Hematological and Biochemical Effects Associated with Prolonged Administration of the NSAID Firocoxib in Adult Healthy Horses
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Animals, Treatment, and Blood Collection
2.2. Hematological and Biochemical Analyses
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hovenassian, N.; Davis, J.L.; McKenzie, H.C., 3rd; Hodgson, J.L.; Hodgson, J.L.; Crisman, M.V. Pharmacokinetics and safety of firocoxib after oral admnistration of repeated consecutive doses to neonatal foals. J. Vet. Pharmacol. Ther. 2013, 37, 243–251. [Google Scholar] [CrossRef]
- Doucet, M.Y.; Bertone, A.L.; Hendrickson, D.; Hughes, F.; MacAllister, C.; McClure, S.; Reinemeyer, C.; Rossier, Y.; Sifferman, R.; Vrins, A.A.; et al. Comparison of efficacy and safety of paste formulations of firocoxib and phenylbutazone in horses with naturally occurring osteoarthritis. J. Am. Vet. Med. Assoc. 2008, 232, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Campbell, N.B.; Blikslager, A.T. The role of cyclooxigenase inhibitors in repair of ischaemic-injured jejunal mucosa in the horse. Equine Vet. J. 2000, 32, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Cook, V.L.; Meyer, C.T.; Campbell, N.B.; Blikslager, A.T. Effect of firocoxib or flunixin meglumine on recovery of ischemic-injured equine jejunum. Am. J. Vet. Res. 2009, 70, 992–1000. [Google Scholar] [CrossRef]
- Holland, B.; Fogle, C.; Blikslager, A.T.; Curling, A.; Barlow, B.M.; Schirmer, R.J.; Davis, J.L. Pharmacokinetics and pharmacodynamics of three formulations of firocoxib in healthy horses. J. Vet. Pharmacol. Ther. 2014, 38, 249–256. [Google Scholar] [CrossRef]
- Rangel-Nava, A.; Ramírez-Uribe, J.M.; Recillas-Morales, S.; Ibancovichi-Camarillo, J.A.; Venebra-Muñoz, A.; Sánchez-Aparicio, P. Pharmacological regulation in the USA and pharmacokinetics parameters of firocoxib, a highly selective cox-2, by pain management in horses. J. Equine Vet. Sci. 2019, 77, 36–42. [Google Scholar] [CrossRef]
- Barton, M.H.; Paske, E.; Norton, N.; King, D.; Giguère, S.; Budsberg, S. Efficacy of cyclo-oxygenase inhibition by two commercially available firocoxib products in horses. Equine Vet. J. 2014, 46, 72–75. [Google Scholar] [CrossRef]
- Macpherson, M.L.; Giguère, S.; Pozor, M.A.; Burden, C.A.; Berghaus, L.J.; Berghaus, R.D.; Varner, J.C.; Hayna, J.T.; Benson, S.M.; Randell, S.A.; et al. Evidence for anti-inflammatory effects of firocoxib administered to mares with experimentally induced placentitis. Am. J. Reprod. Immunol. 2021, 86, e13396. [Google Scholar] [CrossRef] [PubMed]
- Friso, A.M.; Segabinazzi, L.G.T.; Cyrino, M.; Correal, S.B.; Freitas-Dell’Aqua, C.P.; Carmo, M.T.; Dell’Aqua, J.A.; Miró, J.; Papa, F.O.; Alvarenga, M.A. Periovulatory administration of firocoxib did not alter ovulation rates and mitigated post-breeding inflammatory response in mares. Theriogenology 2019, 138, 24–30. [Google Scholar] [CrossRef]
- Traub, J.L.; Gallina, A.M.; Grant, B.D.; Reed, S.M.; Gavin, P.R.; Paulsen, L.M. Phenylbutazone toxicosis in the foal. Am. J. Vet. Res. 1983, 44, 1410–1418. [Google Scholar]
- Traub-Dargatz, J.L.; Bertone, J.J.; Gould, D.H.; Wrigley, R.H.; Weiser, M.G.; Forney, S.D. Chronic flunixin meglumine therapy in foals. Am. J. Vet. Res. 1988, 49, 7–12. [Google Scholar] [PubMed]
- Wilson, K.E.; Davis, J.L.; Crisman, M.V.; Kvaternick, V.; Zarabadipour, C.; Cheramie, H.; Hodgson, D.R. Pharmacokinetics of firocoxib after intravenous administration of multiple consecutive doses in neonatal foals. J. Vet. Pharmacol. Ther. 2017, 40, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Everts, B.; Wahrborg, P.; Hedner, T. COX-2- specific inhibitors—The emergence of a new class of analgesic and anti-inflammatory drugs. Clin. Rheumatol. 2000, 19, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Little, D.; Jones, S.L.; Blikslager, A.T. Cyclooxygenase (COX) inhibitors and the intestine. J. Vet. Intern. Med. 2007, 21, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Cox, S.; Dudenbostel, L.; Sommardahl, C.; Yarbrough, J.; Saleh, M.; Doherty, T. Pharmacokinetics of firocoxib and its interaction with enrofloxacin in horses. J. Vet. Pharmacol. Ther. 2012, 35, 615–617. [Google Scholar] [CrossRef] [PubMed]
- Cox, S.; Villarino, N.; Sommardahl, C.; Kvaternick, V.; Zarabadipour, C.; Siger, L.; Yarbrough, J.; Amicucci, A.; Reed, K.; Breeding, D.; et al. Disposition of firocoxib in equine plasma after an oral loading dose and a multiple dose regimen. Vet. J. 2013, 198, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Donnel, J.R.; Frisbie, D.D. Use of firocoxib for the treatment of equine osteoarthritis. Vet. Med. Res. Rep. 2014, 5, 159–168. [Google Scholar] [CrossRef]
- Knych, H.K.; Stanley, S.D.; Arthur, R.M.; Mitchell, M.M. Detection and pharmacokinetics of three formulations of firocoxib following multiple administrations to horses. Equine Vet. J. 2014, 46, 734–738. [Google Scholar] [CrossRef]
- Letendre, L.T.; Tessman, R.K.; McClure, S.R.; Kvaternick, V.J.; Fischer, J.B.; Hanson, P.D. Pharmacokinetics of firocoxib after administration of multiple consecutive daily doses to horses. Am. J. Vet. Res. 2008, 69, 1399–1405. [Google Scholar] [CrossRef]
- Armstrong, D.T. Prostaglandins and follicular functions. J. Reprod. Fertil. 1981, 62, 283–291. [Google Scholar] [CrossRef]
- Fitzpatrick, F.A. Cyclooxygenase enzymes: Regulation and function. Curr. Pharm. Des. 2004, 10, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.E.; Chandrasekharan, N.V.; Westover, K.D.; Eager, K.B.; Simmons, D.L. Determination of expression of cyclooxygenase-1 and -2 isozymes in canine tissues and their differential sensitivity to nonsteroidal anti-inflammatory drugs. Am. J. Vet. Res. 2004, 65, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.L.; Reuter, B.K.; McKnight, W.; Bak, A. Selective inhibitors of cyclooxygenase-2: Are they really effective, selective, and GI-safe? J. Clin. Gastroenterol. 1998, 27 (Suppl. S1), S28–S34. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, K.C.; Sarbia, M.; Schrör, K.; Weber, A.A. Constitutive cyclooxygenase-2 expression in healthy human and rabbit gastric mucosa. Mol. Pharmacol. 1998, 54, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, M.M.; Lichtenstein, D.R.; Singh, G. Gastrointestinal toxicity of nonsteroidal antiinflammatory drugs. N. Engl. J. Med. 1999, 44, 1888–1899. [Google Scholar] [CrossRef] [PubMed]
- Gilroy, D.W.; Colville-Nash, P.R. New insights into the role of COX 2 in inflammation. J. Mol. Med. 2000, 78, 121–129. [Google Scholar] [CrossRef] [PubMed]
- MacNaughton, W.K.; Cushing, K. Role of constitutive cyclooxygenase-2 in prostaglandin-dependent secretion in mouse colon in vitro. J. Pharmacol. Exp. Ther. 2000, 293, 539–544. [Google Scholar] [PubMed]
- Brzozowski, T.; Konturek, P.C.; Konturek, S.J.; Sliwowski, Z.; Pajdo, R.; Drozdowicz, D.; Ptak, A.; Hahn, E.G. Classic NSAID and selective cyclooxygenase (COX)-1 and COX-2 inhibitors in healing of chronic gastric ulcers. Microsc. Res. Tech. 2001, 53, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Einhorn, T.A. Cox-2: Where are we in 2003?—The role of cyclooxygenase-2 in bone repair. Arthritis Res. Ther. 2003, 5, 5–7. [Google Scholar] [CrossRef]
- Warner, T.D.; Mitchell, J.A. Cyclooxygenases: New forms, new inhibitors, and lessons from the clinic. FASEB J. 2004, 18, 790–804. [Google Scholar] [CrossRef]
- Brzozowska, I.; Targosz, A.; Sliwowski, Z.; Kwiecien, S.; Drozdowicz, D.; Pajdo, R.; Konturek, P.C.; Brzozowski, T.; Paslik, M.; Konturek, S.J.; et al. Healing of chronic gastric ulcers in diabetic rats treated with native aspirin, nitric oxide (NO)-derivative of aspirin and cyclooxygenase (COX)-2 inhibitor. J. Physiol. Pharmacol. 2004, 55, 773–790. [Google Scholar] [PubMed]
- Fumuso, E.A.; Aguilar, J.; Giguère, S.; Rivulgo, M.; Wade, J.; Rogan, D. Immune parameters in mares resistant and susceptible to persistent post-breeding endometritis: Effects of immunomodulation. Vet. Immunol. Immunopathol. 2007, 118, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, N.; Shukla, A.; Mackal, P.N.; Kaki, V.R. Natural product-driven dual COX-LOX inhibitors: Overview of recent studies on the development of novel anti-inflammatory agents. Heliyon 2023, 9, e14569. [Google Scholar] [CrossRef] [PubMed]
- Robinson, N.; Sprayberry, K.A. Current Therapy in Equine Medicine, 6th ed.; Saunders Elsevier: St Louis, MI, USA, 2009. [Google Scholar]
- Thrall, M.A. Hematologia e Bioquímica Clínica Veterinária, 1st ed.; Rocca: São Paulo, Brazil, 2007. [Google Scholar]
- Kaneko, J.J.; Harvey, J.W.; Bruss, M.L. Clinical Biochemistry of Domestic Animals, 6th ed.; Academic Press Inc.: Cambridge, MA, USA, 2008. [Google Scholar]
- Mozaffari, A.A.; Derakhshanfar, A.; Alinejad, A.; Morovati, M. A comparative study on the adverse effects of flunixin, ketoprofen and phenylbutazone in miniature donkeys: Haematological, biochemical and pathological findings. N. Z. Vet. J. 2010, 58, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Knych, H.K. Nonsteroidal anti-inflammatory drug use in horses. Vet. Clin. Equine 2017, 33, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Flood, J.; Stewart, A.J. Non-steroidal anti-inflammatory drugs and associated toxicitied in horses. Animals 2022, 12, 2939. [Google Scholar] [CrossRef] [PubMed]
- Aranzales, J.R.M.; Andrade, B.S.C.; Alves, G.E.S. Orally administered phenylbutazone causes oxidative stress in the equine gastric mucosa. J. Vet. Pharmacol. Therap. 2014, 38, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Orsini, J.A.; Ryan, W.G.; Carithers, D.S.; Boston, R.C. Evaluation of oral administration of firocoxib for the management of musculoskeletal pain and lameness associated with osteoarthritis in horses. Am. J. Vet. Res. 2012, 73, 664–667. [Google Scholar] [CrossRef]
- Mac Allister, C.G.; Morgan, S.J.; Borne, A.T.; Pollet, R.A. Comparison of adverse effects of phenylbutazone, flunixin meglumine, and ketoprofen in horses. JAVMA 1993, 202, 71–77. [Google Scholar] [CrossRef] [PubMed]
- FDA. U.S. Food and Drug Administration. Transdermal Drug. Available online: https://www.fda.gov/animal-veterinary (accessed on 18 November 2022).
- Tyler, R.D.; Cowell, R.L.; Clinkenbeard, K.D.; MacAllister, C.G. Hematologic values in horse and interpretation of hematologic data. Vet. Clin. N. Am. Equine Pract. 1987, 3, 461–484. [Google Scholar] [CrossRef]
- Boelsterli, U.A. Diclofenac-induced liver injury: A paradigm of idiosyncratic drug toxicity. Toxicol. Appl. Pharmacol. 2003, 192, 307–322. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.D.; Brater, D.C. Renal toxicity of the nonsteroidal anti-inflammatory drugs. Annu. Rev. Pharmacol. Toxicol. 1993, 33, 435–465. [Google Scholar] [CrossRef] [PubMed]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflamatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020, 180, 114–147. [Google Scholar] [CrossRef] [PubMed]
Endpoints | Before | During Treatment | After | Reference | ||||
---|---|---|---|---|---|---|---|---|
D0 | D10 | D20 | D30 | D40 | D55 | D70 | ||
Erythrocyte (1012/L) | 8.71 (±3.31) | 8.11 (±0.32) | 8.32 (±0.40) | 7.75 (±0.34) | 7.11 * (±0.39) | 7.17 * (±0.26) | 8.14 (±0.36) | 6.5 to 12.5 |
Below | 0% (0/7) | 0% (0/7) | 0% (0/7) | 14% (1/7) | 14% (1/7) | 14% (1/7) | 14% (1/7) | |
Within | 100% (7/7) | 100% (7/7) | 100% (7/7) | 86% (6/7) | 86% (6/7) | 86% (6/7) | 86% (6/7) | |
Above | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | |
Hemoglobin (g/dL) | 13.87 (±0.45) | 13.06 (±0.38) | 13.44 (±0.63) | 12.07 * (±0.47) | 11.53 * (±0.61) | 11.74 * (±0.37) | 13.66 (±0.54) | 11 to 18 |
Below | 0% (0/7) | 0% (0/7) | 0% (0/7) | 29% (2/7) | 43% (3/7) | 29% (2/7) | 0% (0/7) | |
Within | 100% (7/7) | 100% (7/7) | 100% (7/7) | 71% (5/7) | 57% (4/7) | 71% (5/7) | 100% (7/7) | |
Above | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | |
PCV (%) | 41.43 (±1.63) | 38 (±1.04) | 39.14 (±1.83) | 35.71 * (±1.53) | 33.29 * (±1.84) | 34.14 * (±1.16) | 39.29 (±1.62) | 32 to 52 |
Below | 0% (0/7) | 0% (0/7) | 14% (1/7) | 29% (2/7) | 43% (3/7) | 29% (2/7) | 0% (0/7) | |
Within | 100% (7/7) | 100% (7/7) | 86% (6/7) | 71% (5/7) | 57% (4/7) | 71% (5/7) | 100% (7/7) | |
Above | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | |
MCV (f/L) | 46.86 (±1.1) | 46.43 (±1.02) | 46.86 (±1.12) | 46.57 (±1.15) | 47.29 (±1.14) | 47.71 (±1.19) | 48.43 (±1.15) | 39 to 50 |
Below | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (7/7) | 0% (7/7) | |
Within | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 86% (6/7) | 86% (6/7) | |
Above | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 14% (1/7) | 14% (1/7) | |
MCHC (g/dL) | 34.11 (±0.19) | 34.71 (±0.11) | 34.33 (±0.33) | 33.71 (±0.18) | 34.49 (±0.15) | 34.37 (±0.15) | 34.79 (±0.11) | 34 to 39 |
Below | -- | 0% (0/7) | 29% (2/7) | 86% (6/7) | 14% (1/7) | 29% (2/7) | 0% (0/7) | |
Within | -- | 100% (7/7) | 71% (5/7) | 14% (1/7) | 86% (6/7) | 71% (5/7) | 100% (7/7) | |
Above | -- | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | |
RDW (%) | 19.79 (±0.18) | 19.76 (±0.22) | 20.27 (±0.26) | 20.51 * (±0.19) | 20.64 * (±0.22) | 20.66 * (±0.22) | 20.37 (±0.15) | - |
Endpoints | Before | During Treatment | After | Reference | ||||
---|---|---|---|---|---|---|---|---|
D0 | D10 | D20 | D30 | D40 | D55 | D70 | ||
Band cells (µL) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 to 100 |
Below | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | |
Within | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | |
Above | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | |
Segmented (µL) | 4570.7 (±304.1) | 3736.9 (±298.8) | 4650.6 (±232.2) | 4093.4 (±328.5) | 3784.3 (±195.8) | 3549.1 (±183.3) | 3979.4 (±548.4) | 2700 to 6700 |
Below | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | |
Within | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | |
Above | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | |
Monocytes (µL) | 376 (164–546) | 370 (75–504) | 152 (89–780) | 156 (89–780) | 280 (134–608) | 268 (44–462) | 222 (66–576) | 0 to 800 |
Below | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | |
Within | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | |
Above | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | |
Lymphocytes (µL) | 2743.4 (±327.4) | 2838.7 (±387.2) | 2844.3 (±427.8) | 2710.9 (±263.2) | 2320.6 (±309.7) | 2560.7 (±272.2) | 2570 (±364.2) | 1500 to 5500 |
Below | 0% (0/7) | 14% (1/7) | 0% (0/7) | 0% (0/7) | 14% (1/7) | 14% (1/7) | 14% (1/7) | |
Within | 100% (7/7) | 86% (6/7) | 100% (7/7) | 100% (7/7) | 86% (6/7) | 86% (6/7) | 86% (6/7) | |
Above | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | |
Eosinophil (µL) | 204.3 (±40.3) | 169.3 (±44.2) | 264.7 (±94.7) | 342.3 (±85.9) | 223.4 (±31.8) | 195.7 (±46.9) | 269.9 (±91.4) | 0 to 900 |
Below | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | |
Within | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | |
Above | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | |
Basophil (µL) | 63 (0–188) | 0 (0–150) | 0 (0–0) | 0 (0–81) | 74 (0–198) | 0 (0–156) | 0 (0–150) | 0 to 200 |
Below | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | |
Within | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | |
Above | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | |
Total Leucocytes (µL) | 7942.9 (±353.8) | 7200 (±316.2) | 8014.3 (±516.1) | 7385.7 (±458.9) | 6714.3 * (±346.7) | 6614.3 * (±437.2) | 7100 (±537.6) | 5500 to 12,000 |
Below | 0% (0/7) | 0% (0/7) | 0% (0/7) | 14% (1/7) | 14% (1/7) | 14% (1/7) | 14% (1/7) | |
Within | 100% (7/7) | 100% (7/7) | 100% (7/7) | 86% (6/7) | 86% (6/7) | 86% (6/7) | 86% (6/7) | |
Above | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (7/7) | 0% (7/7) | 0% (7/7) | 0% (7/7) | |
Platelets (×109/L) | 214.6 (±9.5) | 221.9 (±14.3) | 244.1 (±21.0) | 228.1 (±12.5) | 269.1 (±18.2) | 216.4 (±13.5) | 219.3 (13.5) | 150 to 500 |
Below | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | |
Within | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | |
Above | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | |
Total plasmatic protein (g/dL) | 6.8 (6.6–7) | 6.7 (6.2–6.6) | 7 (6.6–7.8) | 6.2 (6–6.6) | 6 * (5.8–6.4) | 6 * (6–6.2) | 6.8 (6.6–7) | 6.0 to 8.0 |
Below | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 14% (1/7) | 0% (0/7) | |
Within | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 86% (6/7) | 100% (7/7) | |
Above | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (7/7) | 0% (0/7) | |
Fibrinogen (g/dL) | 0.2 (0.2–0.4) | 0.2 (0.2–0.4) | 0.2 (0.2–0.6) | 0.2 (0.2–0.6) | 0.2 (0.2–0.4) | 0.2 (0.2–0.2) | 0.2 (0.2–0.4) | 0.1 to 0.4 |
Below | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | |
Within | 86% (6/7) | 100% (7/7) | 86% (6/7) | 86% (6/7) | 86% (6/7) | 100% (7/7) | 100% (7/7) | |
Above | 14% (1/7) | 0% (0/7) | 14% (1/7) | 14% (1/7) | 14% (1/7) | 0% (0/7) | 0% (0/7) |
Endpoints | Before | During Treatment | After | Reference | ||||
---|---|---|---|---|---|---|---|---|
D0 | D10 | D20 | D30 | D40 | D55 | D70 | ||
AST (U/L) | 341.42 (±12.05) | 245.71 (±39.43) | 242 * (±23.66) | 222.42 * (±22.58) | 180.85 * (±20.37) | 292.71 * (±12.37) | 318.85 (±16.35) | 226 to 366 |
Below | 0% (0/7) | 29% (2/7) | 29% (2/7) | 29% (2/7) | 86% (6/7) | 0% (0/7) | 0% (0/7) | |
Within | 86% (6/7) | 57% (4/7) | 71% (5/7) | 71% (5/7) | 14% (1/7) | 100% (7/7) | 86% (6/7) | |
Above | 14% (1/7) | 14% (1/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 14% (1/7) | |
ALP (U/L) | 159.57 (±16.57) | 129.85 * (±11.33) | 120.28 * (±8.26) | 260.14 (±45.41) | 119.14 * (±21.51) | 118.14 * (±9.40) | 139.42 (±10.14) | 143 to 395 |
Below | 29% (2/7) | 57% (4/7) | 86% (6/7) | 14% (1/7) | 29% (2/7) | 86% (6/7) | 57% (4/7) | |
Within | 71% (5/7) | 43% (3/7) | 14% (1/7) | 86% (6/7) | 71% (5/7) | 14% (1/7) | 43% (3/7) | |
Above | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | |
GGT (U/L) | 15 (0) | 26.71 (±2.25) | 20.42 (±3.34) | 24.42 (±3.34) | 20.14 (±2.10) | 23.42 (±3.10) | 20.14 (2.10) | 4 to 44 |
Below | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | |
Within | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | |
Above | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | |
Creatinine (mg/dL) | 1.77 (±0.07) | 1.3 * (±0.05) | 1.28 * (±0.10) | 1.28 * (±0.16) | 1.2 * (±0.16) | 1.6 * (±0.07) | 1.67 * (±0.07) | 1.2 to 1.9 |
Below | 0% (0/7) | 29% (2/7) | 43% (3/7) | 43% (3/7) | 43% (3/7) | 0% (0/7) | 0% (0/7) | |
Within | 100% (7/7) | 71% (5/7) | 57% (4/7) | 57% (4/7) | 43% (3/7) | 100% (7/7) | 100% (7/7) | |
Above | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 14% (1/7) | 0% (0/7) | 0% (0/7) | |
Urea (mg/dL) | 34.14 (±2.38) | 37.42 (±1.73) | 42 (±3.47) | 32.42 (±2.38) | 31.14 (±3.02) | 32.14 (±1.20) | 34 (±1.32) | 21 to 51 |
Below | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | |
Within | 100% (7/7) | 100% (7/7) | 86% (6/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | 100% (7/7) | |
Above | 0% (0/7) | 0% (0/7) | 14% (1/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) | 0% (0/7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ignácio, F.S.; Garcia, L.V.; de Souza, G.G.; Amatti, L.Z.; de Barros, L.D.; Bergfelt, D.R.; Camargo, G.S.; de Meira, C.; de Almeida, B.F.M. Hematological and Biochemical Effects Associated with Prolonged Administration of the NSAID Firocoxib in Adult Healthy Horses. Vet. Sci. 2024, 11, 256. https://doi.org/10.3390/vetsci11060256
Ignácio FS, Garcia LV, de Souza GG, Amatti LZ, de Barros LD, Bergfelt DR, Camargo GS, de Meira C, de Almeida BFM. Hematological and Biochemical Effects Associated with Prolonged Administration of the NSAID Firocoxib in Adult Healthy Horses. Veterinary Sciences. 2024; 11(6):256. https://doi.org/10.3390/vetsci11060256
Chicago/Turabian StyleIgnácio, Fernanda Saules, Luana Venâncio Garcia, Giovanna Gati de Souza, Lidiana Zanetti Amatti, Luiz Daniel de Barros, Don R. Bergfelt, Giovana Siqueira Camargo, Cezinande de Meira, and Breno Fernando Martins de Almeida. 2024. "Hematological and Biochemical Effects Associated with Prolonged Administration of the NSAID Firocoxib in Adult Healthy Horses" Veterinary Sciences 11, no. 6: 256. https://doi.org/10.3390/vetsci11060256
APA StyleIgnácio, F. S., Garcia, L. V., de Souza, G. G., Amatti, L. Z., de Barros, L. D., Bergfelt, D. R., Camargo, G. S., de Meira, C., & de Almeida, B. F. M. (2024). Hematological and Biochemical Effects Associated with Prolonged Administration of the NSAID Firocoxib in Adult Healthy Horses. Veterinary Sciences, 11(6), 256. https://doi.org/10.3390/vetsci11060256