Evaluation of Totarol for Promoting Open Wound Healing in Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Antimicrobial Activity of Totarol
3.2. Clinical Assessment of the Wound Healing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrari, R.; Boracchi, P.; Romussi, S.; Ravasio, G.; Stefanello, D. Application of Hyaluronic Acid in The Healing of Non-Experimental Open Wounds: A Pilot Study on 12 Wounds in 10 Client-Owned Dogs. Vet. World 2015, 8, 1247–1259. [Google Scholar] [CrossRef] [PubMed]
- Atiyeh, S.B.; Ioannovich, J.; Al-Amm, C.A.; El-Musa, K.A. Management of Acute and Chronic Open Wounds: The Importance of Moist Environment in Optimal Wound Healing. Curr. Pharm. Biotechnol. 2002, 3, 179–195. [Google Scholar] [CrossRef] [PubMed]
- Negut, I.; Grumezescu, V.; Grumezescu, A.M. Treatment Strategies for Infected Wounds. Molecules 2018, 23, 2392. [Google Scholar] [CrossRef] [PubMed]
- Prabu, S.L.; Umamaheswari, A.; Grace Felciya, S.J. Investigation on The Biofilm Eradication Potential of Selected Medicinal Plants Against Methicillin-Resistant Staphylococcus aureus. Biotechnol. Rep. (Amst) 2020, 28, e00523. [Google Scholar]
- Manilal, A.; Sabu, K.R.; Shewangizaw, M.; Aklilu, A.; Seid, M.; Merdikios, B.; Tsegaye, B. In Vitro Antibacterial Activity of Medicinal Plants Against Biofilm-Forming Methicillin-Resistant Staphylococcus aureus: Efficacy of Moringa stenopetala and Rosmarinus officinalis Extracts. Heliyon 2020, 6, e03303. [Google Scholar] [CrossRef]
- Mori, H.-M.; Kawanami, H.; Kawahata, H.; Aoki, M. Wound Healing Potential of Lavender Oil by Acceleration of Granulation and Wound Contraction Through Induction of TGF-β in a Rat model. BMC Complement. Altern. Med. 2016, 16, 144. [Google Scholar] [CrossRef]
- Teshome, N.; Degu, A.; Ashenafi, E.; Ayele, E.; Abebe, A. Evaluation of Wound Healing and Anti-Inflammatory Activity of Hydroalcoholic Leaf Extract of Clematis simensis Fresen (Ranunculaceae). Clin. Cosmet. Investig. Dermatol. 2022, 15, 1883–1897. [Google Scholar] [CrossRef]
- Tsunoi, M.; Iyori, K.; Harada, K. Efficacy of Totarol Against Staphylococcus pseudintermedius and Staphylococcus coagulans in Dogs and Cats: An In Vitro Study. Jpn. J. Vet. Res. 2024, 71, 117–120. [Google Scholar]
- Abdillahi, H.S.; Finnie, J.F.; Van Staden, J. Anti-Inflammatory, Antioxidant, Anti-tyrosinase and Phenolic Contents of Four Podocarpus Species Used in Traditional Medicine in South Africa. J. Ethnopharmacol. 2011, 136, 496–503. [Google Scholar] [CrossRef]
- Tavares, W.R.; Seca, A.M.L. The Current Status of The Pharmaceutical Potential of Juniperus L. Metab. Med. 2018, 5, 81. [Google Scholar] [CrossRef]
- Abdillahi, H.S.; Stafford, G.I.; Finnie, J.F.; Van Staden, J. Ethnobotany, Phytochemistry and Pharmacology of Podocarpus sensu latissimo (s.l.). S. Afr. J. Bot. 2010, 76, 1–24. [Google Scholar] [CrossRef]
- Dold, A.P.; Cocks, M.L. Traditional Veterinary Medicine in The Alice District of The Eastern Cape Province, South Africa: Research in Action. S. Afr. J. Sci. 2001, 97, 375–379. [Google Scholar]
- Masika, P.J.; Afolayan, A.J. An Ethnobotanical Study of Plants Used for The Treatment of Livestock Diseases in The Eastern Cape Province, South Africa. Pharm. Biol. 2003, 41, 16–21. [Google Scholar] [CrossRef]
- Micol, V.; Mateo, C.R.; Shapiro, S.; Aranda, F.J.; Villalaín, J. Effects of (+)-Totarol, a Diterpenoid Antibacterial Agent, on Phospholipid Model Membranes. Biochim. Biophys. Acta 2001, 1511, 281–290. [Google Scholar] [CrossRef]
- Kubo, I.; Muroi, H.; Himejima, M. Antibacterial Activity of Totarol and Its Potentiation. J. Nat. Prod. 1992, 55, 1436–1440. [Google Scholar] [CrossRef]
- Jaiswal, R.; Beuria, T.K.; Mohan, R.; Mahajan, S.K.; Panda, D. Totarol Inhibits Bacterial Cytokinesis by Perturbing the Assembly Dynamics of FtsZ. Biochemistry 2007, 46, 4211–4220. [Google Scholar] [CrossRef]
- Haraguchi, H.; Oike, S.; Muroi, H.; Kubo, I. Mode of Antibacterial Action of Totarol, A Diterpene from Podocarpus nagi. Planta Med. 1996, 62, 122–125. [Google Scholar] [CrossRef]
- Shi, C.; Che, M.; Zhang, X.; Liu, Z.; Meng, R.; Bu, X.; Ye, H.; Guo, N. Antibacterial Activity and Mode of Action of Totarol Against Staphylococcus aureus in Carrot Juice. J. Food Sci. Technol. 2018, 55, 924–934. [Google Scholar] [CrossRef]
- Smith, E.C.J.; Kaatz, G.W.; Seo, S.M.; Wareham, N.; Williamson, E.M.; Gibbons, S. The Phenolic Diterpene Totarol Inhibits Multidrug Efflux Pump Activity in Staphylococcus aureus. Antimicrob. Agents Chemother. 2007, 51, 4480–4483. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Krajewski, S.; Weindl, T.; Loeffler, R.; Li, P.; Han, X.; Geis-Gerstorfer, J.; Wendel, H.P.; Scheideler, L.; Rupp, F. Application of Totarol as Natural Antibacterial Coating on Dental Implants for Prevention of Peri-Implantitis. Mater. Sci. Eng. C 2020, 110, 110701. [Google Scholar] [CrossRef]
- Shi, C.; Zhao, X.; Li, W.; Meng, R.; Liu, Z.; Guo, N.; Yu, L. Inhibitory Effect of Totarol on Exotoxin Proteins Hemolysin and Enterotoxins Secreted by Staphylococcus aureus. World J. Microbiol. Biotechnol. 2015, 31, 1565–1573. [Google Scholar] [CrossRef] [PubMed]
- Nixon, D.; Hobbs, D. The Use of Totarol to Treat Acne in An Adolescent: A Case Study. New Zealand Fam. Physician 2006, 33, 253–255. [Google Scholar]
- Mich, P.M.; Hellyer, P.W.; Kogan, L.; Schoenfeld-Tacher, R. Effects of A Pilot Training Program on Veterinary Students’ Pain Knowledge, Attitude, and Assessment Skills. J. Vet. Med. Educ. 2010, 37, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, Y.H.; Imanishi, I.; Iyori, K. Efficacy of Olanexidine Gluconate in Canine Superficial Pyoderma: A Randomised, Single-Blinded Controlled Trial. Vet. Dermatol. 2021, 32, 664-e174. [Google Scholar] [CrossRef] [PubMed]
- Pavletic, M.M. Basic Principles of Wound Management. In Atlas of Small Animal Wound Management and Reconstructive Surgery; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2018; pp. 33–52. [Google Scholar]
- Rico-Holgado, S.; Ortiz-Díez, G.; Martín-Espada, M.C.; Fernández-Pérez, C.; Baquero-Artigao, M.R.; Suárez-Redondo, M. Effect of Low-Level Laser Therapy on Bacterial Counts of Contaminated Traumatic Wounds in Dogs. J. Lasers Med. Sci. 2021, 12, e78. [Google Scholar] [CrossRef]
- Jørgensen, L.B.; Sørensen, J.A.; Jemec, G.B.E.; Yderstraede, K.B. Methods to Assess Area and Volume of Wounds—A Systematic Review. Int. Wound J. 2016, 13, 540–553. [Google Scholar] [CrossRef]
- de Castro, J.R.; da Silva Pereira, F.; Chen, L.; Arana-Chavez, V.E.; Ballester, R.Y.; DiPietro, L.A.; Simões, A. Improvement of Full-Thickness Rat Skin Wounds by Photobiomodulation Therapy (PBMT): A Dosimetric Study. J. Photochem. Photobiol. B 2020, 206, 111850. [Google Scholar] [CrossRef]
- Kurach, L.M.; Stanley, B.J.; Gazzola, K.M.; Fritz, M.C.; Steficek, B.A.; Hauptman, J.G.; Seymour, K.J. The Effect of Low-Level Laser Therapy on The Healing of Open Wounds in Dogs. Vet. Surg. 2015, 44, 988–996. [Google Scholar] [CrossRef]
- Wu, X.; Alberico, S.; Saidu, E.; Khan, S.R.; Zheng, S.; Romero, R.; Chae, H.S.; Li, S.; Mochizuki, A.; Anders, J. Organic Light Emitting Diode Improves Diabetic Cutaneous Wound Healing in Rats. Wound Repair. Regen. 2015, 23, 104–114. [Google Scholar] [CrossRef]
- Barbosa, L.S.; Parisi, J.R.; Viana, L.C.; Carneiro, M.B.; Novaes, R.D.; de Sousa, L. The Photobiomodulation (658, 830 and 904 nm) on Wound Healing in Histomorphometric Analysis. Fisioter. Mov. 2020, 33, e003318. [Google Scholar] [CrossRef]
- Munap, D.H.F.A.; Lau, P.S.; Bidin, N.; Bakhtiar, H.; Krishnan, G. Effects of Photobiomodulation Therapy with Various Laser Power Densities on Wound Healing. J. Phys. Conf. Ser. 2019, 1151, 012011. [Google Scholar] [CrossRef]
- Hou, Y.; Zhang, X.; Wang, C.; Guo, M. Formulation and Functional Properties of Whey Protein-Based Tissue Adhesive Using Totarol as an Antimicrobial Agent. Processes 2020, 8, 496. [Google Scholar] [CrossRef]
- Oliveira, J.; Reygaert, W.C. Gram-Negative Bacteria; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK538213/ (accessed on 10 May 2024).
- Sun, J.; Rutherford, S.T.; Silhavy, T.J.; Huang, K.C. Physical Properties of The Bacterial Outer Membrane. Nat. Rev. Microbiol. 2022, 20, 236–248. [Google Scholar] [CrossRef] [PubMed]
- Ward-McGrath, H.; Bell, A.; Bridges, J.; Jones, B. Some Observations on The Treatment of Superficial Pyoderma in Dogs with Totarol. Companion Q. 2021, 32, 35–38. [Google Scholar]
Subjects | Gender | Age (Years) | Wound Cause | Wound Age (Weeks) | Initial Wound Area (cm2) | Group of Treatment | Wound Pathogens |
---|---|---|---|---|---|---|---|
Dog 1 | Female | 10 | vehicle accidents | 1 | 9.70 | Standard wound care | Escherichia coli |
Dog 2 | Female | 10 | surgical wound dehiscence | 1 | 2.77 | Standard wound care + totarol | Escherichia coli |
Dog 3 | Female | 2 | surgical wound dehiscence | 2 | 11.26 | Standard wound care + totarol | Proteus mirabilis Acinetobacter baumannii |
Dog 4 | Female | 10 | other causes | 1 | 7.21 | Standard wound care | Proteus mirabilis |
Dog 5 | Male | 7 | bite wounds | 2 | 29.01 | Standard wound care | Pasteurella canis |
Dog 6 | Male | 10 | bite wounds | 3 | 11.19 | Standard wound care + totarol | Staphylococcus pseudintermedius |
Dog 7 | Male | 5 | other causes | 1 | 8.19 | Standard wound care + totarol | Proteus mirabilis Escherichia coli |
Dog 8 | Male | 2 | vehicle accidents | 1 | - | Excluded | Staphylococcus haemolyticus |
Dog 9 | Female | 3 | vehicle accidents | 2 | 9.77 | Standard wound care | Pseudonomas aeruginosa |
Dog 10 | Female | 9 | bite wounds | 1 | - | Excluded | Staphylococcus schleiferi |
Dog 11 | Male | 4 | other causes | 5 | 6.63 | Standard wound care + totarol | Enterococcus faecium |
Dog 12 | Female | 10 | other causes | 1 | 5.31 | Standard wound care + totarol | Proteus mirabilis |
Dog 13 | Male | 2 | vehicle accidents | 2 | 3.55 | Standard wound care | Proteus mirabilis |
Dog 14 | Female | 9 | bite wounds | 1 | 1.51 | Standard wound care + totarol | Klebsiella pneumoniae |
Dog 15 | Female | 6 | bite wounds | 1 | 2.00 | Standard wound care + totarol | Sphingomonas paucimobilis |
Dog 16 | Male | 4 | surgical wound dehiscence | 2 | 9.79 | Standard wound care + totarol | Escherichia coli |
Dog 17 | Male | 9 | bite wounds | 1 | - | Excluded | Proteus mirabilis |
Dog 18 | Male | 2 | vehicle accidents | 2 | 13.24 | Standard wound care + totarol | Proteus mirabilis |
Dog 19 | Female | 1 | vehicle accidents | 1 | 20.71 | Standard wound care | Coagulase-positive staphylococcus |
Dog 20 | Female | 1 | vehicle accidents | 1 | 16.32 | Standard wound care | Staphylococcus epidermidis |
Dog 21 | Male | 3 | vehicle accidents | 1 | 11.03 | Standard wound care | Staphylococcus aureus |
Dog 22 | Female | 6 | bite wounds | 1 | - | Excluded | Enterobacter cloacae |
Dog 23 | Female | 10 | bite wounds | 2 | 7.38 | Standard wound care | Pseudonomas aeruginosa |
Standard Pathogens | Replications | MIC Endpoints (µg/mL) | ||
---|---|---|---|---|
Absolute Ethyl Alcohol Control | Totarol Dissolved in Absolute Ethyl Alcohol | Commercial Totarol Product | ||
S. aureus ATCC 25923 | 1 | 1024 | 4 | 512 |
2 | 1024 | 4 | 512 | |
3 | 1024 | 4 | 512 | |
E. coli ATCC 25922 | 1 | >2048 | >2048 | 512 |
2 | >2048 | >2048 | 512 | |
3 | >2048 | >2048 | 512 |
Clinical Wound Pathogens | MICs of Totarol (µg/mL) | |
---|---|---|
Totarol Dissolved in Absolute Ethyl Alcohol | Commercial Totarol Product | |
Staphylococcus epidermidis (n = 1) | 4 | 512 |
Staphylococcus pseudintermedius (n = 1) | 4 | 512 |
Staphylococcus haemolyticus (n = 1) | 4 | 1024 |
Staphylococcus aureus (n = 1) | 4 | 512 |
Coagulase-positive staphylococcus (n = 1) | 4 | 512 |
Enterobacter cloacae (n = 1) | 256 | 512 |
Proteus mirabilis (n = 1) | 512 | 1024 |
Klebsiella pneumoniae (n = 1) | 512 | 512 |
Group | Day 1 | Day 2 | Day 3 | Day 4 | Day 5 | Day 6 | Day 7 | Average |
---|---|---|---|---|---|---|---|---|
T-group | 0.00 | 25.10 ± 16.16 | 33.60 ± 17.65 | 45.48 ± 23.02 | 52.96 ± 22.67 | 58.53 ± 21.71 | 69.18 ± 18.12 | 40.69 ± 28.04 |
C-group | 0.00 | 8.53 ± 8.40 | 11.85 ± 9.22 | 21.43 ± 17.22 | 27.64 ± 17.45 | 37.24 ± 18.69 | 41.50 ± 20.23 | 21.17 ± 20.23 |
p-value * | - | 0.017 | 0.003 | 0.002 | 0.003 | 0.020 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoisang, S.; Jitpean, S.; Seesupa, S.; Kamlangchai, P.; Makpunpol, T.; Ngowwatana, P.; Chaimongkol, S.; Khunbutsri, D.; Khlongkhlaeo, J.; Kampa, N. Evaluation of Totarol for Promoting Open Wound Healing in Dogs. Vet. Sci. 2024, 11, 437. https://doi.org/10.3390/vetsci11090437
Hoisang S, Jitpean S, Seesupa S, Kamlangchai P, Makpunpol T, Ngowwatana P, Chaimongkol S, Khunbutsri D, Khlongkhlaeo J, Kampa N. Evaluation of Totarol for Promoting Open Wound Healing in Dogs. Veterinary Sciences. 2024; 11(9):437. https://doi.org/10.3390/vetsci11090437
Chicago/Turabian StyleHoisang, Somphong, Supranee Jitpean, Suvaluk Seesupa, Phanthit Kamlangchai, Tossawarn Makpunpol, Pimsiri Ngowwatana, Saikam Chaimongkol, Duangdaow Khunbutsri, Jeerasak Khlongkhlaeo, and Naruepon Kampa. 2024. "Evaluation of Totarol for Promoting Open Wound Healing in Dogs" Veterinary Sciences 11, no. 9: 437. https://doi.org/10.3390/vetsci11090437
APA StyleHoisang, S., Jitpean, S., Seesupa, S., Kamlangchai, P., Makpunpol, T., Ngowwatana, P., Chaimongkol, S., Khunbutsri, D., Khlongkhlaeo, J., & Kampa, N. (2024). Evaluation of Totarol for Promoting Open Wound Healing in Dogs. Veterinary Sciences, 11(9), 437. https://doi.org/10.3390/vetsci11090437