Antimicrobial Strategies Proposed for the Treatment of S. pseudintermedius and Other Dermato-Pathogenic Staphylococcus spp. in Companion Animals: A Narrative Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Conventional Antibiotics
3. Novel-Purposed Antimicrobials and Drug Repurposing
Drug | MIC Range (μg/mL) | Target Tested | Reference |
---|---|---|---|
Fosmidomycin | 25.9 (μM) | SP | [20] |
Leopolic-acid-inspired compound | 8 | MSSP | [23] |
32 | MRSP | ||
Antiparasitic drugs | |||
Lasalocid | 0.5–1 | MRSA | [26] |
Monensin | 2–8 | ||
Salinomycin | 0.5–2 | ||
Narasin | 0.125–0.5 | ||
0.06–0.25 | MSSP, MRSP | [27] | |
Oxyclozanide | 0.5–1 | MSSP | [24] |
0.5–2 | MRSP | ||
1 | SA ATCC 29213 | ||
Triclabendazole | 2–4 | MSSA, MRSA, MSSP, MRSP | [25] |
TCBZ-SO a | 8 | MSSA, MRSA | |
TCBZ-SO2 a | 8 | MSSA | |
>256 | MRSA | ||
TCBZ-SH a | 2 | MSSA | |
4 | MRSA | ||
TCBZ-OH a | >256 | MSSA, MRSA | |
Chemotherapeutic agents | |||
Bleomycin | 2–64 | SP | [29] |
Doxorubicin | 2–4 | ||
Cytosine arabinoside | >64 | ||
Cyclophosphamide | >64 | ||
Methotrexate | >64 | ||
5-Fluorouracil | >64 | ||
Gemcitabine | 8–64 | ||
Thiazole compounds | |||
1 | 0.35–0.69 | MSSP, MRSP | [30] |
2 | 0.30–0.46 | ||
3 | 0.71–0.48 | ||
4 | 0.73–1.47 | ||
5 | 0.42 | ||
6 | 0.80–0.40 |
4. Natural Products
Natural Compound | MIC Range | Target Tested | Reference |
---|---|---|---|
Atractylodis rhizoma | 0.00315–0.0125% | SP | [32] |
Allium species | ≥62.5 µg/mL | MRSP | [39] |
α-Mangostin | 1–8 µg/mL | SP | [40] |
1–8 µg/mL | SS | ||
2–8 µg/mL | SF | ||
1–16 µg/mL | SE | ||
4–16 µg/mL | SA | ||
0.49–7.8 µg/mL | MRSP, MSSP | [42] | |
Piper betle | 250 µg/mL | MRSP, MSSP | [43] |
Psidium guajava | 6.8 mg/mL | SP | [45] |
6.8 mg/mL | MRSA (ATCC 43300) | ||
Pomegranate | 10–25 mg/mL | SP, SA | [48] |
Quince | 25–50 mg/mL | SP, SA | |
Persimmon | 25–75 mg/mL | SP, SA | |
Cinnamomum zeylanicum | 0.5 mg/mL | SP | [33] |
0.5 mg/mL | SSc | ||
1 mg/mL | SS | ||
1:1024 v/v | MRSP, MSSP | [34] | |
Melissa officinalis | 1:512–1:1024 v/v | MRSP, MSSP | |
Leptospermum scoparium | 1:512–1:1024 v/v | MRSP, MSSP | |
Satureja montana | 1:512–1:1024 v/v | MRSP, MSSP | |
Oregano | 140–281 µg/mL | MRSP, MSSP | [36] |
Carvacrol | 146–292 µg/mL | MRSP, MSSP | |
Thyme | 137–275 µg/mL | MRSP, MSSP | |
Thymol | 100–200 µg/mL | MRSP, MSSP | |
Rosmarinus officinalis | 1:64–1:256 | MRSP | [35] |
Juniperus communis | 1:32–1:512 | MRSP | |
Citrus sinensis | 1:64–1:2048 | MRSP | |
Abies alba | 1:64–1:2048 | MRSP | |
Manuka oil | 2−9 to 2−6 %, v/v | MRSP, MSSP | [37] |
5. Metal Nanomaterials
6. Skin Antiseptics
- (a)
- Chlorhexidine, a bisbiguanide compound, is the most used antiseptic in topic formulations for companion animals in virtue of its high antimicrobial activity against Staphylococcus spp. (MIC range: 0.5–4 μg/mL) [60,61]. An important question associated with the use of chlorhexidine is whether it can be used as monotherapy or in combination with antibiotics. Some authors reported clinical improvement of canine superficial pyoderma treated with chlorhexidine acetate or gluconate alone, but the clinical resolution was hard to achieve [62]. By comparing topical chlorhexidine to systemic amoxicillin–clavulanic acid, Borio and colleagues demonstrated that the treatment with 4% chlorhexidine digluconate shampoo (twice weekly) and solution (once daily) for 4 weeks had comparable efficacy to that of the systemic antibiotic, resulting in clinical resolution of superficial pyoderma in all dogs including those infected by MRSP [63]. However, the combination of chlorhexidine with certain antimicrobial agents may provide useful synergistic interactions, such as chlorhexidine/miconazole [61].
- (b)
- Polyhexanide, a polyhexamethylene biguanide compound, is a broad-spectrum antiseptic with a low-risk profile that acts on bacterial membranes affecting its integrity. It was suggested that the microbicidal efficacy of polyhexanide is comparable to that of chlorhexidine against dermato-pathogenic canine isolates [64], but polyhexanide may have higher safety because it does not contain the toxic terminal chlorobenzene substituents.
- (c)
- Olanexidine gluconate, a novel biguanide antiseptic, was developed in 2015 for human use as a skin antiseptic. It demonstrated a wide bactericidal activity comparable to that of chlorhexidine, more markedly against Gram-positive bacteria including MRSA and MRSP (MIC 0.23 μg/mL) [65,66]. In a randomized, single-blinded controlled clinical trial, olanexidine spray administered topically for 10 days substantially improved clinical signs in dogs with atopic dermatitis and superficial pyoderma caused by MSSP and MRSP, and its effect was comparable to bathing once a week with chlorhexidine [66].
- (d)
- Sodium hypochlorite was proposed as a topical antiseptic to treat canine staphylococcal pyoderma. It showed an overall in vitro MBC of 1:32 for canine skin-isolated MRSP strains (range 1:32–1:1024) [67]. Other studies suggested that the bactericidal concentrations of sodium hypochlorite against S. aureus and S. pseudintermedius range from 0.05 to 0.005% [66]. At these concentrations, sodium hypochlorite seems also to reduce the pro-inflammatory response [68]. The major issue related to the use of sodium hypochlorite is balancing efficacy and tolerability. A single spray application of 0.05% sodium hypochlorite was demonstrated to reduce the bacterial load within 20 min on the skin of dogs without signs of irritation; however, 0.05% sodium hypochlorite significantly reduced the percentage of viable keratinocytes in vitro [68]. Additionally, a change in skin microbiome with an increase of coagulase-negative staphylococci was observed in the presence of sodium hypochlorite [68]. On the other hand, repeated 0.005% hypochlorite bleach baths over four weeks (twice weekly for 15 min) were well tolerated in healthy dogs without significant changes in the density of S. pseudintermedius [69].
- (e)
- Oxychlorosene, an organic complex of dodecylbenzenesulfonic sodium salt and hypochlorous acid, is commonly used as a topical antiseptic to treat localized human infections. Despite, to our knowledge, no study investigated the in vivo safety and the efficacy of sodium oxychlorosene on canine and feline skin infections, in vitro time-kill assays support its use to treat S. pseudintermedius infections. 0.2 and 0.4% sodium oxychlorosene solutions showed a rapid bactericidal effect with greater than 99.9% average S. pseudintermedius reduction within 5 s [70].
- (f)
- Fatty acids have been proposed as topical antimicrobials for the treatment of dermato-pathogenic Staphylococcus spp. [71]. Among these, oleic acid salt and linoleic acid salt in ultrapure soft water (UPSW), in which Ca++ and Mg++ were replaced with Na+, exhibited strong in vitro antibacterial activity against S. aureus, S. intermedius, and S. pseudintermedius. In vivo, shampoo treatment with liquid soap containing 10% linoleic acid in UPSW was demonstrated to improve spontaneous dermatitis in dogs by significantly decreasing transepidermal water loss, pruritus, and alopecia.
Physical Agents
7. Antimicrobial Peptides
Antimicrobial Peptide | Origin | MIC Range (μg/mL) | Target Tested | Reference |
---|---|---|---|---|
β-defensin 103 | Canine skin epithelium | 2–5 | MSSP, MRSP | [82] |
25–5 | MSSP, MRSP | [85] | ||
100 | MSSA, MRSA | [85] | ||
β-defensin 3 | Human skin epithelium | 3.125–25 | SP | [83] |
β-defensins 6, 12 | Avian leukocytes and epithelial cells | 16–256 | MRSP, SA ATCC 29213 | [93] |
Cathelicidin | Canine leukocytes and epithelial cells | 25–50 | MSSP, MRSP | [94] |
100–200 | MSSA, MRSA | |||
NZ2114 | Variant of fungal defensin plectasin | 1–2 | SP, MDR-SP | [78] |
Nisin I4V | Semisynthetic | 0.25–1 | SP | [86] |
1.5 | SA | |||
Temporin-L-derived peptide 8 | Semisynthetic | 1.56 | MSSP | [87] |
6.25 | MRSP | |||
Allomyrinasin | Allomyrina dichotoma | 8–32 | SP | [88] |
32 | SC | |||
>256 | SH, SS | |||
128 | SSi | |||
Andricin B | Andrias davidianus | 32–128 | SP | |
64 | SC | |||
≥256 | SH, SS, SSi | |||
Pinipesin | Scolopendra subspinipes | 64–256 | SP | |
>256 | SC, SH, SS | |||
128 | SSi | |||
Nigrocin-HLM | Synthetic | 32–256 | SP | |
128 | SC | |||
64 | SH | |||
>256 | SS | |||
16 | SSi | |||
Hs02 | Intragenic | 32–256 | SP | |
32 | SC | |||
128 | SH | |||
>256 | SS | |||
64 | SSi | |||
Uperin 3.6 | Litoria genus | 2–4 | SP | [88] |
8–16 | SA | |||
CAMEL | Synthetic | 2–4 | SP | |
4 | SA | |||
Protegrin-1 | Porcine leukocytes | 1–8 | SP | |
4–32 | SA | |||
Pexiganan | Synthetic | 1–8 | SP | |
4–8 | SA | |||
Citropin 1.1 | Litoria genus | 2–8 | SP | |
8–16 | SA | |||
Temporin A | Rana temporaria | 4–8 | SP | |
8 | SA | |||
Aurein 1.2 | Litoria genus | 32–64 | SP | |
128–256 | SA | |||
Peptide-peptoid hybrid B1 | Synthetic | 2–4 | MSSP, MRSP | [90,95] |
Peptoid D2 | Synthetic | 1–2 | MSSP, MRSP | [90,91] |
Fluorinated α-peptide/ β-peptoid hybrids | Synthetic | 0.5–32 | MSSP, MRSP | [92] |
2–32 | MSSA, MRSA |
8. Bacteriophages
9. Adjuvants in Antibiotic Treatments
- (a)
- Inhibitors of metabolic pathways. O-acetylserine sulfhydrylase (OASS) inhibitor is a blocker of the cysteine biosynthetic pathway. OASS was tested in combination with colistin against S. aureus and S. pseudintermedius [101]. This antibiotic has a very limited potency on Staphylococcus spp. that are intrinsically resistant to polymyxins [102]. When combined with OASS, the MIC of colistin decreases suggesting additive activity [101].
- (b)
- Enzymes with antimicrobial activity have been developed to treat bacteria that are resistant to common antibiotics and biocides, particularly those producing strong microbial biofilms. Known antimicrobial enzymes include the class of proteolytic and polysaccharide-degrading enzymes, such as lysostaphin and lysozyme, and oxidative enzymes that showed promising effects on human pathogenic staphylococci. Seminal reviews have been previously published on this topic [103]. Among the polysaccharide-degrading enzymes, dispersin B was proposed for the treatment of canine pyoderma caused by biofilm-producing S. pseudintermedius. DispersinB is considered an anti-biofilm enzyme that hydrolyzes poly-N-acetylglucosamine, a core component of biofilm. As a result, this enzyme affects the formation and stability of biofilm but it does not significantly impact the viability of staphylococcal cells; therefore, it should be considered as an adjunctive treatment.
- (c)
- Efflux pump inhibitors (EPIs). Overexpression of membrane efflux pumps was demonstrated to be an effective resistance mechanism in Staphylococcus spp., including S. pseudintermedius and S. aureus [104,105]. Several molecules, known as antibiotic resistance breakers, were designed and synthesized to inactivate S. aureus efflux pumps, principally NorA [106]. Recently, some compounds previously reported as S. aureus NorA EPIs proved to have EPI activity against S. pseudintermedius, particularly the scaffolds 2-arylquinoline, nicardipine, and 2-phenyl-4-carboxy-quinoline [107]. Finally, high efflux appears to be linked to the downregulation of DNA repair and mutagenesis promotion [108,109]. Accordingly, EPI derivatives might be proposed as anti-evolutive drugs to prevent resistance evolution and preserve the efficacy of existing antibiotics.
- (d)
- Miscellaneous adjuvants in otitis externa. Other substances were proposed as potential adjuvants in otitis caused by S. pseudintermedius, including monolaurin, monocaprin, N-acetylcysteine (NAC), polymyxin B nonapeptide, Tris-EDTA, Tris-HCL and disodium EDTA [110]. Tested alone, they showed limited to no antimicrobial efficacy. However, synergy with antibiotics has to be investigated to understand their potential as staphylococcal adjuvants. Of note, NAC had an indifferent effect in combination with enrofloxacin against S. pseudintermedius, while the combination of NAC/gentamicin resulted in indifferent or antagonistic interactions [111]. The antibiofilm activity of NAC, Tris-EDTA, and disodium EDTA was also investigated [28]. MBEC of NAC ranged from 5000 to 10,000 μg/mL against biofilm produced by S. pseudintermedius and a significant decrease of S. pseudintermedius biofilm was observed at concentrations of 2500 μg/mL or above. No MBEC was achieved for Tris-EDTA and disodium EDTA against S. pseudintermedius biofilm, but a significant reduction in biofilm growth was observed at concentrations equal to or higher than 1500/470 μg/mL and 470 μg/mL, respectively.
10. Vaccines and Inflammasome Inhibitors
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bannoehr, J.; Guardabassi, L. Staphylococcus Pseudintermedius in the Dog: Taxonomy, Diagnostics, Ecology, Epidemiology and Pathogenicity. Vet. Dermatol. 2012, 23, 253–266, e51–e52. [Google Scholar] [CrossRef] [PubMed]
- Stefanetti, V.; Bietta, A.; Pascucci, L.; Marenzoni, M.L.; Coletti, M.; Franciosini, M.P.; Passamonti, F.; Casagrande Proietti, P. Investigation of the Antibiotic Resistance and Biofilm Formation of Staphylococcus Pseudintermedius Strains Isolated from Canine Pyoderma. Vet. Ital. 2017, 53, 289–296. [Google Scholar] [CrossRef]
- Casagrande Proietti, P.; Stefanetti, V.; Hyatt, D.R.; Marenzoni, M.L.; Capomaccio, S.; Coletti, M.; Bietta, A.; Franciosini, M.P.; Passamonti, F. Phenotypic and Genotypic Characterization of Canine Pyoderma Isolates of Staphylococcus Pseudintermedius for Biofilm Formation. J. Vet. Med. Sci. 2015, 77, 945–951. [Google Scholar] [CrossRef]
- Rampacci, E.; Trotta, M.; Fani, C.; Silvestri, S.; Stefanetti, V.; Brachelente, C.; Mencacci, A.; Passamonti, F. Comparative Performances of Vitek-2, Disk Diffusion, and Broth Microdilution for Antimicrobial Susceptibility Testing of Canine Staphylococcus Pseudintermedius. J. Clin. Microbiol. 2021, 59, e0034921. [Google Scholar] [CrossRef] [PubMed]
- Hillier, A.; Lloyd, D.H.; Weese, J.S.; Blondeau, J.M.; Boothe, D.; Breitschwerdt, E.; Guardabassi, L.; Papich, M.G.; Rankin, S.; Turnidge, J.D.; et al. Guidelines for the Diagnosis and Antimicrobial Therapy of Canine Superficial Bacterial Folliculitis (Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases). Vet. Dermatol. 2014, 25, 163-e43. [Google Scholar] [CrossRef] [PubMed]
- Schmerold, I.; van Geijlswijk, I.; Gehring, R. European Regulations on the Use of Antibiotics in Veterinary Medicine. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2023, 189, 106473. [Google Scholar] [CrossRef]
- Blondeau, J.M.; Fitch, S.D. In Vitro Killing of Canine Strains of Staphylococcus Pseudintermedius and Escherichia Coli by Cefazolin, Cefovecin, Doxycycline and Pradofloxacin over a Range of Bacterial Densities. Vet. Dermatol. 2020, 31, 187-e39. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, J.M.; Borsos, S.; Blondeau, L.D.; Blondeau, B.J. In Vitro Killing of Escherichia Coli, Staphylococcus Pseudintermedius and Pseudomonas Aeruginosa by Enrofloxacin in Combination with Its Active Metabolite Ciprofloxacin Using Clinically Relevant Drug Concentrations in the Dog and Cat. Vet. Microbiol. 2012, 155, 284–290. [Google Scholar] [CrossRef]
- Ihrke, P.J.; Papich, M.G.; DeManuelle, T.C. The Use of Fluoroquinolones in Veterinary Dermatology. Vet. Dermatol. 1999, 10, 193–204. [Google Scholar] [CrossRef]
- Körber-Irrgang, B.; Wetzstein, H.-G.; Bagel-Trah, S.; Hafner, D.; Kresken, M. Comparative Activity of Pradofloxacin and Marbofloxacin against Coagulase-Positive Staphylococci in a Pharmacokinetic-Pharmacodynamic Model Based on Canine Pharmacokinetics. J. Vet. Pharmacol. Ther. 2012, 35, 571–579. [Google Scholar] [CrossRef]
- Saridomichelakis, M.N.; Athanasiou, L.V.; Salame, M.; Chatzis, M.K.; Katsoudas, V.; Pappas, I.S. Serum Pharmacokinetics of Clindamycin Hydrochloride in Normal Dogs When Administered at Two Dosage Regimens. Vet. Dermatol. 2011, 22, 429–435. [Google Scholar] [CrossRef]
- Weese, J.S.; Sweetman, K.; Edson, H.; Rousseau, J. Evaluation of Minocycline Susceptibility of Methicillin-Resistant Staphylococcus Pseudintermedius. Vet. Microbiol. 2013, 162, 968–971. [Google Scholar] [CrossRef] [PubMed]
- DiCicco, M.; Neethirajan, S.; Singh, A.; Weese, J.S. Efficacy of Clarithromycin on Biofilm Formation of Methicillin-Resistant Staphylococcus Pseudintermedius. BMC Vet. Res. 2012, 8, 225. [Google Scholar] [CrossRef] [PubMed]
- Luciani, L.; Stefanetti, V.; Rampacci, E.; Gobbi, P.; Valentini, L.; Capuozzo, R.; Passamonti, F. Comparison between Clinical Evaluations and Laboratory Findings and the Impact of Biofilm on Antimicrobial Susceptibility in Vitro in Canine Otitis Externa. Vet. Dermatol. 2023, 34, 586–596. [Google Scholar] [CrossRef] [PubMed]
- King, S.B.; Doucette, K.P.; Seewald, W.; Forster, S.L. A Randomized, Controlled, Single-Blinded, Multicenter Evaluation of the Efficacy and Safety of a Once Weekly Two Dose Otic Gel Containing Florfenicol, Terbinafine and Betamethasone Administered for the Treatment of Canine Otitis Externa. BMC Vet. Res. 2018, 14, 307. [Google Scholar] [CrossRef]
- Heuer, L.; Wilhelm, C.; Roy, O.; Löhlein, W.; Wolf, O.; Zschiesche, E. Clinical Safety and Efficacy of a Single-Dose Gentamicin, Posaconazole and Mometasone Furoate Otic Suspension for Treatment of Canine Otitis Externa. Vet. Rec. 2024, 194, e3955. [Google Scholar] [CrossRef] [PubMed]
- Morrison, S.; Singh, A.; Rousseau, J.; Walker, M.; Nazarali, A.; Crawford, E.; Brisson, B.; Sears, W.C.; Weese, J.S. Impact of Polymethylmethacrylate Additives on Methicillin-Resistant Staphylococcus Pseudintermedius Biofilm Formation in Vitro. Am. J. Vet. Res. 2015, 76, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, A.; Thänert, R.; Burnham, C.-A.D.; Dantas, G. In Vitro Activity of Meropenem/Piperacillin/Tazobactam Triple Combination Therapy against Clinical Isolates of Staphylococcus Aureus, Staphylococcus Epidermidis, Staphylococcus Pseudintermedius and Vancomycin-Resistant Enterococcus Spp. Int. J. Antimicrob. Agents 2020, 55, 105864. [Google Scholar] [CrossRef]
- Gonzales, P.R.; Pesesky, M.W.; Bouley, R.; Ballard, A.; Biddy, B.A.; Suckow, M.A.; Wolter, W.R.; Schroeder, V.A.; Burnham, C.-A.D.; Mobashery, S.; et al. Synergistic, Collaterally Sensitive β-Lactam Combinations Suppress Resistance in MRSA. Nat. Chem. Biol. 2015, 11, 855–861. [Google Scholar] [CrossRef]
- Edwards, R.L.; Heueck, I.; Lee, S.G.; Shah, I.T.; Miller, J.J.; Jezewski, A.J.; Mikati, M.O.; Wang, X.; Brothers, R.C.; Heidel, K.M.; et al. Potent, Specific MEPicides for Treatment of Zoonotic Staphylococci. PLoS Pathog. 2020, 16, e1007806. [Google Scholar] [CrossRef]
- Okuhara, M.; Kuroda, Y.; Goto, T.; Okamoto, M.; Terano, H.; Kohsaka, M.; Aoki, H.; Imanaka, H. Studies on New Phosphonic Acid Antibiotics. I. FR-900098, Isolation and Characterization. J. Antibiot. (Tokyo) 1980, 33, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, E.; Okuhara, M.; Kohsaka, M.; Aoki, H.; Imanaka, H. Studies on New Phosphonic Acid Antibiotics. II. Taxonomic Studies on Producing Organisms of the Phosphonic Acid and Related Compounds. J. Antibiot. (Tokyo) 1980, 33, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Mattio, L.; Musso, L.; Scaglioni, L.; Pinto, A.; Martino, P.A.; Dallavalle, S. Synthesis of a Leopolic Acid-Inspired Tetramic Acid with Antimicrobial Activity against Multidrug-Resistant Bacteria. Beilstein J. Org. Chem. 2018, 14, 2482–2487. [Google Scholar] [CrossRef] [PubMed]
- Levinson, M.R.; Blondeau, J.M.; Rosenkrantz, W.S.; Plowgian, C.B. The in Vitro Antibacterial Activity of the Anthelmintic Drug Oxyclozanide against Common Small Animal Bacterial Pathogens. Vet. Dermatol. 2019, 30, 314-e87. [Google Scholar] [CrossRef] [PubMed]
- Pi, H.; Ogunniyi, A.D.; Savaliya, B.; Nguyen, H.T.; Page, S.W.; Lacey, E.; Venter, H.; Trott, D.J. Repurposing of the Fasciolicide Triclabendazole to Treat Infections Caused by Staphylococcus Spp. and Vancomycin-Resistant Enterococci. Microorganisms 2021, 9, 1697. [Google Scholar] [CrossRef] [PubMed]
- Hickey, E.E.; Page, S.W.; Trott, D.J. In Vitro Efficacy and Pharmacodynamic Profiles of Four Polyether Ionophores against Methicillin-Resistant Staphylococcus Spp. J. Vet. Pharmacol. Ther. 2020, 43, 499–507. [Google Scholar] [CrossRef]
- Chan, W.Y.; Hickey, E.E.; Khazandi, M.; Page, S.W.; Trott, D.J.; Hill, P.B. In Vitro Antimicrobial Activity of Narasin against Common Clinical Isolates Associated with Canine Otitis Externa. Vet. Dermatol. 2018, 29, 149-e57. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.Y.; Hickey, E.E.; Page, S.W.; Trott, D.J.; Hill, P.B. Biofilm Production by Pathogens Associated with Canine Otitis Externa, and the Antibiofilm Activity of Ionophores and Antimicrobial Adjuvants. J. Vet. Pharmacol. Ther. 2019, 42, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Campbell, O.; Gagnon, J.; Rubin, J.E. Antibacterial Activity of Chemotherapeutic Drugs against Escherichia Coli and Staphylococcus Pseudintermedius. Lett. Appl. Microbiol. 2019, 69, 353–357. [Google Scholar] [CrossRef]
- Mohammad, H.; Reddy, P.V.N.; Monteleone, D.; Mayhoub, A.S.; Cushman, M.; Hammac, G.K.; Seleem, M.N. Antibacterial Characterization of Novel Synthetic Thiazole Compounds against Methicillin-Resistant Staphylococcus Pseudintermedius. PLoS ONE 2015, 10, e0130385. [Google Scholar] [CrossRef]
- Eloff, J.N. Avoiding Pitfalls in Determining Antimicrobial Activity of Plant Extracts and Publishing the Results. BMC Complement. Altern. Med. 2019, 19, 106. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Lin, J.; Lin, D.; Zhang, D.; Xu, X.; Zhu, N.; Lin, J. In Vitro and in Vivo Antibacterial Studies of Volatile Oil from Atractylodis Rhizoma against Staphylococcus Pseudintermedius and Multidrug Resistant Staphylococcus Pseudintermedius Strains from Canine Pyoderma. J. Ethnopharmacol. 2024, 319, 117326. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, V.d.Q.; Soares, M.J.C.; Matos, M.N.C.; Cavalcante, R.M.B.; Guerrero, J.A.P.; Soares Rodrigues, T.H.; Gomes, G.A.; de Medeiros Guedes, R.F.; Castelo-Branco, D. de S.C.M.; Goes da Silva, I.N.; et al. Anti-Staphylococcal Activity of Cinnamomum Zeylanicum Essential Oil against Planktonic and Biofilm Cells Isolated from Canine Otological Infections. Antibiotics 2021, 11, 4. [Google Scholar] [CrossRef]
- Nocera, F.P.; Mancini, S.; Najar, B.; Bertelloni, F.; Pistelli, L.; De Filippis, A.; Fiorito, F.; De Martino, L.; Fratini, F. Antimicrobial Activity of Some Essential Oils against Methicillin-Susceptible and Methicillin-Resistant Staphylococcus Pseudintermedius-Associated Pyoderma in Dogs. Animals 2020, 10, 1782. [Google Scholar] [CrossRef] [PubMed]
- Meroni, G.; Laterza, G.; Tsikopoulos, A.; Tsikopoulos, K.; Vitalini, S.; Scaglia, B.; Iriti, M.; Bonizzi, L.; Martino, P.A.; Soggiu, A. Antibacterial Potential of Essential Oils and Silver Nanoparticles against Multidrug-Resistant Staphylococcus Pseudintermedius Isolates. Pathogens 2024, 13, 156. [Google Scholar] [CrossRef] [PubMed]
- Sim, J.X.F.; Khazandi, M.; Chan, W.Y.; Trott, D.J.; Deo, P. Antimicrobial Activity of Thyme Oil, Oregano Oil, Thymol and Carvacrol against Sensitive and Resistant Microbial Isolates from Dogs with Otitis Externa. Vet. Dermatol. 2019, 30, 524-e159. [Google Scholar] [CrossRef]
- Song, C.-Y.; Nam, E.-H.; Park, S.-H.; Hwang, C.-Y. In Vitro Efficacy of the Essential Oil from Leptospermum Scoparium (Manuka) on Antimicrobial Susceptibility and Biofilm Formation in Staphylococcus Pseudintermedius Isolates from Dogs. Vet. Dermatol. 2013, 24, 404–408, e87. [Google Scholar] [CrossRef]
- Repellin, R.L.; Pitt, K.A.; Lu, M.; Welker, J.; Noland, E.L.; Stanley, B.J. The Effects of a Proprietary Manuka Honey and Essential Oil Hydrogel on the Healing of Acute Full-Thickness Wounds in Dogs. Vet. Surg. VS 2021, 50, 1634–1643. [Google Scholar] [CrossRef]
- Maroto-Tello, A.; Ayllón, T.; Aguinaga-Casañas, M.A.; Ariza, J.J.; Penelo, S.; Baños, A.; Ortiz-Díez, G. In Vitro Activity of Allium Cepa Organosulfur Derivatives against Canine Multidrug-Resistant Strains of Staphylococcus Spp. and Enterobacteriaceae. Vet. Sci. 2024, 11, 26. [Google Scholar] [CrossRef]
- Park, S.Y.; Lee, J.H.; Ko, S.Y.; Kim, N.; Kim, S.Y.; Lee, J.C. Antimicrobial Activity of α-Mangostin against Staphylococcus Species from Companion Animals in Vitro and Therapeutic Potential of α-Mangostin in Skin Diseases Caused by S. Pseudintermedius. Front. Cell. Infect. Microbiol. 2023, 13, 1203663. [Google Scholar] [CrossRef]
- Deshmukh, R.; Chalasani, A.G.; Chattopadhyay, D.; Roy, U. Ultrastructural Changes in Methicillin-Resistant Staphylococcus Aureus (MRSA) Induced by a Novel Cyclic Peptide ASP-1 from Bacillus Subtilis: A Scanning Electron Microscopy (SEM) Study. Rev. Argent. Microbiol. 2021, 53, 281–286. [Google Scholar] [CrossRef]
- Larsuprom, L.; Rungroj, N.; Lekcharoensuk, C.; Pruksakorn, C.; Kongkiatpaiboon, S.; Chen, C.; Sukatta, U. In Vitro Antibacterial Activity of Mangosteen (Garcinia Mangostana Linn.) Crude Extract against Staphylococcus Pseudintermedius Isolates from Canine Pyoderma. Vet. Dermatol. 2019, 30, 487-e145. [Google Scholar] [CrossRef] [PubMed]
- Jantorn, P.; Tipmanee, V.; Wanna, W.; Prapasarakul, N.; Visutthi, M.; Sotthibandhu, D.S. Potential Natural Antimicrobial and Antibiofilm Properties of Piper Betle L. against Staphylococcus Pseudintermedius and Methicillin-Resistant Strains. J. Ethnopharmacol. 2023, 317, 116820. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Afaq, N.; Singh, N.; Majumdar, S. Antimicrobial Activity of Cannabis Sativa, Thuja Orientalis and Psidium Guajava Leaf Extracts against Methicillin-Resistant Staphylococcus Aureus. J. Integr. Med. 2018, 16, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.A.; de Chaves, D.S.A.; Silva, T.M.E.; de Motta, R.E.A.; da Silva, A.B.R.; da Patricio, T.C.C.; Fernandes, A.J.B.; Coelho, S.d.M.d.O.; Ożarowski, M.; Cid, Y.P.; et al. Antimicrobial Activity of Psidium Guajava Aqueous Extract against Sensitive and Resistant Bacterial Strains. Microorganisms 2023, 11, 1784. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-Y.; Lee, H.-J.; Kim, H.-S.; Kim, D.-H.; Lee, S.-W.; Yoon, H.-Y. Anti-Staphylococcal Activity of Ligilactobacillus Animalis SWLA-1 and Its Supernatant against Multidrug-Resistant Staphylococcus Pseudintermedius in Novel Rat Model of Acute Osteomyelitis. Antibiotics 2023, 12, 1444. [Google Scholar] [CrossRef]
- De Filippis, A.; Nocera, F.P.; Tafuri, S.; Ciani, F.; Staropoli, A.; Comite, E.; Bottiglieri, A.; Gioia, L.; Lorito, M.; Woo, S.L.; et al. Antimicrobial Activity of Harzianic Acid against Staphylococcus Pseudintermedius. Nat. Prod. Res. 2021, 35, 5440–5445. [Google Scholar] [CrossRef]
- Silva, V.; Silva, A.; Ribeiro, J.; Aires, A.; Carvalho, R.; Amaral, J.S.; Barros, L.; Igrejas, G.; Poeta, P. Screening of Chemical Composition, Antimicrobial and Antioxidant Activities in Pomegranate, Quince, and Persimmon Leaf, Peel, and Seed: Valorization of Autumn Fruits By-Products for a One Health Perspective. Antibiotics 2023, 12, 1086. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Muhammad, K.; Waheed, Y. Nanotechnology: A Revolution in Modern Industry. Molecular 2023, 28, 661. [Google Scholar] [CrossRef]
- Powers, C.M.; Badireddy, A.R.; Ryde, I.T.; Seidler, F.J.; Slotkin, T.A. Silver Nanoparticles Compromise Neurodevelopment in PC12 Cells: Critical Contributions of Silver Ion, Particle Size, Coating, and Composition. Environ. Health Perspect. 2011, 119, 37–44. [Google Scholar] [CrossRef]
- Meroni, G.; Soares Filipe, J.F.; Martino, P.A. In Vitro Antibacterial Activity of Biological-Derived Silver Nanoparticles: Preliminary Data. Vet. Sci. 2020, 7, 12. [Google Scholar] [CrossRef]
- Seo, M.; Oh, T.; Bae, S. Antibiofilm Activity of Silver Nanoparticles against Biofilm Forming Staphylococcus Pseudintermedius Isolated from Dogs with Otitis Externa. Vet. Med. Sci. 2021, 7, 1551–1557. [Google Scholar] [CrossRef] [PubMed]
- Thammawithan, S.; Siritongsuk, P.; Nasompag, S.; Daduang, S.; Klaynongsruang, S.; Prapasarakul, N.; Patramanon, R. A Biological Study of Anisotropic Silver Nanoparticles and Their Antimicrobial Application for Topical Use. Vet. Sci. 2021, 8, 177. [Google Scholar] [CrossRef] [PubMed]
- Thammawithan, S.; Srichaiyapol, O.; Siritongsuk, P.; Daduang, S.; Klaynongsruang, S.; Prapasarakul, N.; Patramanon, R. Anisotropic Silver Nanoparticles Gel Exhibits Antibacterial Action and Reduced Scar Formation on Wounds Contaminated with Methicillin-Resistant Staphylococcus Pseudintermedius (MRSP) in a Mice Model. Animals 2021, 11, 3412. [Google Scholar] [CrossRef]
- Kher, L.; Santoro, D.; Kelley, K.; Gibson, D.; Schultz, G. Effect of Nanosulfur Against Multidrug-Resistant Staphylococcus Pseudintermedius and Pseudomonas Aeruginosa. Appl. Microbiol. Biotechnol. 2022, 106, 3201–3213. [Google Scholar] [CrossRef]
- Solc, M.K.; Weese, J.S.; Jazic, E. The in Vitro Antibacterial Activity of Incomplete Iron Salt of Polyacrylic Acid against Pseudomonas Aeruginosa, Meticillin-Resistant Staphylococcus Pseudintermedius and Meticillin-Resistant S. Aureus. Vet. Dermatol. 2018, 29, 3-e2. [Google Scholar] [CrossRef] [PubMed]
- Parquet, M.D.C.; Savage, K.A.; Allan, D.S.; Davidson, R.J.; Holbein, B.E. Novel Iron-Chelator DIBI Inhibits Staphylococcus Aureus Growth, Suppresses Experimental MRSA Infection in Mice and Enhances the Activities of Diverse Antibiotics in Vitro. Front. Microbiol. 2018, 9, 1811. [Google Scholar] [CrossRef] [PubMed]
- Abate, F.; Cozzi, R.; Maritan, M.; Lo Surdo, P.; Maione, D.; Malito, E.; Bottomley, M.J. Crystal Structure of FhuD at 1.6 Å Resolution: A Ferrichrome-Binding Protein from the Animal and Human Pathogen Staphylococcus Pseudintermedius. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2016, 72, 214–219. [Google Scholar] [CrossRef]
- Arnold, C.E.; Bordin, A.; Lawhon, S.D.; Libal, M.C.; Bernstein, L.R.; Cohen, N.D. Antimicrobial Activity of Gallium Maltolate against Staphylococcus Aureus and Methicillin-Resistant S. Aureus and Staphylococcus Pseudintermedius: An in Vitro Study. Vet. Microbiol. 2012, 155, 389–394. [Google Scholar] [CrossRef]
- Murayama, N.; Nagata, M.; Terada, Y.; Okuaki, M.; Takemura, N.; Nakaminami, H.; Noguchi, N. In Vitro Antiseptic Susceptibilities for Staphylococcus Pseudintermedius Isolated from Canine Superficial Pyoderma in Japan. Vet. Dermatol. 2013, 24, 126–129.e29. [Google Scholar] [CrossRef]
- Clark, S.M.; Loeffler, A.; Bond, R. Susceptibility in Vitro of Canine Methicillin-Resistant and -Susceptible Staphylococcal Isolates to Fusidic Acid, Chlorhexidine and Miconazole: Opportunities for Topical Therapy of Canine Superficial Pyoderma. J. Antimicrob. Chemother. 2015, 70, 2048–2052. [Google Scholar] [CrossRef] [PubMed]
- Murayama, N.; Nagata, M.; Terada, Y.; Shibata, S.; Fukata, T. Comparison of Two Formulations of Chlorhexidine for Treating Canine Superficial Pyoderma. Vet. Rec. 2010, 167, 532–533. [Google Scholar] [CrossRef] [PubMed]
- Borio, S.; Colombo, S.; La Rosa, G.; De Lucia, M.; Damborg, P.; Guardabassi, L. Effectiveness of a Combined (4% Chlorhexidine Digluconate Shampoo and Solution) Protocol in MRS and Non-MRS Canine Superficial Pyoderma: A Randomized, Blinded, Antibiotic-Controlled Study. Vet. Dermatol. 2015, 26, 339–344, e72. [Google Scholar] [CrossRef] [PubMed]
- Banovic, F.; Bozic, F.; Lemo, N. In Vitro Comparison of the Effectiveness of Polihexanide and Chlorhexidine against Canine Isolates of Staphylococcus Pseudintermedius, Pseudomonas Aeruginosa and Malassezia Pachydermatis. Vet. Dermatol. 2013, 24, 409–413, e88–e89. [Google Scholar] [CrossRef] [PubMed]
- Hagi, A.; Iwata, K.; Nii, T.; Nakata, H.; Tsubotani, Y.; Inoue, Y. Bactericidal Effects and Mechanism of Action of Olanexidine Gluconate, a New Antiseptic. Antimicrob. Agents Chemother. 2015, 59, 4551–4559. [Google Scholar] [CrossRef]
- Hsiao, Y.-H.; Imanishi, I.; Iyori, K. Efficacy of Olanexidine Gluconate in Canine Superficial Pyoderma: A Randomised, Single-Blinded Controlled Trial. Vet. Dermatol. 2021, 32, 664-e174. [Google Scholar] [CrossRef]
- Pariser, M.; Gard, S.; Gram, D.; Schmeitzel, L. An in Vitro Study to Determine the Minimal Bactericidal Concentration of Sodium Hypochlorite (Bleach) Required to Inhibit Meticillin-Resistant Staphylococcus Pseudintermedius Strains Isolated from Canine Skin. Vet. Dermatol. 2013, 24, 632–634, e156–e157. [Google Scholar] [CrossRef]
- Banovic, F.; Olivry, T.; Bäumer, W.; Paps, J.; Stahl, J.; Rogers, A.; Jacob, M. Diluted Sodium Hypochlorite (Bleach) in Dogs: Antiseptic Efficacy, Local Tolerability and in Vitro Effect on Skin Barrier Function and Inflammation. Vet. Dermatol. 2018, 29, 6-e5. [Google Scholar] [CrossRef] [PubMed]
- Banovic, F.; Reno, L.; Lawhon, S.D.; Wu, J.; Hoffmann, A.R. Tolerability and the Effect on Skin Staphylococcus Pseudintermedius Density of Repeated Diluted Sodium Hypochlorite (Bleach) Baths at 0.005% in Healthy Dogs. Vet. Dermatol. 2023, 34, 489–494. [Google Scholar] [CrossRef]
- Lake, K.M.; Rankin, S.C.; Rosenkrantz, W.S.; Sastry, L.; Jacob, M.; Campos, D.D.; Maddock, K.; Cole, S.D. In Vitro Efficacy of 0.2% and 0.4% Sodium Oxychlorosene against Meticillin-Resistant Staphylococcus Pseudintermedius. Vet. Dermatol. 2023, 34, 33–39. [Google Scholar] [CrossRef]
- Jang, H.; Makita, Y.; Jung, K.; Ishizaka, S.; Karasawa, K.; Oida, K.; Takai, M.; Matsuda, H.; Tanaka, A. Linoleic Acid Salt with Ultrapure Soft Water as an Antibacterial Combination against Dermato-Pathogenic Staphylococcus Spp. J. Appl. Microbiol. 2016, 120, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Schnedeker, A.H.; Cole, L.K.; Lorch, G.; Diaz, S.F.; Bonagura, J.; Daniels, J.B. In Vitro Bactericidal Activity of Blue Light (465 Nm) Phototherapy on Meticillin-Susceptible and Meticillin-Resistant Staphylococcus Pseudintermedius. Vet. Dermatol. 2017, 28, 463-e106. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Oh, T. In Vitro Bactericidal Activity of 465–470 Nm Blue Light Phototherapy and Aminolevulinic Acid on Staphylococcus Pseudintermedius. Vet. Dermatol. 2018, 29, 296-e102. [Google Scholar] [CrossRef]
- Park, J.-Y.; Kim, S.-M.; Kim, J.-H. Efficacy of Phototherapy With 308-Nm Excimer Light for Skin Microbiome Dysbiosis and Skin Barrier Dysfunction in Canine Atopic Dermatitis. Front. Vet. Sci. 2021, 8, 762961. [Google Scholar] [CrossRef] [PubMed]
- Guidi, E.E.A.; Vercelli, A.; Corona, A.; Vercelli, A.; Cornegliani, L. A Case of Drug-Resistant Staphylococcal Para-Aural Abscess Treated with Photodynamic Therapy in a West Highland White Terrier Presenting with Chronic Otitis and Craniomandibular Osteopathy. Photodiagnosis Photodyn. Ther. 2021, 35, 102424. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, A.T.; Hathcock, T.; Kennis, R.A.; White, A.G. In Vitro Evaluation of Bactericidal Effects of Fluorescent Light Energy on Staphylococcus Pseudintermedius and S. Aureus. Vet. Dermatol. 2024, 35, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Marchegiani, A.; Fruganti, A.; Bazzano, M.; Cerquetella, M.; Dini, F.; Spaterna, A. Fluorescent Light Energy in the Management of Multi Drug Resistant Canine Pyoderma: A Prospective Exploratory Study. Pathogens 2022, 11, 1197. [Google Scholar] [CrossRef] [PubMed]
- Marchegiani, A.; Spaterna, A.; Fruganti, A.; Cerquetella, M. Exploring Fluorescent Light Energy as Management Option for Canine Superficial Bacterial Folliculitis. Front. Vet. Sci. 2023, 10, 1155105. [Google Scholar] [CrossRef] [PubMed]
- Marchegiani, A.; Fruganti, A.; Spaterna, A.; Cerquetella, M.; Tambella, A.M.; Paterson, S. The Effectiveness of Fluorescent Light Energy as Adjunct Therapy in Canine Deep Pyoderma: A Randomized Clinical Trial. Vet. Med. Int. 2021, 2021, 6643416. [Google Scholar] [CrossRef]
- Marchegiani, A.; Spaterna, A.; Cerquetella, M.; Tambella, A.M.; Fruganti, A.; Paterson, S. Fluorescence Biomodulation in the Management of Canine Interdigital Pyoderma Cases: A Prospective, Single-Blinded, Randomized and Controlled Clinical Study. Vet. Dermatol. 2019, 30, 371-e109. [Google Scholar] [CrossRef]
- Jin, H.-J.; Hwang, C.-Y.; Kang, J.-H.; Baek, S.-J.; Hyun, J.-E. In Vitro Antimicrobial Activity of Cold Atmospheric Microwave Plasma against Bacteria Causing Canine Skin and Ear Infections. Vet. Dermatol. 2021, 32, 462-e126. [Google Scholar] [CrossRef] [PubMed]
- Leonard, B.C.; Marks, S.L.; Outerbridge, C.A.; Affolter, V.K.; Kananurak, A.; Young, A.; Moore, P.F.; Bannasch, D.L.; Bevins, C.L. Activity, Expression and Genetic Variation of Canine β-Defensin 103: A Multifunctional Antimicrobial Peptide in the Skin of Domestic Dogs. J. Innate Immun. 2012, 4, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Fazakerley, J.; Crossley, J.; McEwan, N.; Carter, S.; Nuttall, T. In Vitro Antimicrobial Efficacy of β-Defensin 3 against Staphylococcus Pseudintermedius Isolates from Healthy and Atopic Canine Skin. Vet. Dermatol. 2010, 21, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Huang, Y.; Li, Y.; Teng, D.; Mao, R.; Hao, Y.; Wei, L.; Wang, J. Efficiency of NZ2114 on Superficial Pyoderma Infected with Staphylococcus Pseudintermedius. Pharmaceuticals 2024, 17, 277. [Google Scholar] [CrossRef]
- Santoro, D.; Kher, L.; Chala, V.; Navarro, C. Evaluation of the Effects of Chlorhexidine Digluconate with and without cBD103 or cCath against Multidrug-Resistant Clinical Isolates of Staphylococcus Pseudintermedius. Vet. Dermatol. 2022, 33, 17-e6. [Google Scholar] [CrossRef] [PubMed]
- Field, D.; Gaudin, N.; Lyons, F.; O’Connor, P.M.; Cotter, P.D.; Hill, C.; Ross, R.P. A Bioengineered Nisin Derivative to Control Biofilms of Staphylococcus Pseudintermedius. PLoS ONE 2015, 10, e0119684. [Google Scholar] [CrossRef]
- Bellavita, R.; Vollaro, A.; Catania, M.R.; Merlino, F.; De Martino, L.; Nocera, F.P.; DellaGreca, M.; Lembo, F.; Grieco, P.; Buommino, E. Novel Antimicrobial Peptide from Temporin L in The Treatment of Staphylococcus Pseudintermedius and Malassezia Pachydermatis in Polymicrobial Inter-Kingdom Infection. Antibiotics 2020, 9, 530. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Yang, C.; Li, W.; Zhang, Y.; Wang, X.; Wang, W.; Ma, Z.; Zhang, D.; Jin, Y.; Lin, D. Evaluation of Short-Chain Antimicrobial Peptides With Combined Antimicrobial and Anti-Inflammatory Bioactivities for the Treatment of Zoonotic Skin Pathogens From Canines. Front. Microbiol. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Jarosiewicz, M.; Garbacz, K.; Neubauer, D.; Kamysz, W. In Vitro Efficiency of Antimicrobial Peptides against Staphylococcal Pathogens Associated with Canine Pyoderma. Animals 2020, 10, 470. [Google Scholar] [CrossRef]
- Greco, I.; Hummel, B.D.; Vasir, J.; Watts, J.L.; Koch, J.; Hansen, J.E.; Nielsen, H.M.; Damborg, P.; Hansen, P.R. In Vitro ADME Properties of Two Novel Antimicrobial Peptoid-Based Compounds as Potential Agents against Canine Pyoderma. Molecular 2018, 23, 630. [Google Scholar] [CrossRef]
- Greco, I.; Hansen, J.E.; Jana, B.; Molchanova, N.; Oddo, A.; Thulstrup, P.W.; Damborg, P.; Guardabassi, L.; Hansen, P.R. Structure–Activity Study, Characterization, and Mechanism of Action of an Antimicrobial Peptoid D2 and Its d- and l-Peptide Analogues. Molecular 2019, 24, 1121. [Google Scholar] [CrossRef] [PubMed]
- Molchanova, N.; Hansen, P.R.; Damborg, P.; Franzyk, H. Fluorinated Antimicrobial Lysine-Based Peptidomimetics with Activity against Methicillin-Resistant Staphylococcus Pseudintermedius. J. Pept. Sci. Off. Publ. Eur. Pept. Soc. 2018, 24, e3098. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhang, C.; Zhang, M.Z.; Zhang, S. Beta-Defensin Derived Cationic Antimicrobial Peptides with Potent Killing Activity against Gram Negative and Gram Positive Bacteria. BMC Microbiol. 2018, 18, 54. [Google Scholar] [CrossRef] [PubMed]
- Santoro, D.; Maddox, C.W. Canine Antimicrobial Peptides Are Effective against Resistant Bacteria and Yeasts. Vet. Dermatol. 2014, 25, 35-e12. [Google Scholar] [CrossRef] [PubMed]
- Greco, I.; Emborg, A.P.; Jana, B.; Molchanova, N.; Oddo, A.; Damborg, P.; Guardabassi, L.; Hansen, P.R. Characterization, Mechanism of Action and Optimization of Activity of a Novel Peptide-Peptoid Hybrid against Bacterial Pathogens Involved in Canine Skin Infections. Sci. Rep. 2019, 9, 3679. [Google Scholar] [CrossRef] [PubMed]
- Moodley, A.; Kot, W.; Nälgård, S.; Jakociune, D.; Neve, H.; Hansen, L.H.; Guardabassi, L.; Vogensen, F.K. Isolation and Characterization of Bacteriophages Active against Methicillin-Resistant Staphylococcus Pseudintermedius. Res. Vet. Sci. 2019, 122, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.G.; Giri, S.S.; Yun, S.; Kim, S.W.; Han, S.J.; Kwon, J.; Oh, W.T.; Lee, S.B.; Park, Y.H.; Park, S.C. Two Novel Bacteriophages Control Multidrug- and Methicillin-Resistant Staphylococcus Pseudintermedius Biofilm. Front. Med. 2021, 8, 524059. [Google Scholar] [CrossRef] [PubMed]
- Synnott, A.J.; Kuang, Y.; Kurimoto, M.; Yamamichi, K.; Iwano, H.; Tanji, Y. Isolation from Sewage Influent and Characterization of Novel Staphylococcus Aureus Bacteriophages with Wide Host Ranges and Potent Lytic Capabilities. Appl. Environ. Microbiol. 2009, 75, 4483–4490. [Google Scholar] [CrossRef]
- Nakamura, T.; Kitana, J.; Fujiki, J.; Takase, M.; Iyori, K.; Simoike, K.; Iwano, H. Lytic Activity of Polyvalent Staphylococcal Bacteriophage PhiSA012 and Its Endolysin Lys-PhiSA012 Against Antibiotic-Resistant Staphylococcal Clinical Isolates From Canine Skin Infection Sites. Front. Med. 2020, 7, 234. [Google Scholar] [CrossRef] [PubMed]
- Hernandez Santos, H.; Clark, J.; Terwilliger, A.; Maresso, A. Discovery of the First Lytic Staphylococcus Pseudintermedius/Staphylococcus Aureus Polyvalent Bacteriophages. PHAGE New Rochelle N 2022, 3, 116–124. [Google Scholar] [CrossRef]
- Annunziato, G.; Spadini, C.; Franko, N.; Storici, P.; Demitri, N.; Pieroni, M.; Flisi, S.; Rosati, L.; Iannarelli, M.; Marchetti, M.; et al. Investigational Studies on a Hit Compound Cyclopropane-Carboxylic Acid Derivative Targeting O-Acetylserine Sulfhydrylase as a Colistin Adjuvant. ACS Infect. Dis. 2021, 7, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, M.; Nøhr-Meldgaard, K.; Bojer, M.S.; Krogsgård Nielsen, C.; Meyer, R.L.; Slavetinsky, C.; Peschel, A.; Ingmer, H. Inhibition of the ATP Synthase Eliminates the Intrinsic Resistance of Staphylococcus Aureus towards Polymyxins. mBio 2017, 8, e01950-17. [Google Scholar] [CrossRef] [PubMed]
- Thallinger, B.; Prasetyo, E.N.; Nyanhongo, G.S.; Guebitz, G.M. Antimicrobial Enzymes: An Emerging Strategy to Fight Microbes and Microbial Biofilms. Biotechnol. J. 2013, 8, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Costa, S.S.; Falcão, C.; Viveiros, M.; Machado, D.; Martins, M.; Melo-Cristino, J.; Amaral, L.; Couto, I. Exploring the Contribution of Efflux on the Resistance to Fluoroquinolones in Clinical Isolates of Staphylococcus Aureus. BMC Microbiol. 2011, 11, 241. [Google Scholar] [CrossRef] [PubMed]
- Rampacci, E.; Felicetti, T.; Pietrella, D.; Sabatini, S.; Passamonti, F. Drug Efflux Transporters in Staphylococcus Pseudintermedius: In Silico Prediction and Characterization of Resistance. J. Antimicrob. Chemother. 2022, 77, 3283–3290. [Google Scholar] [CrossRef] [PubMed]
- Cernicchi, G.; Felicetti, T.; Sabatini, S. Microbial Efflux Pump Inhibitors: A Journey around Quinoline and Indole Derivatives. Molecules 2021, 26, 6996. [Google Scholar] [CrossRef] [PubMed]
- Rampacci, E.; Felicetti, T.; Cernicchi, G.; Stefanetti, V.; Sabatini, S.; Passamonti, F. Inhibition of Staphylococcus Pseudintermedius Efflux Pumps by Using Staphylococcus Aureus NorA Efflux Pump Inhibitors. Antibiotics 2023, 12, 806. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, S.; Bhattacharyya, M.; Pfannenstiel, D.M.; Nandi, A.K.; Hwang, Y.; Ho, K.; Harshey, R.M. Efflux-Linked Accelerated Evolution of Antibiotic Resistance at a Population Edge. Mol. Cell 2022, 82, 4368–4385.e6. [Google Scholar] [CrossRef] [PubMed]
- Papkou, A.; Hedge, J.; Kapel, N.; Young, B.; MacLean, R.C. Efflux Pump Activity Potentiates the Evolution of Antibiotic Resistance across S. Aureus Isolates. Nat. Commun. 2020, 11, 3970. [Google Scholar] [CrossRef]
- Chan, W.Y.; Khazandi, M.; Hickey, E.E.; Page, S.W.; Trott, D.J.; Hill, P.B. In Vitro Antimicrobial Activity of Seven Adjuvants against Common Pathogens Associated with Canine Otitis Externa. Vet. Dermatol. 2019, 30, 133-e38. [Google Scholar] [CrossRef]
- May, E.R.; Ratliff, B.E.; Bemis, D.A. Antibacterial Effect of N-Acetylcysteine in Combination with Antimicrobials on Common Canine Otitis Externa Bacterial Isolates. Vet. Dermatol. 2019, 30, 531-e161. [Google Scholar] [CrossRef] [PubMed]
- Garland, M.; Loscher, S.; Bogyo, M. Chemical Strategies To Target Bacterial Virulence. Chem. Rev. 2017, 117, 4422–4461. [Google Scholar] [CrossRef] [PubMed]
- Couto, N.; Martins, J.; Lourenço, A.M.; Pomba, C.; Varela Coelho, A. Identification of Vaccine Candidate Antigens of Staphylococcus Pseudintermedius by Whole Proteome Characterization and Serological Proteomic Analyses. J. Proteomics 2016, 133, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Jaan, S.; Shah, M.; Ullah, N.; Amjad, A.; Javed, M.S.; Nishan, U.; Mustafa, G.; Nawaz, H.; Ahmed, S.; Ojha, S.C. Multi-Epitope Chimeric Vaccine Designing and Novel Drug Targets Prioritization against Multi-Drug Resistant Staphylococcus Pseudintermedius. Front. Microbiol. 2022, 13, 971263. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, V. NLRP3 Inhibitors: Unleashing Their Therapeutic Potential against Inflammatory Diseases. Biochem. Pharmacol. 2023, 218, 115915. [Google Scholar] [CrossRef]
- Guo, L.; Wang, Z.; Zhu, C.; Li, J.; Cui, L.; Dong, J.; Meng, X.; Zhu, G.; Li, J.; Wang, H. MCC950 Inhibits the Inflammatory Response and Excessive Proliferation of Canine Corneal Stromal Cells Induced by Staphylococcus Pseudintermedius. Mol. Immunol. 2022, 152, 162–171. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanetti, V.; Passamonti, F.; Rampacci, E. Antimicrobial Strategies Proposed for the Treatment of S. pseudintermedius and Other Dermato-Pathogenic Staphylococcus spp. in Companion Animals: A Narrative Review. Vet. Sci. 2024, 11, 311. https://doi.org/10.3390/vetsci11070311
Stefanetti V, Passamonti F, Rampacci E. Antimicrobial Strategies Proposed for the Treatment of S. pseudintermedius and Other Dermato-Pathogenic Staphylococcus spp. in Companion Animals: A Narrative Review. Veterinary Sciences. 2024; 11(7):311. https://doi.org/10.3390/vetsci11070311
Chicago/Turabian StyleStefanetti, Valentina, Fabrizio Passamonti, and Elisa Rampacci. 2024. "Antimicrobial Strategies Proposed for the Treatment of S. pseudintermedius and Other Dermato-Pathogenic Staphylococcus spp. in Companion Animals: A Narrative Review" Veterinary Sciences 11, no. 7: 311. https://doi.org/10.3390/vetsci11070311
APA StyleStefanetti, V., Passamonti, F., & Rampacci, E. (2024). Antimicrobial Strategies Proposed for the Treatment of S. pseudintermedius and Other Dermato-Pathogenic Staphylococcus spp. in Companion Animals: A Narrative Review. Veterinary Sciences, 11(7), 311. https://doi.org/10.3390/vetsci11070311