameters of Their Progenies. Kafkas Univ. Vet. Fak. Derg. 2020, 26, 171–180. [Google Scholar]
- Besharati, M.; Fathi, L.; Amirdahri, S.; Nemati, Z.; Palangi, V.; Lorenzo, J.M.; Maggiolino, A.; Centoducati, G. Reserves of Calcium, Copper, Iron, Potassium, Magnesium, Manganese, Sodium, Phosphorus, Strontium and Zinc in Goose Egg Yolk during Embryo Development. Animals 2023, 13, 1925. [Google Scholar] [CrossRef]
- Lv, G.; Yang, C.; Wang, X.; Yang, Z.; Yang, W.; Zhou, J.; Mo, W.; Liu, F.; Liu, M.; Jiang, S. Effects of Different Trace Elements and Levels on Nutrients and Energy Utilization, Antioxidant Capacity, and Mineral Deposition of Broiler Chickens. Agriculture 2023, 13, 1369. [Google Scholar] [CrossRef]
- Jacob, R.H.; Afify, A.S.; Shanab, S.M.; Shalaby, E.A. Chelated Amino Acids: Biomass Sources, Preparation, Properties, and Biological Activities. Biomass Convers. Biorefinery 2024, 14, 2907–2921. [Google Scholar] [CrossRef]
- El Sabry, M.I.; Yalcin, S. Factors Influencing the Development of Gastrointestinal Tract and Nutrient Transporters’ Function during the Embryonic Life of Chickens—A Review. J. Anim. Physiol. Anim. Nutr. 2023, 107, 1419–1428. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Rajput, N.; Laghari, I.H.; Kaleri, R.R.; Shamas, S.; Ahmed, Z.; Khushk, F.A.; Mukhtar, N. Exploring the Confluence of in-Ovo Mineral Supplementation and Hatching Attributes in Broiler Chick Progeny: A Symphony of Nutritional Enrichment and Broiler Chicks Development: In-Ovo Mineral Supplementation and Hatching. Futur. Biotechnol. 2023, 3, 33–40. [Google Scholar] [CrossRef]
- Wróblewski, M.; Wróblewska, W.; Sobiesiak, M. The Role of Selected Elements in Oxidative Stress Protection: Key to Healthy Fertility and Reproduction. Int. J. Mol. Sci. 2024, 25, 9409. [Google Scholar] [CrossRef] [PubMed]
- Zamany, S.; Sedghi, M.; Hafizi, M.; Nazaran, M.H.; KimiaeiTalab, M.V. Organic Acid-Based Chelate Trace Mineral Supplement Improves Broiler Performance, Bone Composition, Immune Responses, and Blood Parameters. Biol. Trace Elem. Res. 2023, 201, 4882–4899. [Google Scholar] [CrossRef]
- Londero, A.; Rosa, A.P.; Luiggi, F.G.; Fernandes, M.O.; Guterres, A.; de Moura, S.; Pedroso, N.H.; Santos, N. Effect of Supplementation with Organic and Inorganic Minerals on the Performance, Egg and Sperm Quality and, Hatching Characteristics of Laying Breeder Hens. Anim. Reprod. Sci. 2020, 215, 106309. [Google Scholar] [CrossRef]
- Attia, K.M.; Tawfik, F.A.; Mady, M.S.; Assar, M.H. Effect of Dietary Chromium, Selenium and Vitamin C Supplementation to the Diet on Reproductive Performance and Egg Quality of Laying Hens Dokki-4 under Egyptian Summer Condition. Egypt. J. Nutr. Feed. 2015, 18, 345–359. [Google Scholar] [CrossRef]
- Amr, O.; Wahed, A.; Ragab, M. Effects of Supplementing Laying Hens Diets with Organic Selenium on Egg Production, Egg Quality, Fertility and Hatchability. Egyp. Poult. Sci. J. 2010, 30, 893–915. [Google Scholar]
- Studer, J.M.; Schweer, W.P.; Gabler, N.K.; Ross, J.W. Functions of Manganese in Reproduction. Anim. Reprod. Sci. 2022, 238, 106924. [Google Scholar] [CrossRef]
- Chao, H.-H.; Zhang, Y.; Dong, P.-Y.; Gurunathan, S.; Zhang, X.-F. Comprehensive Review on the Positive and Negative Effects of Various Important Regulators on Male Spermatogenesis and Fertility. Front. Nutr. 2023, 9, 1063510. [Google Scholar] [CrossRef]
- Prabakar, G.; Gopi, M.; Kolluri, G.; Rokade, J.J.; Khillare, G.; Pearlin, B.V.; Jadhav, S.E.; Tyagi, J.S.; Mohan, J. Effect of Supplementation of Zinc-Methionine on Egg Production, Semen Quality, Reproductive Hormones, and Hatchability in Broiler Breeders. Biol. Trace Elem. Res. 2021, 199, 4721–4730. [Google Scholar] [CrossRef] [PubMed]
- Venkata, R.R.S.; Bhukya, P.; Raju, M.V.L.N.; Ullengala, R. Effect of Dietary Supplementation of Organic Trace Minerals at Reduced Concentrations on Performance, Bone Mineralization, and Antioxidant Variables in Broiler Chicken Reared in Two Different Seasons in a Tropical Region. Biol. Trace Elem. Res. 2021, 199, 3817–3824. [Google Scholar] [CrossRef] [PubMed]
- Manangi, M.; Masquez-Anon, M.; Richards, J.D.; Carter, S.; Buresh, R. Impact of Feeding Lower Levels of Chelated Trace Minerals Versus Industry Levels of Inorganic Trace Minerals on Broiler Performance, Yield, Footpad Health, and Litter Mineral Concentration. J. Appl. Poult. Res. 2012, 21, 881–890. [Google Scholar] [CrossRef]
- Ciosek, Ż.; Kot, K. Rotter, Iron, Zinc, Copper, Cadmium, Mercury, and Bone Tissue. Int. J. Environ. Res. Public Health 2023, 20, 2197. [Google Scholar] [CrossRef]
- Ragi, S.D.; Ahmed, F.; Gibson, J.; Moseley, I. Clinical Uses of Copper in Skin Aging and Wound Healing. In Cosmeceutical Science in Clinical Practice; CRC Press: Boca Raton, FL, USA, 2023; pp. 1–12. [Google Scholar]
- Kong, W.; Lyu, C.; Liao, H.; Du, Y. Collagen Crosslinking: Effect on Structure, Mechanics and Fibrosis Progression. Biomed. Mater. 2021, 16, 062005. [Google Scholar] [CrossRef]
- Rondanelli, M.; Faliva, M.A.; Peroni, G.; Infantino, V.; Gasparri, C.; Iannello, G.; Perna, S.; Riva, A.; Petrangolini, G.; Tartara, A. Essentiality of Manganese for Bone Health: An Overview and Update. Nat. Prod. Commun. 2021, 16, 1934578X211016649. [Google Scholar] [CrossRef]
- Nordberg, M. Trace Elements and Metallothionein Related to Geo-Environment. J. Trace Elem. Exp. Med. Off. Publ. Int. Soc. Trace Elem. Res. Hum. 2000, 13, 97–104. [Google Scholar] [CrossRef]
- El-Husseiny, O.M.; Hashish, S.M.; Ali, R.A.; Arafa, S.A.; Abd El-Samee, L.D.; Olemy, A.A. Effects of feeding organic zinc, manganese and copper on broiler growth, carcass characteristics, bone quality and mineral content in bone, liver and excreta. Int. J. Poult. Sci. 2012, 11, 368–377. [Google Scholar] [CrossRef]
- Linder, M.C. Biochemistry of Copper; Springer Science & Business Media: New York, NY, USA, 2013; Volume 10. [Google Scholar]
- National Research Council. Mineral Tolerance of Animals, 2nd ed.; National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- Huang, T.; Yan, G.; Guan, M. Zinc Homeostasis in Bone: Zinc Transporters and Bone Diseases. Int. J. Mol. Sci. 2020, 21, 1236. [Google Scholar] [CrossRef]
- Taskozhina, G.; Batyrova, G.; Umarova, G.; Issanguzhina, Z.; Kereyeva, N. The Manganese–Bone Connection: Investigating the Role of Manganese in Bone Health. J. Clin. Med. 2024, 13, 4679. [Google Scholar] [CrossRef]
- Wang, Z.; Cerrate, S.; Yan, F.; Sacakli, P.; Waldroup, P.W. Comparison of Different Concentrations of Inorganic Trace Minerals in Broiler Diets on Live Performance and Mineral Excretion. Int. J. Poult. Sci. 2008, 7, 625–629. [Google Scholar] [CrossRef]
- Ramirez, S.; de Deus, B.E.D.G.; Rosa, G.J.M.; Pereira, L.G.; Guedes, C.A.C. The Use of Organic Trace Minerals in Poultry Diets: A review. J. Appl. Poult. Res. 2023, 32, 100344. [Google Scholar]
- Lu, J.; Wang, Z.; Zhang, D.; Li, Y.; Sun, C.; Xu, M.; Li, K. Feeding Low Dietary Levels of Organic Trace Minerals Improves Broiler Performance and Reduces Excretion of Minerals in Litter. Br. Poult. Sci. 2020, 61, 574–582. [Google Scholar] [CrossRef]
- Bourne, L.E.; Wheeler-Jones, C.P.; Orriss, I.R. Regulation of Mineralisation in Bone and Vascular Tissue: A Comparative Review. J. Endocrinol. 2021, 248, R51–R65. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Li, C.; Huang, X.; Zhang, X.; Deng, P.; Chen, J.; Wu, S.; Wang, H.; Jiang, G.; et al. Effects of Supplementation of Inorganic Trace Elements with Organic Trace Elements Chelated with Hydroxy Methionine on Laying Performance, Egg Quality, Blood Micronutrients, Antioxidant Capacity and Immune Function of Laying Ducks. Front. Anim. Sci. 2022, 3, 1070018. [Google Scholar] [CrossRef]
Sr. No. | Treatments | Description | Details |
---|---|---|---|
1 | ITM100 | Inorganic trace minerals at breed-recommended (Standard) levels | Treatments = 3 Replicates = 6 Experimental units = 18 Female Birds/Replicate = 9 Total Female Birds = 162 Male Birds = 18 Total Birds = 180 (Lohmann LSL-Ultralite White) |
2 | OTM100 | Organic trace minerals at breed-recommended (Standard) levels | |
3 | OTM50 | Organic trace minerals at half dose (50%) of recommended levels |
Ingredients | Diets | ||
---|---|---|---|
ITM100 | OTM100 | OTM50 | |
Maize | 677.2 | 677.2 | 677.2 |
Rice Polish | 0.6 | 0.6 | 0.6 |
Soybean Meal | 135 | 135 | 135 |
Canola meal | 84 | 84 | 84 |
DL-Methionine | 0.9 | 0.9 | 0.9 |
L-Lysine SO4 | 0.19 | 0.19 | 0.19 |
Limestone | 94 | 94 | 94 |
MCP (Mono-Calcium Phosphate) | 3.5 | 3.5 | 3.5 |
Salt | 2 | 2 | 2 |
Sodium Bicarbonate | 1 | 1 | 1 |
Phytase Enzyme 1 | 0.1 | 0.1 | 0.1 |
Vitamin Premix * | 0.5 | 0.5 | 0.5 |
Inorganic Trace Minerals Premix * | 1 | -- | -- |
Gly-Min-Blend * | -- | 1 | 0.5 |
Total (kg) | 1000 | 1000 | 1000 |
Dietary inclusion levels of selected trace minerals | |||
Zn (mg/kg) | 60 | 60 | 30 |
Mn (mg/kg) | 100 | 100 | 50 |
Fe (mg/kg) | 40 | 40 | 20 |
Cu (mg/kg) | 10 | 10 | 5 |
Analyzed Nutrients (% otherwise noted) | |||
Crude Protein | 18.2 | ||
Metabolizable Energy (Calculated, Kcal/kg) | 2.71 | ||
Crude Fiber | 4.45 | ||
Crude Fat | 4.2 | ||
Dig. Lysine | 0.67 | ||
Dig. Methionine | 0.33 | ||
Calcium | 4.2 | ||
Available Phosphorus | 0.35 | ||
Sodium | 0.16 | ||
Chloride | 0.14 |
Parameters | ITM100 | OTM100 | OTM50 | SEM | p Value |
---|---|---|---|---|---|
Egg geometry | |||||
Egg weight (g) | 59.8 | 59.3 | 58.9 | 0.68 | 0.49 |
Egg Length (mm) | 57.5 | 57.7 | 56.9 | 0.46 | 0.25 |
Egg Breadth (mm) | 44.1 | 43.4 | 43.7 | 0.49 | 0.38 |
Egg Shape Index | 76.3 ab | 75.4 b | 76.8 a | 0.02 | 0.04 * |
Internal egg quality | |||||
Albumen Weight (g) | 33.1 | 33.3 | 33.3 | 0.92 | 0.95 |
Albumen Height (mm) | 8.45 | 8.43 | 8.58 | 0.33 | 0.89 |
Haugh Unit Score | 91.2 | 91.6 | 91.1 | 1.65 | 0.96 |
Yolk Weight (g) | 17.4 b | 18.4 a | 17.7 ab | 0.33 | 0.03 * |
Yolk Diameter (mm) | 42.1 b | 42.8 ab | 43.3 a | 0.36 | 0.02 * |
Yolk Height (mm) | 18.2 | 19.3 | 16.9 | 1.90 | 0.49 |
Yolk Index | 43.4 | 46.2 | 39.2 | 4.61 | 0.34 |
Egg Shell Properties | ITM100 | OTM100 | OTM50 | SEM | p Value |
---|---|---|---|---|---|
Eggshell Thickness (mm) | 0.39 | 0.42 | 0.44 | 0.02 | 0.10 |
Weight of Eggshell (g) | 8.19 | 7.42 | 7.61 | 0.39 | 0.18 |
Eggshell Breaking Strength (N) | 36.8 b | 43.5 a | 44.2 a | 2.69 | 0.03 * |
Parameters | ITM100 | OTM100 | OTM50 | SEM | p Value |
---|---|---|---|---|---|
Fertility (%) | 80.1 | 84.5 | 82.7 | 2.31 | 0.59 |
Hatchability of set eggs (%) | 60.0 b | 67.5 a | 66.2 a | 1.10 | 0.01 * |
Hatchability of fertile eggs (%) | 63.9 b | 71.6 a | 72.1 a | 1.81 | 0.01 * |
Dead in Shell (%) | 11.3 | 9.85 | 9.10 | 0.71 | 0.56 |
Early Embryonic Death (%) | 5.12 | 6.40 | 6.50 | 0.70 | 0.54 |
Mid Embryonic Death (%) | 0.47 a | 0.00 b | 0.00 b | 0.05 | 0.04 * |
Late Embryonic Death (%) | 1.25 | 2.40 | 1.75 | 0.26 | 0.42 |
Pipped Out Dead (%) | 2.00 | 1.05 | 0.00 | 0.31 | 0.07 |
Parameters | ITM100 | OTM100 | OTM50 | SEM | p Value |
---|---|---|---|---|---|
Tibia Weight (g) | 6.97 | 6.71 | 6.47 | 0.25 | 0.20 |
Tibial Shaft Area (mm2) | 36.6 | 37.2 | 34.7 | 1.48 | 0.25 |
Tibial Breaking Strength (MPa) | 29.6 b | 27.9 b | 39.0 a | 0.51 | 0.01 * |
Parameters | ITM100 | OTM100 | OTM50 | SEM | p Value |
---|---|---|---|---|---|
Tibia Zn (ppm) | 1.96 | 1.87 | 1.74 | 0.24 | 0.68 |
Tibia Cu (ppm) | 0.06 b | 0.14 a | 0.05 b | 0.02 | 0.02 * |
Tibia Fe (ppm) | 57.5 | 57.7 | 56.9 | 0.46 | 0.25 |
Tibia Mn (ppm) | 0.12 | 0.13 | 0.09 | 0.01 | 0.28 |
Parameters | ITM100 | OTM100 | OTM50 | SEM | p Value |
---|---|---|---|---|---|
Fecal Zn (µg/g) | 661.0 a | 425.3 b | 430.3 b | 37.8 | 0.01 * |
Fecal Mn (µg/g) | 479.0 a | 211.3 b | 233.0 b | 15.7 | <0.01 * |
Fecal Cu (µg/g) | 62.0 | 53.3 | 52.3 | 4.38 | 0.13 |
Fecal Fe (µg/g) | 56.3 | 73.0 | 67.7 | 24.0 | 0.79 |
Fecal Co (µg/g) | 39.4 | 39.6 | 40.8 | 0.87 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jahangir, M.A.; Muneeb, M.; Iqbal, M.F.; Hussain, S.M.; Habib, S.S.; Ahmad, S.; Abass, K.S.; Mukhtar, N.; Alhotan, R.A.; Al Sulaiman, A.R.; et al. Organic Glycinate Trace Minerals Improve Hatchability, Bone and Eggshell Breaking Strength, and Mineral Uptake During Late Laying Cycle in Layer Breeders. Vet. Sci. 2025, 12, 927. https://doi.org/10.3390/vetsci12100927
Jahangir MA, Muneeb M, Iqbal MF, Hussain SM, Habib SS, Ahmad S, Abass KS, Mukhtar N, Alhotan RA, Al Sulaiman AR, et al. Organic Glycinate Trace Minerals Improve Hatchability, Bone and Eggshell Breaking Strength, and Mineral Uptake During Late Laying Cycle in Layer Breeders. Veterinary Sciences. 2025; 12(10):927. https://doi.org/10.3390/vetsci12100927
Chicago/Turabian StyleJahangir, Mujtaba Akram, Muhammad Muneeb, Muhammad Farooq Iqbal, Syeda Maryam Hussain, Syed Sohail Habib, Sohail Ahmad, Kasim Sakran Abass, Nasir Mukhtar, Rashed A. Alhotan, Ali R. Al Sulaiman, and et al. 2025. "Organic Glycinate Trace Minerals Improve Hatchability, Bone and Eggshell Breaking Strength, and Mineral Uptake During Late Laying Cycle in Layer Breeders" Veterinary Sciences 12, no. 10: 927. https://doi.org/10.3390/vetsci12100927
APA StyleJahangir, M. A., Muneeb, M., Iqbal, M. F., Hussain, S. M., Habib, S. S., Ahmad, S., Abass, K. S., Mukhtar, N., Alhotan, R. A., Al Sulaiman, A. R., & Abudabos, A. E. (2025). Organic Glycinate Trace Minerals Improve Hatchability, Bone and Eggshell Breaking Strength, and Mineral Uptake During Late Laying Cycle in Layer Breeders. Veterinary Sciences, 12(10), 927. https://doi.org/10.3390/vetsci12100927