What Veterinarians Need to Know About the Newly-Emerging Field of Insects-as-Food-and-Feed
Simple Summary
Abstract
1. The Need to Feed an Ever-Growing Population
1.1. Global Food Insecurity and Malnutrition Is a Public Health Threat
1.2. Traditional Livestock Systems Are Not Sustainable
1.3. Entomophagy as a Sustainable Solution to Food Insecurity
2. The Current State of the Feeder Insect Market
2.1. Insects as Feed and Food
2.2. Current Limitations to the Feeder Insect Market
2.2.1. Low Production Numbers
2.2.2. Food Safety Concerns
2.2.3. Government Regulations
3. The Cricket Industry
3.1. Life Cycle and Uses
3.2. Significant Morbidity and Mortality Concerns
4. Cricket Diseases and Parallels to Traditional Livestock Diseases
4.1. Acheta domesticus Densovirus (AdDV)
4.2. The Challenge of Multi-Factorial Disease Complexes
5. Treatment of Diseases in Mini-Livestock
5.1. The Invertebrate Immune System
5.2. The Insect Microbiome and the Role of Probiotics
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results; United Nations: New York, NY, USA, 2022; Available online: https://desapublications.un.org/file/989/download (accessed on 1 March 2024).
- Food and Agricultural Organization [FAO]; International Fund for Agricultural Development [IFAD]; United Nations International Children’s Emergency Fund [UNICEF]; World Food Program [WFP]; World Health Organization [WHO]. The State of Food Security and Nutrition in the World 2023. Urbanization, Agrifood Systems Transformation and Healthy Diets Across the Rural–Urban Continuum; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Reid, R.S.; Galvin, K.A.; Kruska, R.S. Global significance of extensive grazing lands and pastoral societies: An introduction. In Fragmentation in Semi-Arid and Arid Landscapes: Consequences for Human and Natural Systems; Galvin, K.A., Reid, R.S., Behnke, R.H., Jr., Hobbs, N.T., Eds.; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Half of the World’s Habitable Land Is Used for Agriculture. Our World in Data. 2024. Available online: https://ourworldindata.org/global-land-for-agriculture (accessed on 1 March 2024).
- World Resources Institute. World Greenhouse Gas Emissions in 2019. 2019. Available online: https://www.wri.org/data/world-greenhouse-gas-emissions-2019 (accessed on 1 March 2024).
- Food and Agricultural Organization [FAO]; Livestock, Environment and Development Initiative [LEAD]. Livestock’s Long Shadow: Environmental Issues and Options. 2006. Available online: https://www.fao.org/3/a0701e/a0701e.pdf (accessed on 1 March 2024).
- Searchinger, T.; Waite, R.; Hanson, C.; Ranganathan, J.; Dumas, P.; Matthews, E. Creating a Sustainable Food Future: A Menu of Solutions to Feed Nearly 10 Billion People by 2050. Final Report; World Resources Institute: Washington, DC, USA, 2019; Available online: https://www.wri.org/research/creating-sustainable-food-future (accessed on 1 March 2024).
- World Resources Institute. Creating a Sustainable Food Future, 2019. 2019. Available online: https://research.wri.org/sites/default/files/2019-07/WRR_Food_Full_Report_0.pdf (accessed on 1 March 2024).
- Ritchie, H.; Roser, M. Fish and Overfishing: How Are Fish Stocks Changing Across the World? How Much Is Overfished? Our World in Data. 2021. Available online: https://ourworldindata.org/fish-and-overfishing (accessed on 1 March 2024).
- Van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef]
- Food and Agriculture Organization [FAO]. Edible Insects: Future Prospects for Food and Feed Security; FAO Forestry Paper 171; FAO: Rome, Italy, 2013; Available online: https://www.fao.org/4/i3253e/i3253e.pdf (accessed on 1 March 2024).
- Omuse, E.R.; Tonnang, H.E.Z.; Yusuf, A.A.; Machekano, H.; Egonyu, J.P.; Kimathi, E.; Mohamed, F.; Kassie, M.; Subramanian, S.; Onditi, J.; et al. The global atlas of edible insects: Analysis of diversity and commonality contributing to food systems and sustainability. Sci. Rep. 2024, 14, 5045. [Google Scholar] [CrossRef]
- Ortiz, J.A.C.; Ruiz, A.T.; Morales-Ramos, J.A.; Thomas, M.; Rojas, M.G.; Tomberlin, J.K.; Yi, L.; Han, R.; Giroud, L.; Jullien, R.L. Insect Mass Production Technologies. In Insects as Sustainable Food Ingredients: Production, Processing, and Food Applications; Dossey, A.T., Morales-Ramos, J.A., Rojas, M.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 153–201. [Google Scholar] [CrossRef]
- Finke, M.D. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol. 2002, 21, 269–285. [Google Scholar] [CrossRef]
- Association of American Feed Control Officials [AAFCO]. Ingredient Definitions Committee Report Midyear Meeting via Webinar. 5 March 2021. Available online: https://www.aafco.org/wp-content/uploads/2023/01/Ingredient_Definitions_Minutes_2021_Midyear.pdf (accessed on 1 March 2024).
- International Platform of Insects for Food and Feed [IPIFF]. EU Legislation—General Overview. 2022. Available online: https://ipiff.org/insects-eu-legislation/ (accessed on 1 March 2024).
- Yahoo! Edible Insects Market Size & Share Analysis—Growth Trends & Forecasts (2023–2028). Yahoo! Finance. 2023. Available online: https://finance.yahoo.com/news/edible-insects-market-size-share-135000936.html?guccounter=1&guce_referer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAANoYJ3gGgh1KEyXmi7tE-lk0ITqJkOyy2z7hy_asond2HuAJtb9Wox3dqw8t Uer7jo7M-Zqfyr3eTZlZPA09tj9otdbnqCK (accessed on 1 March 2024).
- Ros-Baro, M.; Sanchez-Socarras, V.; Santos-Pages, M.; Bach-Faig, A.; Aguilar-Martinez, A. Consumers’ acceptability and perception of edible insects as an emerging protein source. Int. J. Environ. Res. Public. Health 2022, 19, 15756. [Google Scholar] [CrossRef] [PubMed]
- Amazon.com. 2024. Available online: https://www.amazon.com/s?k=cricket+powder&crid=21DBZRDCNYA8X&sprefix=cricket+powder%2Caps%2C115&ref=nb_sb_noss_1 (accessed on 1 March 2024).
- Walmart.com. 2024. Available online: https://www.walmart.com/search?q=ground+beef (accessed on 1 March 2024).
- Carlson, A. Investigating the Retail Price Premiums for Organic Foods. USDA Economic Research Service, 24 May 2016. Available online: https://www.ers.usda.gov/amber-waves/2016/may/investigating-retail-price-premiums-for-organic-foods/ (accessed on 1 March 2024).
- Bertola, M.; Mutinelli, F. A systemic review on viruses in mass-reared edible insect species. Viruses 2021, 13, 2280. [Google Scholar] [CrossRef] [PubMed]
- Eilenberg, J.; Vlak, J.M.; Nielsen-LeRoux, C.; Cappellozza, S.; Jensen, A.B. Diseases in insects produced for food and feed. J. Insects Food Feed. 2015, 1, 87–102. [Google Scholar] [CrossRef]
- Maciel-Vergara, G.; Ros, V.I.D. Viruses of insects reared for food and feed. J. Inverteb Pathol. 2017, 147, 60–75. [Google Scholar] [CrossRef]
- Maciel-Vergara, G.; Jensen, A.B.; Lecocq, A.; Eilenberg, J. Diseases in edible insect rearing systems. J. Insects Food Feed 2021, 7, 621–638. [Google Scholar] [CrossRef]
- United Egg Producers. Facts & Stats. United Egg Producers. Available online: https://unitedegg.com/facts-stats/ (accessed on 29 March 2024).
- United States Department of Agriculture Economic Research Service [USDA-ERS]. Livestock and Poultry Weights Per Animal Have Increased Steadily Since 2000; USDA-ERS: Washington, DC, USA, 2018. Available online: https://www.ers.usda.gov/data-products/chart-gallery/gallery/chart-detail/?chartId=89283 (accessed on 1 March 2024).
- Facchini, E.; Shrestha, K.; van den Boer, E.; Junes, P.; Sader, G.; Peeters, K.; Schmitt, E. Long-term artificial selection for increased larval body weight of Hermetia illucens in industrial settings. Front. Genet. 2022, 13, 865490. [Google Scholar] [CrossRef]
- Ssepuuya, G.; Wynants, E.; Verreth, C.; Crauwels, S.; Lievens, B.; Claes, J.; Nakimbugwe, D.; Van Campenhout, L. Microbial characterisation of the edible grasshopper ruspolia differens in raw condition after wild-harvesting in Uganda. Food Microbiol. 2019, 77, 106–117. [Google Scholar] [CrossRef]
- Vandeweyer, D.; Crauwels, S.; Lievens, B.; Van Campenhout, L. Microbial counts of mealworm larvae (Tenebrio molitor) and crickets (Acheta domesticus and Gryllodes sigillatus) from different rearing companies and different production batches. Int. J. Food Microbiol. 2017, 242, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Vandeweyer, D.; Milanović, V.; Garofalo, C.; Osimani, A.; Clementi, F.; Van Campenhout, L.; Aquilanti, L. Real-time PCR detection and quantification of selected transferable antibiotic resistance genes in fresh edible insects from Belgium and the Netherlands. Int. J. Food Microbiol. 2019, 290, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Hirneisen, A.; McGeehan, N. Let’s Preserve: Freeze-Drying. Penn State Extension. 24 May 2023. Available online: https://extension.psu.edu/lets-preserve-freeze-drying (accessed on 1 March 2024).
- Malematja, E.; Manyelo, T.G.; Sebola, N.A.; Kolobe, S.D.; Mabelebele, M. The accumulation of heavy metals in feeder insects and their impact on animal production. Sci. Total Environ. 2023, 885, 163716. [Google Scholar] [CrossRef] [PubMed]
- De Marchi, L.; Wangorsch, A.; Zoccatelli, G. Allergens from edible insects: Cross-reactivity and effects of processing. Curr. Allergy Asthma Rep. 2021, 21, 35. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, S. Setting the Table for a Hotter, Flatter, More Crowded Earth: Insects on the Menu? National Institute of Food and Agriculture. Available online: https://www.nifa.usda.gov/sites/default/files/wageningen_insectsasfood_05142014.pdf (accessed on 1 March 2024).
- Center for Food Safety and Applied Nutrition. Food/Dietary Supplement Guidance and Regulatory Information. U.S. Food and Drug Administration. Available online: https://www.fda.gov/food/guidance-regulation-food-and-dietary-supplements/guidance-documents-regulatory-information-topic-food-and-dietary-supplements (accessed on 1 March 2024).
- Morales-Ramos, J.A.; Tomberlin, J.K.; Miranda, C.; Guadalupe Rojas, M. Rearing methods of four insect species intended as feed, food, and food ingredients: A review. J. Econ. Entomol. 2024, 117, 1210–1224. [Google Scholar] [CrossRef] [PubMed]
- Rowe, A. Insects Raised for Food and Feed-Global Scale, Practices, and Policy. Rethink Priorities. 2020. Available online: https://rethinkpriorities.org/research-area/insects-raised-for-food-and-feed/ (accessed on 1 March 2024).
- Rowe, E.; Robles Lopez, K.Y.; Robinson, K.M.; Baudier, K.M.; Barrett, M. Farmed cricket (Acheta domesticus, Gryllus assimilis, and Gryllodes sigillatus; Orthoptera) welfare considerations: Recommendations for improving global practice. J. Insects Food Feed 2024, 10, 1253–1311. [Google Scholar] [CrossRef]
- Geyersberg, H.S. Acheta domestics, Adultes Weibchen [Photograph]. Wikipedia Commons. 2012. Available online: https://commons.wikimedia.org/wiki/File:Acheta_domesticus,_adultes_Weibchen.jpg (accessed on 1 March 2024).
- Falconer, F. Gryllodes sigillatus 21 06 [Photograph]. Wikipedia Commons. 2022. Available online: https://commons.wikimedia.org/wiki/File:Gryllodes_sigillatus_21_06.jpg (accessed on 1 March 2024).
- Schönitzer. Gryllus assimilis Female [Photograph]. Wikipedia Commons. 2014. Available online: https://commons.wikimedia.org/wiki/File:Gryllus_assimilis_female.jpg (accessed on 1 March 2024).
- Fernandez-Cassi, X.; Supeanu, A.; Vaga, M.; Jansson, A.; Boqvist, S.; Vagsholm, I. The house cricket (Acheta domesticus) as a novel food: A risk profile. J. Insects Food Feed 2019, 5, 137–157. [Google Scholar] [CrossRef]
- Muzzatti, M.J.; Ritchie, M.W.; Bess, E.C.; Bertram, S.M.; MacMillan, H.A. Farmed crickets (Orthoptera: Gryllidae) raised with dermestids (Coleoptera: Dermestidae) suffer from reduced and delayed growth, but not enough to explain reports of dramatic yield loss. J. Econ. Entomol. 2024, toae208. [Google Scholar] [CrossRef]
- Woodring, J.P.; Clifford, C.W.; Richard, M.R. The effect of temperature on feeding, growth and metabolism during the last larval stadium of the female house cricket (Acheta domesticus). J. Insect Physiol. 2002, 26, 639–644. [Google Scholar]
- Hanboonsong, Y.; Jamjanya, T.; Durst, P.B. Six-legged livestock: Edible insect farming, collection and marketing in Thailand. J. Econ. Entomol. 2013, 3, 791–846. [Google Scholar]
- Ssepuuya, G.; Sengendo, F.; Ndagire, C.; Karungi, J.; Fiaboe, K.K.M.; Efitre, J.; Nakimbugwe, D. Effect of alternative rearing substrates and temperature on growth and development of the cricket Modicogryllus conspersus (Schaum). J. Insects Food Feed 2021, 7, 163–172. [Google Scholar] [CrossRef]
- Takacs, J.; Bryon, A.; Jensen, A.B.; van Loon, J.J.A.; Ros, V.I.D. Effects of temperature and density on house cricket survival and growth and on the prevalence of Acheta domesticus densovirus. Insects 2023, 14, 588. [Google Scholar] [CrossRef] [PubMed]
- Cevallos, R.C.; Sarnow, P. Temperature protects insect cells from infection by cricket paralysis virus. J. Virol. 2009, 84, 1652–1655. [Google Scholar] [CrossRef]
- Suckling, J.; Druckman, A.; Moore, C.D.; Driscoll, D. The environmental impact of rearing crickets for live pet food in the UK, and implications of a transition to a hybrid business model combining production for live pet food with production for human consumption. Int. J. Life Cycle Assess. 2020, 25, 1693–1709. [Google Scholar] [CrossRef]
- United States Department of Agriculture Animal and Plant Health Inspection Service [USDA APHIS]. Biosecurity in Small-scale U.S. Livestock Operations. 2012. Available online: https://www.aphis.usda.gov/sites/default/files/small_scale_is_biosecurity.pdf (accessed on 1 March 2024).
- United States Department of Agriculture [USDA]; The Center for Food Security and Public Health [CFSPH] at Iowa State University College of Veterinary Medicine. Information Manual for Implementing Poultry Biosecurity. Available online: https://poultrybiosecurity.org/files/Poultry-Biosecurity-Info-Manual.pdf (accessed on 1 March 2024).
- Szelei, J.; Woodring, J.; Goettel, M.S.; Duke, G.; Jousset, F.X.; Liu, K.Y.; Zadori, Z.; Li, Y.; Styer, E.; Boucias, D.G.; et al. Susceptibility of North American and European crickets to Acheta domesticus densovirus (AdDNV) and associated epizootics. J. Invertebr. Pathol. 2011, 106, 394–399. [Google Scholar] [CrossRef]
- Meynardier, G.; Matz, G.; Veyrunes, J.C.; Bres, N. Virose de type densonucleose chez les orthopteres. Annls Soc. Ent Fr. 1977, 13, 487–498. [Google Scholar] [CrossRef]
- Styer, E.L.; Hamm, J.J. Report of a densovirus in a commercial cricket operation in the southeastern United States. J. Invertebr. Pathol. 1991, 58, 283–285. [Google Scholar] [CrossRef]
- Weissman, D.B.; Gray, D.A.; Pham, H.T.; Tijssen, P. Billions and billions sold: Pet-feeder crickets (Orthoptera: Gryllidae), commercial cricket farms, an epizootic densovirus, and governmental regulations make for a potential disaster. Zootaxa 2012, 3504, 67–88. [Google Scholar] [CrossRef]
- Streck, A.F.; Truyen, U. Porcine parvovirus. Curr. Issues Mol. Biol. 2020, 37, 33–46. [Google Scholar] [CrossRef]
- Meszaros, I.; Olasz, F.; Cságola, A.; Tijssen, P.; Zádori, Z. Biology of porcine parvovirus (Ungulate parvovirus 1). Viruses 2017, 9, 393. [Google Scholar] [CrossRef] [PubMed]
- Nelsen, A.; Lin, C.M.; Hause, B.M. Porcine parvovirus 2 is predominantly associated with macrophages in porcine respiratory disease complex. Front. Vet. Sci. 2021, 8, 726884. [Google Scholar] [CrossRef] [PubMed]
- de Miranda, J.R.; Granberg, F.; Low, M.; Onorati, P.; Semberg, E.; Jansson, A.; Berggren, A. Virus Diversity and Loads in Crickets Reared for Feed: Implications for Husbandry. Front. Vet. Sci. 2021, 8, 642085. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J. Overview of Bovine Respiratory Disease Complex. In Merck Veterinary Manual; Abuelo, A., Brutlag, A., Carnevale, J., Dart, A., Davidson, G., Davis, J.L., Eide, M., Ramirez, A., Swayne, D.E., Eds.; Merck & Co., Inc.: Rahway, NJ, USA, 2023; Available online: https://www.merckvetmanual.com/respiratory-system/bovine-respiratory-disease-complex/overview-of-bovine-respiratory-disease-complex (accessed on 1 March 2024).
- Mikonranta, L.; Mappes, J.; Kaukoniitty, M.; Freitak, D. Insect immunity: Oral exposure to a bacterial pathogen elicits free radical response and protects from a recurring infection. Front. Zool. 2014, 11, 23. [Google Scholar] [CrossRef] [PubMed]
- Hillyer, J.F. Insect immunology and hematopoiesis. Dev. Comp. Immunol. 2017, 58, 102–118. [Google Scholar] [CrossRef]
- Mussabekova, A.; Daeffler, L.; Imler, J. Innate and intrinsic antiviral immunity in Drosophila. Cell Mol. Life Sci. 2017, 74, 2039–2054. [Google Scholar] [CrossRef] [PubMed]
- Marques, J.T.; Imler, J. The diversity of insect antiviral immunity: Insights from viruses. Curr. Opin. Microbiol. 2016, 32, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Charles, H.M.; Killian, K.A. Response of the insect immune system to three different immune challenges. J. Insect Physiol. 2015, 81, 97–108. [Google Scholar] [CrossRef]
- Pinera, A.; Charles, H.M.; Dihn, T.A.; Killian, K.A. Maturation of the immune system of the male house cricket, Acheta domesticus. J. Insect Physiol. 2013, 59, 752–760. [Google Scholar] [CrossRef]
- Cooper, D.; Eleftherianos, I. Memory and specificity in the insect immune system: Current perspectives and future challenges. Front. Immunol. 2017, 8, 539. [Google Scholar] [CrossRef] [PubMed]
- Duffield, K.R.; Foquet, B.; Stasko, J.A.; Hunt, J.; Sadd, B.M.; Sakaluk, S.K.; Ramirez, J.L. Induction of multiple immune signaling pathways in Gryllodes sigillatus crickets during overt viral infections. Viruses 2022, 14, 2712. [Google Scholar] [CrossRef]
- Smith, D.F.; Dragotakes, Q.; Kulkarni, M.; Hardwick, J.M.; Casadevall, A. Melanization is an important antifungal defense mechanism in Galleria mellonella hosts. bioRxiv 2022. [Google Scholar] [CrossRef]
- Sharon, I.; Quijada, N.M.; Pasolli, E.; Fabbrini, M.; Vitali, F.; Agamennone, V.; Dötsch, A.; Selberherr, E.; Grau, J.H.; Meixner, M.; et al. Innate humoral immune defenses in mammals and insects: The same, with differences? Virulence 2018, 9, 1625–1639. [Google Scholar] [CrossRef]
- Tetreau, G.; Dhinaut, J.; Gourbal, B.; Moret, Y. Trans-generational immune priming in invertebrates: Current knowledge and future prospects. Front. Immunol. 2019, 10, 1938. [Google Scholar] [CrossRef] [PubMed]
- Rosales, C. Cellular and molecular mechanisms of insect immunity. In Insect Physiology and Ecology; Shields, V.D.C., Ed.; IntechOpen: London, UK, 2017; pp. 179–212. [Google Scholar] [CrossRef]
- Swevers, L.; Liu, J.; Smagghe, G. Defense mechanisms against viral infection in Drosphila: RNAi and Non-RNAi. Viruses 2018, 10, 230. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.Y.; Palli, S.R. Mechanisms, Applications, and Challenges of Insect RNA Interference. Annu. Rev. Entomol. 2020, 65, 293–311. [Google Scholar] [CrossRef]
- Kumar, R.; Ali, S.A.; Singh, S.K.; Bhushan, V.; Mathur, M.; Jamwal, S.; Mohanty, A.K.; Kaushik, J.K.; Kumar, S. Antimicrobial peptides in farm animals: An updated review on its diversity, function, modes of action and therapeutic prospects. Vet. Sci. 2020, 7, 206. [Google Scholar] [CrossRef]
- Honeybee Vaccine Receives Conditional License from USDA. American Veterinary Medical Association. 24 January 2023. Available online: https://www.avma.org/news/honeybee-vaccine-receives-conditional-license-usda (accessed on 1 March 2024).
- Oppert, B.; Perkin, L.C.; Lorenzen, M.; Dossey, A.T. Transcriptome analysis of life stages of the house cricket, Acheta domesticus, to improve insect crop production. Sci. Rep. 2020, 10, 3471. [Google Scholar] [CrossRef]
- La Fauce, K.; Owens, L. RNA interference reduces PmergDNV expression and replication in an in vivo cricket model. J. Invertebr. Pathol. 2009, 100, 111–115. [Google Scholar] [CrossRef]
- Garofalo, C.; Milanovic, V.; Cardinali, F.; Aquilanti, L.; Clementi, F.; Osimani, A. Current knowledge on the microbiota of edible insects intended for human consumption: A state-of-the-art review. Food Res. Int. 2019, 125, 108527. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, C.; Osimani, A.; Milanović, V.; Taccari, M.; Cardinali, F.; Aquilanti, L.; Riolo, P.; Ruschioni, S.; Isidoro, N.; Clementi, F. The microbiota of marketed processed edible insects as revealed by high-throughput sequencing. Food Microbiol. 2017, 62, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Milanović, V.; Cardinali, F.; Aquilanti, L.; Garofalo, C.; Roncolini, A.; Sabbatini, R.; Clementi, F.; Osimani, A. A glimpse into the microbiota of marketed ready-to-eat crickets (Acheta domesticus). Indian J. Microbiol. 2019, 60, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.H.; Stat, M.; Bunce, M.; Simmons, L.W. The influence of diet and environment on the gut microbial community of field crickets. Ecol. Evol. 2018, 8, 4704–4720. [Google Scholar] [CrossRef] [PubMed]
- Rizou, E.; Kalogiouri, N.; Bisba, M.; Papadimitriou, A.; Kyrila, G.; Lazou, A.; Andreadis, S.; Hatzikamari, M.; Mourtzinos, I.; Touraki, M. Amelioration of growth, nutritional value, and microbial load of Tenebrio molitor (Coleoptera: Tenebrionidae) through probiotic supplemented feed. Eur. Food Res. Technol. 2022, 248, 727–739. [Google Scholar] [CrossRef]
- Smith, C.C.; Srygley, R.B.; Healy, F.; Swaminath, K.; Mueller, U.G. Spatial structure of the mormon cricket gut microbiome and its predicted contribution to nutrition and immune function. Front. Microbiol. 2017, 8, 801. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, R.G.; Buthala, D.A.; Klug, M.J. Microbiota associated with the gastrointestinal tract of the common house cricket, Acheta domestica. Appl. Environ. Microbiol. 1981, 41, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Stoops, J.; Crauwels, S.; Waud, M.; Claes, J.; Lievens, B.; Van Campenhout, L. Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratoriodes) sold for human consumption. Food Microbiol. 2016, 53, 122–127. [Google Scholar] [CrossRef]
- Osimani, A.; Garofalo, C.; Milanovic, V.; Taccari, M.; Cardinali, F.; Aquilanti, L.; Pasquini, M.; Mozzon, M.; Raffaelli, N.; Ruschioni, S.; et al. Insight into the proximate composition and microbial diversity of edible insects marketed in the European Union. Eur. Food Res. Technol. 2016, 243, 1157–1171. [Google Scholar] [CrossRef]
- Ogbalu, O.K.; Renner, R.N. Microbiological investigations on Gryllotalpa africana [Orthoptera: Gryllotalpidae], an edible cricket of the Niger delta. IOSR J. Pharm. Biol. Sci. 2015, 10, 38–42. [Google Scholar] [CrossRef]
- Fernandez-Cassi, X.; Soderqvist, K.; Bakeeva, A.; Vaga, M.; Dicksved, J.; Vagsholm, I.; Jansson, A.; Boqvist, S. Microbial communities and food safety aspects of crickets (Acheta domesticus) reared under controlled conditions. J. Insects Food Feed 2020, 6, 429–440. [Google Scholar] [CrossRef]
- Aleknavicius, D.; Luska, J.; Strazdaite-Zieliene, Z.; Serviene, E. The bacterial microbiota of edible insects Acheta domesticus and Gryllus assimilis revealed by high content analysis. Foods 2022, 11, 1073. [Google Scholar] [CrossRef] [PubMed]
- Mohajeri, M.H.; Brummer, R.J.; Rastall, R.A.; Weersma, R.K.; Harmsen, H.J.; Faas, M.; Eggersdorfer, M. The role of the microbiome for human health: From basic science to clinical applications. Eur. J. Nutr. 2018, 57, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ogunrinola, G.A.; Oyewale, J.O.; Oshamika, O.O.; Olasehinde, G.I. The human microbiome and its impacts on health. Int. J. Microbiol. 2020, 2020, 1–7. [Google Scholar] [CrossRef]
- Bai, S.; Yao, Z.; Raza, M.F.; Cai, Z.; Zhang, H. Regulatory mechanisms of microbial homeostasis in insect gut. Insect Sci. 2020, 28, 286–301. [Google Scholar] [CrossRef] [PubMed]
- DeGruttola, A.K.; Low, D.; Mizoguchi, A.; Mizoguchi, E. Current understanding of dysbiosis in disease in human and animal models. Inflamm. Bowel Dis. 2016, 22, 1137–1150. [Google Scholar] [CrossRef] [PubMed]
- Paris, L.; Peghaire, E.; Moné, A.; Diogon, M.; Debroas, D.; Delbac, F.; El Alaoui, H. Honeybee gut microbiota dysbiosis in pesticide/parasite co-exposures is mainly induced by Nosema ceranae. J. Inverteb Pathol. 2020, 172, 107348. [Google Scholar] [CrossRef] [PubMed]
- Powell, J.E.; Carver, Z.; Leonard, S.P.; Moran, N.A. Field-realistic tylosin exposure impacts honey bee microbiota and pathogen susceptibility, which is ameliorated by native gut probiotics. Microbiol. Spectr. 2021, 9, e0010321. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, R.S.; Moran, N.A.; Evans, J.D. Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers. Proc. Natl. Acad. Sci. USA 2016, 113, 9345–9350. [Google Scholar] [CrossRef] [PubMed]
- Audisio, M.C.; Sabaté, D.C.; Benítez-Ahrendts, M.R. Effect of Lactobacillus johnsonii CRL1647 on different parameters of honeybee colonies and bacterial populations of the bee gut. Benef. Microbes 2015, 6, 687–695. [Google Scholar] [CrossRef]
- Baffoni, L.; Gaggìa, F.; Alberoni, D.; Cabbri, R.; Nanetti, A.; Biavati, B.; Di Gioia, D. Effect of dietary supplementation of Bifidobacterium and Lactobacillus strains in Apis mellifera L. against Nosema ceranae. Benef. Microbes 2016, 7, 45–51. [Google Scholar] [CrossRef]
- Maggi, M.; Negri, P.; Plischuk, S.; Szawarski, N.; DePiano, F.; De Feudis, L.; Eguaras, M.; Audisio, C. Effects of the organic acids produced by a lactic acid bacterium in Apis mellifera colony development, Nosema ceranae control and fumagillin efficiency. Vet. Microbiol. 2013, 167, 474–483. [Google Scholar] [CrossRef]
- Forsgren, E.; Olofsson, T.C.; Vásquez, A.; Fries, I. Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 2009, 41, 99–108. [Google Scholar] [CrossRef]
- Gaggia, F.; Baffoni, L.; Alberoni, D. Probiotics for honeybees’ health. In Probiotics and Prebiotics in Animal Health and Food Safety; Di Gioia, D., Biavati, B., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Vásquez, A.; Forsgren, E.; Fries, I.; Paxton, R.J.; Flaberg, E.; Szekely, L.; Olofsson, T.C. Symbionts as major modulators of insect health: Lactic acid bacteria and honeybees. PLoS ONE 2012, 7, e33188. [Google Scholar] [CrossRef]
- Savio, C.; Mugo-Kamiri, L.; Upfold, J.K. Bugs in bugs: The role of probiotics and prebiotics in maintenance of health in mass-reared insects. Insects 2022, 13, 376. [Google Scholar] [CrossRef] [PubMed]
- Lecocq, A.; Natsopoulou, M.E.; Berggreen, I.E.; Eilenberg, J.; Lau Heckmann, L.-H.; Nielsen, H.V.; Stensvold, C.R.; Jensen, A.B. Probiotic properties of an indigenous Pediococcus pentosaceus strain on Tenebrio molitor larval growth and survival. J. Insects Food Feed 2021, 7, 975–986. [Google Scholar] [CrossRef]
- Kooienga, E.M.; Baugher, C.; Currin, M.; Tomberlin, J.K.; Jordan, H.R. Effects of bacterial supplementation on black soldier fly growth and development at benchtop and industrial scale. Front. Microbiol. 2020, 11, 587979. [Google Scholar] [CrossRef]
- Yu, G.; Cheng, P.; Chen, Y.; Li, Y.; Yang, Z.; Chen, Y.; Tomberlin, J.K. Inoculating poultry manure with companion bacteria influences growth and development of black soldier fly (Diptera: Stratiomyidae) larvae. Environ. Entomol. 2011, 40, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Richard, N.; Rabot, R.; Beutin, C.; van Loon, J.J.A. Live yeast probiotic can boost growth performances of yellow mealworm and black soldier fly larvae. In Proceedings of the [Poster Presentation]. Insectinov 3, Paris, France, 26–28 November 2016; Available online: https://www.researchgate.net/publication/341220130_LIVE_YEAST_PROBIOTIC_CAN_BOOST_GROWTH_PERFORMANCES_OF_YELLOW_MEAL_WORM_AND_BLACK_SOLDIER_FLY_LARVAE (accessed on 1 March 2024).
- Franks, K.; Kooienga, E.; Sanders, M.; Pendarvis, K.; Yang, F.; Tomberlin, J.K.; Jordan, H.R. The effect of Rhodococcus rhodochrous supplementation on black soldier fly (Diptera: Stratiomyidae) development, nutrition, and waste conversion. J. Insects Food Feed 2021, 7, 397–408. [Google Scholar] [CrossRef]
- Ptaszyńska, A.A.; Borsuk, G.; Mułenko, W.; Wilk, J. Impact of vertebrate probiotics on honeybee yeast microbiota and on the course of nosemosis. Med. Weter 2016, 72, 430–434. [Google Scholar] [CrossRef]
Food Commodity | Kilograms of Feed Required to Produce One Kilogram of Edible Meat |
---|---|
Crickets | 2.1 |
Poultry | 4.5 |
Pork | 9.1 |
Beef | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boykin, K.L.; Mitchell, M.A. What Veterinarians Need to Know About the Newly-Emerging Field of Insects-as-Food-and-Feed. Vet. Sci. 2025, 12, 12. https://doi.org/10.3390/vetsci12010012
Boykin KL, Mitchell MA. What Veterinarians Need to Know About the Newly-Emerging Field of Insects-as-Food-and-Feed. Veterinary Sciences. 2025; 12(1):12. https://doi.org/10.3390/vetsci12010012
Chicago/Turabian StyleBoykin, Kimberly L., and Mark A. Mitchell. 2025. "What Veterinarians Need to Know About the Newly-Emerging Field of Insects-as-Food-and-Feed" Veterinary Sciences 12, no. 1: 12. https://doi.org/10.3390/vetsci12010012
APA StyleBoykin, K. L., & Mitchell, M. A. (2025). What Veterinarians Need to Know About the Newly-Emerging Field of Insects-as-Food-and-Feed. Veterinary Sciences, 12(1), 12. https://doi.org/10.3390/vetsci12010012