Limited Clinical Efficacy with Potential Adverse Events in a Pilot Study of Autologous Adoptive Cell Therapy in Canine Oral Malignant Melanoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Enrollment
2.2. Autologous Cell Preparation
2.2.1. Generation of Lentiviral-Transduced NK-92/IL-15 Feeder Cell
2.2.2. Canine PBMC Collection and Infusion Cell Expansion
2.2.3. Phenotype Analysis of the Infusion Cells
2.2.4. Cytotoxicity Analysis of the Infusion Cells
2.3. Autologous Cell Transfusion (ACT) Therapy Protocol
2.4. Response and Adverse Event Evaluation
2.5. Survival and Statistical Analyses
3. Results
3.1. Patients’ Characteristics
3.2. Phenotype Analysis and Cytotoxicity Test of the Infusion Cells
3.3. Adoptive Cell Therapy and Adverse Events
3.4. Outcome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergman, P.J.; Selmic, L.E.; Kent, M.S. 20—Melanoma. In Withrow and MacEwen’s Small Animal Clinical Oncology, 6th ed.; Vail, D.M., Thamm, D.H., Liptak, J.M., Eds.; W.B. Saunders: St. Louis, MO, USA, 2020; pp. 367–381. [Google Scholar]
- Igase, M.; Nemoto, Y.; Itamoto, K.; Tani, K.; Nakaichi, M.; Sakurai, M.; Sakai, Y.; Noguchi, S.; Kato, M.; Tsukui, T.; et al. A pilot clinical study of the therapeutic antibody against canine PD-1 for advanced spontaneous cancers in dogs. Sci. Rep. 2020, 10, 18311. [Google Scholar] [CrossRef]
- Yoshimoto, S.; Chester, N.; Xiong, A.; Radaelli, E.; Wang, H.; Brillantes, M.; Gulendran, G.; Glassman, P.; Siegel, D.L.; Mason, N.J. Development and pharmacokinetic assessment of a fully canine anti-PD-1 monoclonal antibody for comparative translational research in dogs with spontaneous tumors. mAbs 2023, 15, 2287250. [Google Scholar] [CrossRef] [PubMed]
- Maekawa, N.; Konnai, S.; Nishimura, M.; Kagawa, Y.; Takagi, S.; Hosoya, K.; Ohta, H.; Kim, S.; Okagawa, T.; Izumi, Y.; et al. PD-L1 immunohistochemistry for canine cancers and clinical benefit of anti-PD-L1 antibody in dogs with pulmonary metastatic oral malignant melanoma. npj Precis. Oncol. 2021, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- Giacobino, D.; Camerino, M.; Riccardo, F.; Cavallo, F.; Tarone, L.; Martano, M.; Dentini, A.; Iussich, S.; Lardone, E.; Franci, P.; et al. Difference in outcome between curative intent vs marginal excision as a first treatment in dogs with oral malignant melanoma and the impact of adjuvant CSPG4-DNA electrovaccination: A retrospective study on 155 cases. Vet. Comp. Oncol. 2021, 19, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Brill, S.A.; Thamm, D.H. There and back again: Translating adoptive cell therapy to canine cancer and improving human treatment. Vet. Comp. Oncol. 2021, 19, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Bujak, J.K.; Pingwara, R.; Nelson, M.H.; Majchrzak, K. Adoptive cell transfer: New perspective treatment in veterinary oncology. Acta Vet. Scand. 2018, 60, 60. [Google Scholar] [CrossRef] [PubMed]
- Panjwani, M.K.; Smith, J.B.; Schutsky, K.; Gnanandarajah, J.; O’Connor, C.M.; Powell, D.J., Jr.; Mason, N.J. Feasibility and safety of RNA-transfected CD20-specific chimeric antigen receptor T cells in dogs with spontaneous B cell lymphoma. Mol. Ther. 2016, 24, 1602–1614. [Google Scholar] [CrossRef] [PubMed]
- Atherton, M.J.; Rotolo, A.; Haran, K.P.; Mason, N.J. Case Report: Clinical and serological hallmarks of cytokine release syndrome in a canine B cell lymphoma patient treated with autologous CAR-T cells. Front. Vet. Sci. 2022, 9, 824982. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, S.A.; Lotze, M.T.; Muul, L.M.; Leitman, S.; Chang, A.E.; Ettinghausen, S.E.; Matory, Y.L.; Skibber, J.M.; Shiloni, E.; Vetto, J.T.; et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med. 1985, 313, 1485–1492. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, S.A.; Packard, B.S.; Aebersold, P.M.; Solomon, D.; Topalian, S.L.; Toy, S.T.; Simon, P.; Lotze, M.T.; Yang, J.C.; Seipp, C.A.; et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N. Engl. J. Med. 1988, 319, 1676–1680. [Google Scholar] [CrossRef]
- Hoshino, Y.; Takagi, S.; Osaki, T.; Okumura, M.; Fujinaga, T. Phenotypic analysis and effects of sequential administration of activated canine lymphocytes on healthy beagles. J. Vet. Med. Sci. 2008, 70, 581–588. [Google Scholar] [CrossRef]
- Mie, K.; Shimada, T.; Akiyoshi, H.; Hayashi, A.; Ohashi, F. Change in peripheral blood lymphocyte count in dogs following adoptive immunotherapy using lymphokine-activated T killer cells combined with palliative tumor resection. Vet. Immunol. Immunopathol. 2016, 177, 58–63. [Google Scholar] [CrossRef]
- O’Connor, C.M.; Sheppard, S.; Hartline, C.A.; Huls, H.; Johnson, M.; Palla, S.L.; Maiti, S.; Ma, W.; Davis, R.E.; Craig, S.; et al. Adoptive T-cell therapy improves treatment of canine non-Hodgkin lymphoma post chemotherapy. Sci. Rep. 2012, 2, 249. [Google Scholar] [CrossRef]
- Gareau, A.; Ripoll, A.Z.; Suter, S.E. A Retrospective Analysis: Autologous peripheral blood hematopoietic stem cell transplant combined with adoptive T-cell therapy for the treatment of high-grade B-cell lymphoma in ten dogs. Front. Vet. Sci. 2021, 8, 787373. [Google Scholar] [CrossRef]
- Flesner, B.K.; Wood, G.W.; Gayheart-Walsten, P.; Sonderegger, F.L.; Henry, C.J.; Tate, D.J.; Bechtel, S.M.; Donnelly, L.L.; Johnson, G.C.; Kim, D.Y.; et al. Autologous cancer cell vaccination, adoptive T-cell transfer, and interleukin-2 administration results in long-term survival for companion dogs with osteosarcoma. J. Vet. Intern. Med. 2020, 34, 2056–2067. [Google Scholar] [CrossRef]
- Laskowski, T.J.; Biederstadt, A.; Rezvani, K. Natural killer cells in antitumour adoptive cell immunotherapy. Nat. Rev. Cancer 2022, 22, 557–575. [Google Scholar] [CrossRef]
- Oh, S.; Lee, J.H.; Kwack, K.; Choi, S.W. Natural killer cell therapy: A new treatment paradigm for solid tumors. Cancers 2019, 11, 1534. [Google Scholar] [CrossRef]
- Zhang, Y.; Schmidt-Wolf, I.G.H. Ten-year update of the international registry on cytokine-induced killer cells in cancer immunotherapy. J. Cell. Physiol. 2020, 235, 9291–9303. [Google Scholar] [CrossRef]
- Nahi, H.; Chrobok, M.; Meinke, S.; Gran, C.; Marquardt, N.; Afram, G.; Sutlu, T.; Gilljam, M.; Stellan, B.; Wagner, A.K.; et al. Autologous NK cells as consolidation therapy following stem cell transplantation in multiple myeloma. Cell Rep. Med. 2022, 3, 100508. [Google Scholar] [CrossRef]
- Canter, R.J.; Grossenbacher, S.K.; Foltz, J.A.; Sturgill, I.R.; Park, J.S.; Luna, J.I.; Kent, M.S.; Culp, W.T.N.; Chen, M.; Modiano, J.F.; et al. Radiotherapy enhances natural killer cell cytotoxicity and localization in pre-clinical canine sarcomas and first-in-dog clinical trial. J. Immunother. Cancer 2017, 5, 98. [Google Scholar] [CrossRef]
- Judge, S.J.; Yanagisawa, M.; Sturgill, I.R.; Bateni, S.B.; Gingrich, A.A.; Foltz, J.A.; Lee, D.A.; Modiano, J.F.; Monjazeb, A.M.; Culp, W.T.N.; et al. Blood and tissue biomarker analysis in dogs with osteosarcoma treated with palliative radiation and intra-tumoral autologous natural killer cell transfer. PLoS ONE 2020, 15, e0224775. [Google Scholar] [CrossRef]
- Maeta, N.; Tamura, K.; Takemitsu, H.; Miyabe, M. Lymphokine-activated killer cell transplantation after anti-cancer treatment in two aged cats. Open Vet. J. 2019, 9, 147–150. [Google Scholar] [CrossRef]
- Shiozawa, M.; Chang, C.-H.; Huang, Y.-C.; Chen, Y.-C.; Chi, M.-S.; Hao, H.-C.; Chang, Y.C.; Takeda, S.; Chi, K.H.; Wang, Y.S. Pharmacologically upregulated carcinoembryonic antigen-expression enhances the cytolytic activity of genetically-modified chimeric antigen receptor NK-92MI against colorectal cancer cells. BMC Immunol. 2018, 19, 27. [Google Scholar] [CrossRef]
- Nguyen, S.M.; Thamm, D.H.; Vail, D.M.; London, C.A. Response evaluation criteria for solid tumours in dogs (v1.0): A Veterinary Cooperative Oncology Group (VCOG) consensus document. Vet. Comp. Oncol. 2015, 13, 176–183. [Google Scholar] [CrossRef]
- Veterinary Cooperative Oncology Group. Common terminology criteria for adverse events (VCOG-CTCAE) following chemotherapy or biological antineoplastic therapy in dogs and cats v1.1. Vet. Comp. Oncol. 2016, 14, 417–446. [Google Scholar] [CrossRef]
- LeBlanc, A.K.; Atherton, M.; Bentley, R.T.; Boudreau, C.E.; Burton, J.H.; Curran, K.M.; Dow, S.; Giuffrida, M.A.; Kellihan, H.B.; Mason, N.J.; et al. Veterinary Cooperative Oncology Group-Common Terminology Criteria for Adverse Events (VCOG-CTCAE v2) following investigational therapy in dogs and cats. Vet. Comp. Oncol. 2021, 19, 311–352. [Google Scholar] [CrossRef]
- Camerino, M.; Giacobino, D.; Manassero, L.; Iussich, S.; Riccardo, F.; Cavallo, F.; Tarone, L.; Olimpo, M.; Lardone, E.; Martano, M.; et al. Prognostic impact of bone invasion in canine oral malignant melanoma treated by surgery and anti-CSPG4 vaccination: A retrospective study on 68 cases (2010–2020). Vet. Comp. Oncol. 2022, 20, 189–197. [Google Scholar] [CrossRef]
- Baja, A.J.; Kelsey, K.L.; Ruslander, D.M.; Gieger, T.L.; Nolan, M.W. A retrospective study of 101 dogs with oral melanoma treated with a weekly or biweekly 6 Gy × 6 radiotherapy protocol. Vet. Comp. Oncol. 2022, 20, 623–631. [Google Scholar] [CrossRef]
- Smedley, R.C.; Bongiovanni, L.; Bacmeister, C.; Clifford, C.A.; Christensen, N.; Dreyfus, J.M.; Gary, J.M.; Pavuk, A.; Rowland, P.H.; Swanson, C.; et al. Diagnosis and histopathologic prognostication of canine melanocytic neoplasms: A consensus of the Oncology-Pathology Working Group. Vet. Comp. Oncol. 2022, 20, 739–751. [Google Scholar] [CrossRef]
- Gingrich, A.A.; Reiter, T.E.; Judge, S.J.; York, D.; Yanagisawa, M.; Razmara, A.; Sturgill, I.; Basmaci, U.N.; Brady, R.V.; Stoffel, K.; et al. Comparative immunogenomics of canine natural killer cells as immunotherapy target. Front. Immunol. 2021, 12, 670309. [Google Scholar] [CrossRef]
- Dank, G.; Rassnick, K.M.; Sokolovsky, Y.; Garrett, L.D.; Post, G.S.; Kitchell, B.E.; Sellon, R.K.; Kleiter, M.; Northrup, N.; Segev, G. Use of adjuvant carboplatin for treatment of dogs with oral malignant melanoma following surgical excision. Vet. Comp. Oncol. 2014, 12, 78–84. [Google Scholar] [CrossRef]
- Turek, M.; LaDue, T.; Looper, J.; Nagata, K.; Shiomitsu, K.; Keyerleber, M.; Buchholz, J.; Gieger, T.; Hetzel, S. Multimodality treatment including ONCEPT for canine oral melanoma: A retrospective analysis of 131 dogs. Vet. Radiol. Ultrasound 2020, 61, 471–480. [Google Scholar] [CrossRef]
- Zhou, Y.; Husman, T.; Cen, X.; Tsao, T.; Brown, J.; Bajpai, A.; Li, M.; Zhou, K.; Yang, L. Interleukin 15 in cell-based cancer immunotherapy. Int. J. Mol. Sci. 2022, 23, 7311. [Google Scholar] [CrossRef]
- Chandran, S.S.; Somerville, R.P.T.; Yang, J.C.; Sherry, R.M.; Klebanoff, C.A.; Goff, S.L.; Wunderlich, J.R.; Danforth, D.N.; Zlott, D.; Paria, B.C.; et al. Treatment of metastatic uveal melanoma with adoptive transfer of tumour-infiltrating lymphocytes: A single-centre, two-stage, single-arm, phase 2 study. Lancet Oncol. 2017, 18, 792–802. [Google Scholar] [CrossRef]
- Michael, H.T.; Ito, D.; McCullar, V.; Zhang, B.; Miller, J.S.; Modiano, J.F. Isolation and characterization of canine natural killer cells. Vet. Immunol. Immunopathol. 2013, 155, 211–217. [Google Scholar] [CrossRef]
- Funk, J.; Schmitz, G.; Failing, K.; Burkhardt, E. Natural killer (NK) and lymphokine-activated killer (LAK) cell functions from healthy dogs and 29 dogs with a variety of spontaneous neoplasms. Cancer Immunol. Immunother. 2005, 54, 87–92. [Google Scholar] [CrossRef]
- Rotte, A.; Frigault, M.J.; Ansari, A.; Gliner, B.; Heery, C.; Shah, B. Dose-response correlation for CAR-T cells: A systematic review of clinical studies. J. Immunother. Cancer 2022, 10, e005678. [Google Scholar] [CrossRef]
- Meng, Y.; Yu, Z.; Wu, Y.; Du, T.; Chen, S.; Meng, F.; Su, N.; Ma, Y.; Li, X.; Sun, S.; et al. Cell-based immunotherapy with cytokine-induced killer (CIK) cells: From preparation and testing to clinical application. Hum. Vaccin. Immunother. 2017, 13, 1379–1387. [Google Scholar] [CrossRef]
- Fajgenbaum, D.C.; June, C.H. Cytokine Storm. N. Engl. J. Med. 2020, 383, 2255–2273. [Google Scholar] [CrossRef]
- Noguchi, S.; Yagi, K.; Okamoto, N.; Wada, Y.; Tanaka, T. Prognostic factors for the efficiency of radiation therapy in dogs with oral melanoma: A pilot study of hypoxia in intraosseous lesions. Vet. Sci. 2022, 10, 4. [Google Scholar] [CrossRef]
- Gingrich, A.A.; Modiano, J.F.; Canter, R.J. Characterization and potential applications of dog natural killer cells in cancer immunotherapy. J. Clin. Med. 2019, 8, 1802. [Google Scholar] [CrossRef]
- Guo, Q.; Zhu, D.; Bu, X.; Wei, X.; Li, C.; Gao, D.; Wei, X.; Ma, X.; Zhao, P. Efficient killing of radioresistant breast cancer cells by cytokine-induced killer cells. Tumor Biol. 2017, 39, 1010428317695961. [Google Scholar] [CrossRef]
- Chung, M.J.; Park, J.Y.; Bang, S.; Park, S.W.; Song, S.Y. Phase II clinical trial of ex vivo-expanded cytokine-induced killer cells therapy in advanced pancreatic cancer. Cancer Immunol. Immunother. 2014, 63, 939–946. [Google Scholar] [CrossRef]
- Li, J.J.; Gu, M.F.; Pan, K.; Liu, L.Z.; Zhang, H.; Shen, W.X.; Xia, J.-C. Autologous cytokine-induced killer cell transfusion in combination with gemcitabine plus cisplatin regimen chemotherapy for metastatic nasopharyngeal carcinoma. J. Immunother. 2012, 35, 189–195. [Google Scholar] [CrossRef]
- Pan, Y.; Chiu, Y.H.; Chiu, S.C.; Cho, D.Y.; Lee, L.M.; Wen, Y.C.; Jacqueline, W.-P.; Hsiao, C.-H.; Shih, P.-H. Cytokine-induced killer T cells enhance the cytotoxicity against carboplatin-resistant ovarian cancer cells. Anticancer. Res. 2020, 40, 3865–3872. [Google Scholar] [CrossRef]
Patient No. | Breed | Age (y/o) | Sex | BW (kg) | Tumor Diagnosis | Oral Mass Location | Tumor Size 1 | Clinical Stage | Regional LN | Mitotic Count/10HPF | Bone Invasion |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Spitz | 15 | FS | 6.7 | AMM | Lt. mandible | 1.6 cm | I | Non-meta | 24 | No |
2 | Mixed | 8 | MC | 24 | MM | Tongue | 6 cm | IV | Unknown | 18 | No |
3 | Mixed | 13 | MC | 21 | MM | Rt. maxilla w/nasal cavity | 4.8 cm | IV | Unknown | 5 | Yes |
4 | Miniature poodle | 16 | MC | 5 | MM | Lt. mandible | 3 cm | III | Metastatic | 4 | Unknown |
5 | Pug | 14 | MC | 8 | MM | Rt. mandible | 4.3 cm | III | Reactive | 6 | Yes |
6 | Miniature poodle | 13 | FS | 5.8 | MM | Lt. caudal maxilla | 2 cm | III | Reactive | 8 | Yes |
7 | Shi Tzu | 14 | MC | 5.5 | MM | Lt. mandible | 1 cm | IV | Metastatic | 37 | Yes |
8 | Miniature poodle | 12 | MC | 7.8 | MM | Lt. mandible | 1 cm | I | Non-meta | 19 | Unknown |
9 | Mixed | 14 | FS | 15 | AMM | Lt. mandible | 4 cm | III | Reactive | 4 | Unknown |
10 | Mixed | 14 | MC | 18 | MM | Maxilla, hard/soft palate | 2.5 cm | II | Non-meta | 23 | No |
Patient No. | Surgery of Oral Mass | Other Therapies before ACT | Residue Tumor | ACT Doses | Best Response | Side Effects | PFI (Days) and Progression Site | OST (Days) and Cause of Death |
---|---|---|---|---|---|---|---|---|
1 | Marginal excision | No | Microscopic | 4 | PF | No | 70 days from ACT to death | 116; Cardiac disease |
2 | Tongue mass debulking | No | Macroscopic/Lung | 6 | SD 1 | Grade 2 elevated ALT | 31; pulmonary | 85; Lung metastasis |
3 | Biopsy | No | Macroscopic/Oral and lung | 6 | SD | No | 44; pulmonary | 135; Primary tumor and lung metastasis |
4 | Biopsy | No | Macroscopic | 4 | SD | Grade 1 hyporexia | 165; oral | 248; Pulmonary epithelial tumor |
5 | Debulking | No | Macroscopic 2 | 3 | PD | No | 7; oral | 113; Primary oral tumor |
6 | Partial debulking 3 | Yes | Macroscopic | 4 | PD | Grade 1 hyporexia | 8; oral | 299; Primary oral tumor |
7 | Debulking | Yes | Macroscopic/Lung | 4 | PD | Grade 1 hyporexia, susp. fever after 3rd dose? | 49; pulmonary | 391; Lung metastasis |
8 | Marginal excision | No | Macroscopic 2 | 4 | SD | Susp. hypersensitivity, 4th dose | 77; oral | 325; intra-RA mass, not sure if tumor related |
9 | Debulking | No | Microscopic | 1 | NA | Grade 1 hypersensitivity, 1st dose | NA | 272; Primary oral tumor |
10 | Debulking | No | Microscopic | 4 | PF | Susp. anaphylactic shock, 4th dose | 170; intracranial | 279; Multiple intracranial and lung masses |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.-Y.; Chi, K.-H.; Liao, A.T.; Lee, J.-J. Limited Clinical Efficacy with Potential Adverse Events in a Pilot Study of Autologous Adoptive Cell Therapy in Canine Oral Malignant Melanoma. Vet. Sci. 2024, 11, 150. https://doi.org/10.3390/vetsci11040150
Xia Y-Y, Chi K-H, Liao AT, Lee J-J. Limited Clinical Efficacy with Potential Adverse Events in a Pilot Study of Autologous Adoptive Cell Therapy in Canine Oral Malignant Melanoma. Veterinary Sciences. 2024; 11(4):150. https://doi.org/10.3390/vetsci11040150
Chicago/Turabian StyleXia, Yuan-Yuan, Kwan-Hwa Chi, Albert Taiching Liao, and Jih-Jong Lee. 2024. "Limited Clinical Efficacy with Potential Adverse Events in a Pilot Study of Autologous Adoptive Cell Therapy in Canine Oral Malignant Melanoma" Veterinary Sciences 11, no. 4: 150. https://doi.org/10.3390/vetsci11040150
APA StyleXia, Y. -Y., Chi, K. -H., Liao, A. T., & Lee, J. -J. (2024). Limited Clinical Efficacy with Potential Adverse Events in a Pilot Study of Autologous Adoptive Cell Therapy in Canine Oral Malignant Melanoma. Veterinary Sciences, 11(4), 150. https://doi.org/10.3390/vetsci11040150