Molecular Survey on the Occurrence of Tick-Borne Bacteria in Wild Birds from Central Italy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Molecular Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grassi, L.; Franzo, G.; Grillo, S.; Mondin, A.; Drigo, M.; Barbarino, F.; Comuzzo, C.; Legnardi, M.; Bertola, M.; Montarsi, F.; et al. Survey of Tick-Borne Zoonotic Agents in Ixodes Ticks Carried by Wild Passerines during Postbreeding Migration through Italy. Transbound. Emerg. Dis. 2023, 2023, 1399089. [Google Scholar] [CrossRef]
- Wilhelmsson, P.; Jaenson, T.G.T.; Olsen, B.; Waldenström, J.; Lindgren, P.E. Migratory birds as disseminators of ticks and the tick-borne pathogens Borrelia bacteria and tick-borne encephalitis (TBE) virus: A seasonal study at Ottenby Bird Observatory in South-eastern Sweden. Parasit. Vectors. 2020, 13, 607. [Google Scholar] [CrossRef] [PubMed]
- Espí, A.; del Cerro, A.; Peón-Torre, P.; González-Escudero, J.V.; Somoano, A. Ticks and Tick-Borne Zoonotic Pathogens from Wild Birds in Northwestern Coastal Spain. Zoonotic Dis. 2023, 3, 316–333. [Google Scholar] [CrossRef]
- Van Wyk, C.L.; Mtshali, S.; Ramatla, T.; Lekota, K.E.; Xuan, X.; Thekisoe, O. Distribution of Rhipicephalus sanguineus and Heamaphysalis elliptica dog ticks and pathogens they are carrying: A systematic review. Vet. Parasitol. Reg. Stud. Rep. 2024, 47, 100969. [Google Scholar] [CrossRef] [PubMed]
- Yadav, N.; Upadhyay, R.K. Tick-borne zoonotic diseases and its control. Int. J. Pharm. Pharm. Sci. 2022, 14, 1–15. [Google Scholar] [CrossRef]
- Jones, T.; Cresswell, W. The phenology mismatch hypothesis: Are declines of migrant birds linked to uneven global climate change? J. Anim. Ecol. 2010, 79, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Buczek, A.M.; Buczek, W.; Buczek, A.; Bartosik, K. The Potential Role of Migratory Birds in the Rapid Spread of Ticks and Tick-Borne Pathogens in the Changing Climatic and Environmental Conditions in Europe. Int. J. Environ. Res. Public. Health 2020, 17, 2117. [Google Scholar] [CrossRef] [PubMed]
- Hornok, S.; Kováts, D.; Csörgő, T.; Meli, M.L.; Gönczi, E.; Hadnagy, Z.; Takács, N.; Farkas, R.; Hofmann-Lehmann, R. Birds as potential reservoirs of tick-borne pathogens: First evidence of bacteraemia with Rickettsia helvetica. Parasites Vectors 2014, 7, 128. [Google Scholar] [CrossRef]
- Pajoro, M.; Pistone, D.; Boccazzi, I.V.; Mereghetti, V.; Bandi, C.; Fabbi, M.; Scattorin, F.; Sassera, D.; Montagna, M. Molecular screening for bacterial pathogens in ticks (Ixodes ricinus) collected on migratory birds captured in northern Italy. Folia Parasitol. 2018, 65, 8. [Google Scholar] [CrossRef]
- Battisti, E.; Urach, K.; Hodžić, A.; Fusani, L.; Hufnagl, P.; Felsberger, G.; Ferroglio, E.; Duscher, G.G. Zoonotic Pathogens in Ticks from Migratory Birds, Italy. Emerg. Infect. Dis. 2020, 26, 2986–2988. [Google Scholar] [CrossRef]
- Rollins, R.E.; Schaper, S.; Kahlhofer, C.; Frangoulidis, D.; Strauß, A.F.T.; Cardinale, M.; Springer, A.; Strube, C.; Bakkes, D.K.; Becker, N.S.; et al. Ticks (Acari: Ixodidae) on birds migrating to the Island of Ponza, Italy, and the tick-borne pathogens they carry. Ticks Tick. Borne Dis. 2021, 12, 101590. [Google Scholar] [CrossRef] [PubMed]
- Ebani, V.V.; Bertelloni, F.; Mani, P. Molecular survey on zoonotic tick-borne bacteria and chlamydiae in feral pigeons (Columba livia domestica). Asian Pac. J. Trop. Med. 2016, 9, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Circella, E.; Pugliese, N.; Todisco, G.; Cafiero, M.A.; Sparagano, O.A.; Camarda, A. Chlamydia psittaci infection in canaries heavily infested by Dermanyssus gallinae. Exp. Appl. Acarol. 2011, 55, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Vanat, V.; Aeby, S.; Greub, G. Ticks and Chlamydia-Related Bacteria in Swiss Zoological Gardens Compared to in Contiguous and Distant Control Areas. Microorganisms 2023, 11, 2468. [Google Scholar] [CrossRef] [PubMed]
- Ebani, V.V.; Nardoni, S.; Giani, M.; Rocchigiani, G.; Archin, T.; Altomonte, I.; Poli, A.; Mancianti, F. Molecular survey on the occurrence of avian haemosporidia, Coxiella burnetii and Francisella tularensis in waterfowl from central Italy. Int. J. Parasitol. Parasites Wildl. 2019, 10, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Massung, R.F.; Slater, K.; Owens, J.H.; Nicholson, W.L.; Mather, T.N.; Solberg, V.B.; Olson, J.G. Nested PCR assay for detection of granulocytic ehrlichiae. J. Clin. Microbiol. 1998, 36, 1090–1095. [Google Scholar] [CrossRef] [PubMed]
- Relman, D.A.; Loutit, J.S.; Schmidt, T.M.; Falkow, S.; Tompkins, L.S. The agent of bacillary angiomatosis. An approach to the identification of uncultured pathogens. N. Engl. J. Med. 1990, 323, 1573–1580. [Google Scholar] [CrossRef]
- Chang, Y.F.; Novosol, V.; McDonough, S.P.; Chang, C.F.; Jacobson, R.H.; Divers, T.; Quimby, F.W.; Shin, S.; Lein, D.H. Experimental infection of ponies with Borrelia burgdorferi by exposure to Ixodid ticks. Vet. Pathol. 2000, 37, 68–76. [Google Scholar] [CrossRef]
- Dawson, J.E.; Stallknecht, D.E.; Howerth, E.W.; Warner, C.; Biggie, K.; Davidson, W.R.; Lockhart, J.M.; Nettles, V.F.; Olsen, J.G.; Childs, J.E. Suscceptibility of white-tailed deer (Odocoileus virginianus) to infection with Ehrlichia chaffeensis, the etiologic agent of human ehrlichiosis. J. Clin. Microbiol. 1994, 32, 2725–2728. [Google Scholar] [CrossRef]
- Wen, B.; Rikihisa, Y.; Mott, J.M.; Greene, R.; Kim, H.Y.; Zhi, N.; Couto, G.C.; Unver, A.; Bartsch, R. Comparison of nested PCR with immunofluorescent-antibody assay for detection of Ehrlichia canis infection in dogs treated with doxycycline. J. Clin. Microbiol. 1997, 35, 1852–1855. [Google Scholar] [CrossRef]
- Sprague, L.D.; Schubert, E.; Hotzel, H.; Scharf, S.; Sachse, K. The detection of Chlamydophila psittaci genotype C infection in dogs. Vet. J. 2009, 181, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Berri, M.; Rekiki, A.; Boumedine, K.S.; Rodolakis, A. Simultaneous differential detection of Chlamydophila abortus, Chlamydophila pecorum and Coxiella burnetii from aborted ruminant’s clinical samples using multiplex PCR. BMC Microbiol. 2009, 9, 130. [Google Scholar] [CrossRef] [PubMed]
- Milutinović, M.; Masuzawa, T.; Tomanović, S.; Radulović, Z.; Fukui, T.; Okamoto, Y. Borrelia burgdorferi sensu lato, Anaplasma phagcoytophilum, Francisella tularensis and their co-infections in host-seeking Ixodes ricinus ticks collected in Serbia. Exp. Appl. Acarol. 2008, 45, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Roux, V.; Fournier, P.E.; Raoult, D. Differentiation of spotted fever group rickettsiae by sequencing and analysis of restriction fragment length polymorphism of PCR-amplified DNA of the gene encoding the protein rOmpA. J. Clin. Microbiol. 1996, 34, 2058–2065. [Google Scholar] [CrossRef] [PubMed]
- Regnery, R.L.; Spruill, C.L.; Plikaytis, B.D. Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J. Bacteriol. 1991, 173, 1576–1589. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.M.; Dittmar, K. Expanding our view of Bartonella and its hosts: Bartonella in nest ectoparasites and their migratory avian hosts. Parasit. Vectors. 2020, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Mascarelli, P.E.; McQuillan, M.; Harms, C.A.; Harms, R.V.; Breitschwerdt, E.B. Bartonella henselae and B. koehlerae DNA in birds. Emerg. Infect. Dis. 2014, 20, 490–492. [Google Scholar] [CrossRef] [PubMed]
- Buhler, K.J.; Agar, B.; Galloway, T.; Alisauskasc, R.; Jenkins, E. Arctic fleas are not fussy eaters: Bartonella bacteria may hitchhike between birds and mammals in a tundra ecosystem. Arct. Sci. 2023, 9, 236–242. [Google Scholar] [CrossRef]
- Alabí Córdova, A.S.; Fecchio, A.; Calchi, A.C.; Dias, C.M.; Machado, R.Z.; André, M.R. Molecular evidence of Bartonella spp. in tropical wild birds from the Brazilian Pantanal, the largest wetland in South America. Vet. Res. Commun. 2024, 48, 1631–1640. [Google Scholar] [CrossRef]
- Toma, L.; Mancini, F.; Di Luca, M.; Cecere, J.G.; Bianchi, R.; Khoury, C.; Quarchioni, E.; Manzia, F.; Rezza, G.; Ciervo, A. Detection of microbial agents in ticks collected from migratory birds in central Italy. Vector Borne Zoonotic Dis. 2014, 14, 199–205. [Google Scholar] [CrossRef]
- Raele, D.A.; Galante, D.; Pugliese, N.; La Salandra, G.; Lomuto, M.; Cafiero, M.A. First report of Coxiella burnetii and Borrelia burgdorferi sensu lato in poultry red mites, Dermanyssus gallinae (Mesostigmata, Acari), related to urban outbreaks of dermatitis in Italy. New Microbes New Infect. 2018, 23, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Ebani, V.V.; Mancianti, F. Potential Role of Birds in the Epidemiology of Coxiella burnetii, Coxiella-like Agents and Hepatozoon spp. Pathogens 2022, 11, 298. [Google Scholar] [CrossRef]
- Thierry, S.; Vorimore, F.; Rossignol, C.; Scharf, S.; Sachse, K.; Berthon, P.; Durand, B.; Virlogeux-Payant, I.; Borel, N.; Laroucau, K. Oral Uptake of Chlamydia psittaci by Ducklings Results in Systemic Dissemination. PLoS ONE 2016, 11, e0154860. [Google Scholar] [CrossRef] [PubMed]
- Šujanová, A.; Čužiová, Z.; Václav, R. The Infection Rate of Bird-Feeding Ixodes ricinus Ticks with Borrelia garinii and B. valaisiana Varies with Host Haemosporidian Infection Status. Microorganisms 2023, 11, 60. [Google Scholar] [CrossRef]
- Kurtenbach, K.; Hanincova, K.; Tsao, J.I.; Margos, G.; Fish, D.; Ogden, N.H. Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nat. Rev. Microbiol. 2006, 4, 660–669. [Google Scholar] [CrossRef]
- Norte, A.C.; Ramos, J.A.; Gern, L.; Núncio, M.S.; Lopes de Carvalho, I. Birds as reservoirs for Borrelia burgdorferi s.l. in Western Europe: Circulation of B. turdi and other genospecies in bird–tick cycles in Portugal. Environ. Microbiol. 2013, 15, 386–397. [Google Scholar] [CrossRef]
- Wilhelmsson, P.; Lager, M.; Jaenson, T.G.T.; Waldenström, J.; Olsen, B.; Lindgren, P.-E. Anaplasma phagocytophilum in Ticks Blood-Feeding on Migratory Birds in Sweden. Microorganisms 2024, 12, 735. [Google Scholar] [CrossRef]
- Skotarczak, B.; Rymaszewska, A.; Wodecka, B.; Sawczuk, M.; Adamska, M.; Maciejewska, A. PCR detection of granulocytic Anaplasma and Babesia in Ixodes ricinus ticks and birds in west-central Poland. Ann. Agric. Environ. Med. 2006, 13, 21–23. [Google Scholar]
- Keesing, F.; Hersh, M.H.; Tibbetts, M.; McHenry, D.J.; Duerr, S.; Brunner, J.; Killilea, M.; Lo Giudice, K.; Schmidt, K.A.; Ostfeld, R.S. Reservoir competence of vertebrate hosts for Anaplasma phagocytophilum. Emerg. Infect. Dis. 2012, 18, 2013–2016. [Google Scholar] [CrossRef] [PubMed]
- De La Fuente, J.; Naranjo, V.; Ruiz-Fons, F.; Höfle, U.; Fernández De Mera, I.G.; Villanúa, D.; Almazán, C.; Torina, A.; Caracappa, S.; Kocan, K.M.; et al. Potential vertebrate reservoir hosts and invertebrate vectors of Anaplasma marginale and A. phagocytophilum in central Spain. Vector Borne Zoonotic Dis. 2005, 5, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Stubbs, C.J.; Holland, C.J.; Reif, J.S.; Wheeler, S.; Lappin, R. Feline ehrlichiosis. Comp. Cont. Ed. Pract. Vet. 2000, 22, 307–318. [Google Scholar]
- Daza, T.; Osorio, J.; Santamaria, A.; Suárez, J.; Hurtado, A.; Bermúdez, S. Caracterización del primer caso de infeción humana por Ehrlichia canis en Panamá Rev. Med. Panama. 2018, 36, 63–68. [Google Scholar]
- Machado, R.Z.; André, M.R.; Werther, K.; de Sousa, E.; Gavioli, F.A.; Alves Junior, J.R. Migratory and carnivorous birds in Brazil: Reservoirs for Anaplasma and Ehrlichia species? Vector Borne Zoonotic Dis. 2012, 12, 705–708. [Google Scholar] [CrossRef]
- André, M.R.; Adania, C.H.; Machado, R.Z.; Allegretti, S.M.; Felippe, P.A.; Silva, K.F.; Nakaghi, A.C. Molecular and serologic detection of Ehrlichia spp. in endangered Brazilian wild captive felids. J. Wildl. Dis. 2010, 46, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Hornok, S.; Boldogh, S.A.; Takács, N.; Juhász, A.; Kontschán, J.; Földi, D.; Koleszár, B.; Morandini, P.; Gyuranecz, M.; Szekeres, S. Anaplasmataceae closely related to Ehrlichia chaffeensis and Neorickettsia helminthoeca from birds in Central Europe, Hungary. Antonie Van. Leeuwenhoek. 2020, 113, 1067–1073. [Google Scholar] [CrossRef]
- Ioannou, I.; Chochlakis, D.; Kasinis, N.; Anayiotos, P.; Lyssandrou, A.; Papadopoulos, B.; Tselentis, Y.; Psaroulaki, A. Carriage of Rickettsia spp., Coxiella burnetii and Anaplasma spp. by endemic and migratory wild birds and their ectoparasites in Cyprus. Clin. Microbiol. Infect. 2009, 15, 158–160. [Google Scholar] [CrossRef]
- Mukherjee, N.; Beati, L.; Sellers, M.; Burton, L.; Adamson, S.; Robbins, R.G.; Moore, F.; Karim, S. Importation of exotic ticks and tick-borne spotted fever group rickettsiae into the United States by migrating songbirds. Ticks Tick-Borne Dis. 2013, 5, 27–134. [Google Scholar] [CrossRef] [PubMed]
- Ebani, V.V.; Mancianti, F. Potential Role of Avian Populations in the Epidemiology of Rickettsia spp. and Babesia spp. Vet. Sci. 2021, 8, 334. [Google Scholar] [CrossRef]
- EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control). The European Union One Health 2022 Zoonoses Report. EFSA J. 2023, 21, e8442. [Google Scholar] [CrossRef]
- Mörner, T.; Mattsson, R. Experimental infection of five species of raptors and of hooded crows with Francisella tularensis biovar palaearctica. J. Wildl. Dis. 1988, 24, 15–21. [Google Scholar] [CrossRef]
- Padeshki, P.I.; Ivanov, I.N.; Popov, B.; Kantardjiev, T.V. The role of birds in dissemination of Francisella tularensis: First direct molecular evidence for bird-to-human transmission. Epidemiol. Infect. 2010, 138, 376–379. [Google Scholar] [CrossRef] [PubMed]
Pathogen | Target Gene | Primers Name | Primers Sequences (5′–3′) | Amplicons (bp) | Annealing Temperature (°C) | Ref. |
---|---|---|---|---|---|---|
Anaplasma phagocytophilum | 16 S rRNA * | GE3a GE10 | CACATGCAAGTCGAACGGATTATTC TTCCGTTAAGAAGGATCTAATCTCC | 932 | 55 | [16] |
16 S rRNA ** | GE9f GE2 | AACGGATTATTCTTTATAGCTTGCT GGCAGTATTAAAAGCAGCTCCAGG | 546 | 55 | ||
Bartonella spp. | 16S rRNA | P12B P24E | GAGATGGCTTTTGGAGATTA CCTCCTTCAGTTAGGCTGG | 296 | 55 | [17] |
Borrelia burgdorferi s.l. | 23S rRNA | JS1 JS2 | AGAAGTGCTGGAGTCGA TAGTGCTCTACCTCTATTAA | 261 | 39 | [18] |
Ehrlichia canis | 16S rRNA * | ECB ECC | CGTATTACCGCGGCTGCTGGCA AGAACGAACGCTGGCGGCAAGCC | 478 | 55 | [19] |
16S rRNA ** | HE3 ECA | TATAGGTACCGTCATTATCTTCCCTAT CAATTATTTATAGCCTCTGGCTATAGGAA | 389 | 55 | [20] | |
Chlamydia psittaci | ompA * | 191CHOMP CHOMP371 | GCIYTITGGGARTGYGGITGYGCIAC TTAGAAICKGAATTGIGCRTTIAYGTGIGCIGC | 576–597 | 50 | [21] |
ompA ** | 218PSITT CHOMP336s | GTAATTTCIAGCCCAGCACAATTYGTG CCRCAAGMTTTTCTRGAYTTCAWYTTGTTRAT | 389–404 | 60 | ||
Coxiella burnetii | IS1111 | Trans-1 Trans-2 | TATGTATCCACCGTAGCCAGT CCCAACAACACCTCCTTATTC | 687 | 64 | [22] |
Francisella tularensis | TUL4 | TUL4-435 TUL4-863 | TCGAAGACGATCAGATACCGTCG TGCCTTAAACTTCCTTGCGAT | 400 | 60.5 | [23] |
Rickettsia spp. | ompA | Rr 190.70p 190-701 | ATGGCGAATATTTCTCCAAAA GTTCCGTTAATGGCAGCATCT | 632 | 46 | [24] |
gltA | RpCS.877p RpCS.1258n | GGGGGCCTGCTCACGGCGG ATTGCAAAAAGTACAGTGAACA | 381 | 48 | [25] |
No. Positive (%) | |||||||
---|---|---|---|---|---|---|---|
Family | Common Name | Scientific Name | No. Examined Spleen | Bartonella spp. | Borrelia burgdorferi | Coxiella burnetii | Chlamydia psittaci |
Corvidae | Eurasian magpie | Pica pica | 45 | 1 (2.22) | 6 (13.33) | ||
hooded crow | Corvus cornix | 25 | 3 (12.00) | 2 (8.00) | |||
Ardeidae | heron | Ardea cinerea | 2 | 1 (50.00) | |||
Scolopacidae | snipe | Gallinago gallinago | 6 | 1 (16.67) | |||
Strigidae | owl | Athene noctua | 1 | ||||
Accipitridae | Eurasian sparrowhawk | Accipiter nisus | 4 | 1 (25.00) | |||
Falconidae | falcon | Falco peregrinus | 1 | ||||
kestrel | Falco tinnunculus | 3 | 1 (33.33) | ||||
Phasianidae | pheasant | Phasianus colchicus | 40 | 2 (5.00) | |||
Columbidae | wood pigeon | Columba palumbus | 3 | 2 (66.67) | |||
pigeon | Columba livia | 3 | 3 (100.00) | ||||
Laridae | gull | Larus marinus | 10 | 1 (10.00) | |||
Anatidae | Eurasian teals | Anas crecca | 80 | 3 * (3.75) | 15 (18.75) | ||
mallard | Anas platyrhynchos | 27 | 2 (7.40) | ||||
garganey | Anas querquedula | 1 | |||||
pintail | Anas acuta | 4 | |||||
greylag goose | Anser anser | 1 | |||||
gadwall | Mareca strepera | 2 | |||||
Eurasian wigeon | Mareca penelope | 24 | 1 * (4.17) | 4 (16.67) | |||
common shelduck | Tadorna tadorna | 4 | 1 (25.00) | ||||
shoveler | Spatula clypeata | 10 | 2 (20.00) | ||||
common pochard | Aythya ferina | 1 | 1 (100.00) | ||||
tufted duck | Aythya fuligula | 1 | |||||
Rallidae | Eurasian coot | Fulica atra | 2 | ||||
Total | 300 | 1 (0.33) | 11 (3.67) | 5 (1.67) | 36 (12.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertelloni, F.; Cagnoli, G.; Interrante, P.; Ceccherelli, R.; Ebani, V.V. Molecular Survey on the Occurrence of Tick-Borne Bacteria in Wild Birds from Central Italy. Vet. Sci. 2024, 11, 284. https://doi.org/10.3390/vetsci11070284
Bertelloni F, Cagnoli G, Interrante P, Ceccherelli R, Ebani VV. Molecular Survey on the Occurrence of Tick-Borne Bacteria in Wild Birds from Central Italy. Veterinary Sciences. 2024; 11(7):284. https://doi.org/10.3390/vetsci11070284
Chicago/Turabian StyleBertelloni, Fabrizio, Giulia Cagnoli, Paolo Interrante, Renato Ceccherelli, and Valentina Virginia Ebani. 2024. "Molecular Survey on the Occurrence of Tick-Borne Bacteria in Wild Birds from Central Italy" Veterinary Sciences 11, no. 7: 284. https://doi.org/10.3390/vetsci11070284
APA StyleBertelloni, F., Cagnoli, G., Interrante, P., Ceccherelli, R., & Ebani, V. V. (2024). Molecular Survey on the Occurrence of Tick-Borne Bacteria in Wild Birds from Central Italy. Veterinary Sciences, 11(7), 284. https://doi.org/10.3390/vetsci11070284