Could Exposure to Glyphosate Pose a Risk to the Survival of Wild Animals? A Case Study on the Field Lizard Podarcis siculus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Morphological and Functional Organization of P. siculus Gonads
3. Morphological and Functional Organization of P. siculus Liver
4. Treatments Used in Studies on the Effects of Glyphosate on P. siculus
5. Effects of Glyphosate in P. siculus Females
6. Effects of Glyphosate in P. siculus Males
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malik, J.; Barry, G.; Kishore, G. The herbicide glyphosate. Biofactors 1989, 2, 17–25. [Google Scholar] [PubMed]
- Duke, S.O. The history and current status of glyphosate. Pest. Manag. Sci. 2018, 74, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Duke, S.O. Glyphosate: Uses Other Than in Glyphosate-Resistant Crops, Mode of Action, Degradation in Plants, and Effects on Non-target Plants and Agricultural Microbes. Rev. Environ. Contam. Toxicol. 2021, 255, 1–65. [Google Scholar] [CrossRef]
- Mensah, P.K.; Palmer, C.G.; Odume, O.N. Ecotoxicology of Glyphosate and Glyphosate-Based Herbicides—Toxicity to Wildlife and Humans. In Toxicity and Hazard of Agrochemicals; InTech: London, UK, 2015. [Google Scholar] [CrossRef]
- Soares, D.; Silva, L.; Duarte, S.; Pena, A.; Pereira, A. Glyphosate Use, Toxicity and Occurrence in Food. Foods 2021, 12, 2785. [Google Scholar] [CrossRef]
- Peillex, C.; Pelletier, M. The impact and toxicity of Glyphosate and Glyphosate-based herbicides on health and immunity. J. Immunotoxicol. 2020, 17, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.H.; Ogbourne, S.M. Glyphosate: Environmental contamination, toxicity and potential risks to human health via food contamination. Environ. Sci. Pollut. Res. Int. 2016, 23, 18988–19001. [Google Scholar] [CrossRef]
- Martins-Gomes, C.; Silva, T.L.; Andreani, T.; Silva, A.M. Glyphosate vs. Glyphosate-Based Herbicides Exposure: A Review on Their Toxicity. J. Xenobiot. 2022, 12, 3. [Google Scholar] [CrossRef]
- Costas-Ferreira, C.; Durán, R.; Faro, L.R.F. Toxic Effects of Glyphosate on the Nervous System: A Systematic Review. Int. J. Mol. Sci. 2022, 21, 4605. [Google Scholar] [CrossRef]
- Marino, M.; Mele, E.; Viggiano, A.; Nori, S.L.; Meccariello, R.; Santoro, A. Pleiotropic Outcomes of Glyphosate Exposure: From Organ Damage to Effects on Inflammation, Cancer, Reproduction and Development. Int. J. Mol. Sci. 2021, 22, 12606. [Google Scholar] [CrossRef]
- Borggaard, O.K.; Gimsing, A.L. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: A review. Pest. Manag. Sci. 2008, 64, 441–456. [Google Scholar] [CrossRef]
- Tsui, M.T.K.; Chu, L.M. Aquatic toxicity of glyphosate-based formulations: Comparison between different organisms and the effects of environmental factors. Chemosphere 2003, 52, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Pérez, G.L.; Vera, M.S.; Miranda, L. Effects of Herbicide Glyphosate and Glyphosate-Based Formulations on Aquatic Ecosystems. In Herbicides and Environment; Kortekamp, A., Ed.; InTechOpen: London, UK, 2011. [Google Scholar] [CrossRef]
- Annett, R.; Habibi, H.R.; Hontela, A. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J. Appl. Toxicol. 2014, 34, 458–479. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.R.; Moraes, J.S.; Martins, C.M.G. Effects of the herbicide Glyphosate on fish from embryos to adults: A review addressing behavior patterns and mechanisms behind them. Aquat. Toxicol. 2022, 251, 106281. [Google Scholar] [CrossRef] [PubMed]
- Wagner, N.; Reichenbecher, W.; Teichmann, H.; Tappeser, B.; Lötters, S. Questions concerning the potential impact of glyphosate-based herbicides on amphibians. Environ. Toxicol. Chem. 2013, 32, 1688–1700. [Google Scholar] [CrossRef]
- Kenko, D.B.N.; Ngameni, N.T.; Awo, M.E.; Njikam, N.A.; Dzemo, W.D. Does pesticide use in agriculture present a risk to the terrestrial biota? Sci. Total Environ. 2023, 861, 160715. [Google Scholar] [CrossRef]
- Klatyik, S.; Simon, G.; Olah, M.; Mesnage, R.; Antoniou, M.N.; Zaller, J.G.; Szekacs, A. Terrestrial ecotoxicity of glyphosate, its formulations, and co-formulants: Evidence from 2010–2023. Environ. Sci. Eur. 2023, 35, 51. [Google Scholar] [CrossRef]
- Niemeyer, J.C.; De Santo, F.B.; Guerra, N.; Ricardo Filho, A.M.; Pech, T.M. Do recommended doses of glyphosate-based herbicides affect soil invertebrates? Field and laboratory screening tests to risk assessment. Chemosphere 2018, 198, 154–160. [Google Scholar] [CrossRef]
- Tarazona, D.; Tarazona, G.; Tarazona, J.V. A Simplified Population-Level Landscape Model Identifying Ecological Risk Drivers of Pesticide Applications, Part One: Case Study for Large Herbivorous Mammals. Int. J. Environ. Res. Public. Health 2021, 18, 7720. [Google Scholar] [CrossRef]
- Liebing, J.; Völker, I.; Curland, N.; Wohlsein, P.; Baumgärtner, W.; Braune, S.; Runge, M.; Moss, A.; Rautenschlein, S.; Jung, A.; et al. Health status of free-ranging ring-necked pheasant chicks (Phasianus colchicus) in North-Western Germany. PLoS ONE 2020, 15, 0234044. [Google Scholar] [CrossRef]
- Milesi, M.M.; Lorenz, V.; Durando, M.; Rossetti, M.F.; Varayoud, J. Glyphosate Herbicide: Reproductive Outcomes and Multigenerational Effects. Front. Endocrinol. 2021, 12, 672532. [Google Scholar] [CrossRef]
- Bukowska, B.; Woźniak, E.; Sicińska, P.; Mokra, K.; Michałowicz, J. Glyphosate disturbs various epigenetic processes in vitro and in vivo—A mini review. Sci. Total Environ. 2022, 851, 158259. [Google Scholar] [CrossRef] [PubMed]
- Redig, P.T.; Arent, L.R. Raptor toxicology. Vet. Clin. North. Am. Exot. Anim. Pract. 2008, 11, 261–282. [Google Scholar] [CrossRef]
- Moreau, J.; Rabdeau, J.; Badenhausser, I.; Giraudeau, M.; Sepp, T.; Crépin, M.; Gaffard, A.; Bretagnolle, V.; Monceau, K. Pesticide impacts on avian species with special reference to farmland birds: A review. Environ. Monit. Assess. 2022, 194, 790. [Google Scholar] [CrossRef]
- Liwszyc, G.; Larramendy, M. Bird and Reptile Species in Environmental Risk Assessment Strategies; Royal Society of Chemistry: Cambridge, UK, 2023; 243p. [Google Scholar] [CrossRef]
- Verderame, M.; Limatola, E.; Scudiero, R. The Terrestrial Lizard Podarcis sicula as Experimental Model in Emerging Pollutants Evaluation. In Ecotoxicology and Genotoxicology: Non-Traditional Terrestrial Models; Larramendy, M.L., Ed.; Royal Society of Chemistry: Cambridge, UK, 2017; pp. 252–268. [Google Scholar] [CrossRef]
- Verderame, M.; Scudiero, R. Health status of the lizard Podarcis siculus (Rafinesque-Schmaltz, 1810) subject to different anthropogenic pressures. CR Biol. 2019, 342, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Scudiero, R.; Motta, C.M.; Simoniello, P. Impact of environmental stressors on gene expression in the embryo of the Italian wall lizards. Appl. Sci. 2021, 11, 4723. [Google Scholar] [CrossRef]
- Simbula, G.; Moltedo, G.; Catalano, B.; Martuccio, G.; Sebbio, C.; Onorati, F.; Stellati, L.; Bissattini, A.M.; Vignoli, L. Biological responses in pesticide exposed lizards (Podarcis siculus). Ecotoxicology 2021, 30, 1017–1028. [Google Scholar] [CrossRef] [PubMed]
- Hoang, A.Q.; Tu, M.B.; Takahashi, S.; Kunisue, T.; Tanabe, S. Snakes as bimonitors of environmental pollution: A review on organic contaminants. Sci. Total Environ. 2021, 770, 144672. [Google Scholar] [CrossRef]
- Rosati, L.; Chianese, T.; Simoniello, P.; Motta, C.M.; Scudiero, R. The Italian wall lizard Podarcis siculus as a biological model for research in male reproductive toxicology. Int. J. Mol. Sci. 2022, 23, 15220. [Google Scholar] [CrossRef]
- Moltedo, G.; Catalano, B.; Martuccio, G.; Sesta, G.; Romanelli, G.; Lauria, A.; Berducci, M.T.; Parravano, R.; Maggi, C.; Simbula, G.; et al. Processes involved in biochemical response to pesticides by lizard Podarcis siculus (Rafinesque-Schmaltz, 1810) -A field study. Toxicol. Appl. Pharmacol. 2023, 467, 116491. [Google Scholar] [CrossRef]
- Golden, N.H.; Rattner, B.A. Ranking terrestrial vertebrate species for utility in biomonitoring and vulnerability to environmental contaminants. Rev. Environ. Contam. Toxicol. 2003, 176, 67–136. [Google Scholar] [CrossRef]
- Tavalieri, Y.E.; Galoppo, G.H.; Canesini, G.; Luque, E.H.; Muñoz-de-Toro, M.M. Effects of agricultural pesticides on the reproductive system of aquatic wildlife species, with crocodilians as sentinel species. Mol. Cell Endocrinol. 2020, 518, 110918. [Google Scholar] [CrossRef] [PubMed]
- Haskins, D.L.; Gogal, R.M.; Tuberville, T.D. Snakes as novel biomarkers of mercury contamination: A review. Rev. Environ. Contam. Toxicol. 2020, 249, 133–152. [Google Scholar] [PubMed]
- Simbula, G.; Bissattini, A.M.; Vignoli, L. Linking agricultural practices to lizard trophic behaviour: An ecological approach. Sci. Total Environ. 2022, 830, 154822. [Google Scholar] [CrossRef] [PubMed]
- Mosconi, G.; Carnevali, O.; Polzonetti, A.M. Ovarian development and sex steroid hormones during the reproductive cycle of Podarcis sicula Raf. Gynecol. Endocrinol. 1991, 5, 7–13. [Google Scholar] [CrossRef]
- Simoniello, P.; Motta, C.M.; Scudiero, R.; Trinchella, F.; Filosa, S. Cadmium-induced teratogenicity in lizard embryos: Correlation with metallothionein gene expression. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2011, 153, 119–127. [Google Scholar] [CrossRef]
- Simoniello, P.; Trinchella, F.; Filosa, S.; Scudiero, R.; Magnani, D.; Theil, T.; Motta, C.M. Cadmium contaminated soil affects retinogenesis in lizard embryos. J. Exp. Zool. A Ecol. Genet. Physiol. 2014, 321, 207–219. [Google Scholar] [CrossRef]
- Tramunt, B.; Montagner, A.; Tan, N.S.; Gourdy, P.; Rémignon, H.; Wahli, W. Roles of Estrogens in the Healthy and Diseased Oviparous Vertebrate Liver. Metabolites 2021, 11, 502. [Google Scholar] [CrossRef]
- Milani, L.; Maurizii, M.G. Vasa expression in spermatogenic cells during the reproductive cycle phases of Podarcis sicula (Reptilia, Lacertidae). J. Exp. Zool. B Mol. Dev. Evol. 2015, 324, 424–434. [Google Scholar] [CrossRef]
- Filosa, S. Biological and cytological aspects of the ovarian cycle in Lacerta sicula Raf. Mon. Zool. Ital. 1973, 7, 151–165. [Google Scholar] [CrossRef]
- Andreuccetti, P.; Taddei, C.; Filosa, S. Intercellular bridges between follicle cells and oocyte during the differentiation of follicular epithelium in Lacerta sicula Raf. J. Cell Sci. 1978, 33, 341–350. [Google Scholar] [CrossRef]
- Motta, C.M.; Scanderbeg, M.C.; Filosa, S.; Andreuccetti, P. Role of pyriform cells during the growth of oocytes in the lizard Podarcis sicula. J. Exp. Zool. 1995, 273, 247–256. [Google Scholar] [CrossRef]
- Motta, C.M.; Tammaro, S.; Di Lorenzo, M.; Panzuto, R.; Verderame, M.; Migliaccio, V.; Simoniello, P. Spring and Fall recrudescence in Podarcis siculus ovaries: A role for progesterone. Gen. Comp. Endocrinol. 2020, 290, 113393. [Google Scholar] [CrossRef] [PubMed]
- Della Ragione, F.; Comitato, R.; Angelini, F.; D’Esposito, M.; Cardone, A. Molecular cloning and characterization of the clock gene period2 in the testis of lizard Podarcis sicula and its expression during seasonal reproductive cycle. Gene 2005, 363, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Triger, D.R. Physiological functions of the liver. Br. J. Hosp. Med. 1979, 22, 424–432. [Google Scholar]
- Trefts, E.; Gannon, M.; Wasserman, D.H. The liver. Curr. Biol. 2017, 27, R1147–R1151. [Google Scholar] [CrossRef]
- Roy, A.K.; Chatterjee, B. Sexual dimorphism in the liver. Annu. Rev. Physiol. 1983, 45, 37–50. [Google Scholar] [CrossRef]
- Buono, S.; Cristiano, L.; D’Angelo, B.; Cimini, A.; Putti, R. PPARalpha mediates the effects of the pesticide methyl thiophanate on liver of the lizard Podarcis sicula. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2007, 145, 306–314. [Google Scholar] [CrossRef]
- Scalia, M.; Geremia, E.; Corsaro, C.; Santoro, C.; Sciuto, S.; Sichel, G. The extracutaneous pigmentary system: Evidence for melanosynthesis in Amphibia and Reptilia liver. Comp. Biochem. Physiol. 1988, 89B, 715–717. [Google Scholar] [CrossRef]
- Verderame, M.; Scudiero, R. How glyphosate impairs liver condition in the field lizard Podarcis siculus (Rafinesque-Schmaltz, 1810): Histological and molecular evidence. Biomed. Res. Int. 2019, 2019, 4746283. [Google Scholar] [CrossRef]
- Verderame, M.; Chianese, T.; Rosati, L.; Scudiero, R. Molecular and histological effects of Glyphosate on testicular tissue of the lizard Podarcis siculus. Int. J. Mol. Sci. 2022, 23, 4850. [Google Scholar] [CrossRef]
- Rosati, L.; Chianese, T.; De Gregorio, V.; Verderame, M.; Raggio, A.; Motta, C.M.; Scudiero, R. Glyphosate Interference in Follicular Organization in the Wall Lizard Podarcis siculus. Int. J. Mol. Sci. 2023, 24, 7363. [Google Scholar] [CrossRef] [PubMed]
- Verderame, M.; Chianese, T.; Scudiero, R. Morphological and Molecular Evidence of Active Principle Glyphosate Toxicity on the Liver of the Field Lizard Podarcis siculus. In Bird and Reptile Species in Environmental Risk Assessment Strategies; Liwszyc, G., Larramendy, M.L., Eds.; Royal Society of Chemistry: Cambridge, UK, 2023; pp. 151–168. [Google Scholar]
- EFSA Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA J. 2015, 13, 4302.
- Shapiro, D. Steroid hormone regulation of vitellogenin gene expression. CRC Crit. Rev. Biochem. 1982, 12, 187–203. [Google Scholar] [CrossRef] [PubMed]
- Flouriot, G.; Pakdel, F.; Valotaire, Y. Transcriptional and post-transcriptional regulation of rainbow trout estrogen receptor and vitellogenin gene expression. Mol. Cell Endocrinol. 1996, 124, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Verderame, M.; Prisco, M.; Andreuccetti, P.; Aniello, F.; Limatola, E. Experimentally nonylphenol-polluted diet induces the expression of silent genes VTG and ERα in the liver of male lizard Podarcis sicula. Environ. Pollut. 2011, 159, 1101–1107. [Google Scholar] [CrossRef]
- Verderame, M.; Limatola, E. Molecular identification of estrogen receptors (ERapha and ERbeta) and their differential expression during VTG synthesis in the liver of lizard Podarcis sicula. Gen. Comp. Endocrinol. 2010, 168, 231–238. [Google Scholar] [CrossRef]
- Place, A.R.; Lang, J.; Gavasso, S.; Jeyasuria, P. Expression of P450arom in Malaclemys terrapin and Chelydra serpentina: A tale of two sites. J. Exp. Zool. 2001, 290, 673–690. [Google Scholar] [CrossRef]
- Rosati, L.; Falvo, S.; Chieffi Baccari, G.; Santillo, A.; Di Fiore, M.M. The Aromatase-Estrogen System in the Testes of Non-Mammalian Vertebrates. Animals 2021, 11, 1763. [Google Scholar] [CrossRef]
- Moinfar, Z.; Dambach, H.; Schoenebeck, B.; Förster, E.; Prochnow, N.; Faustmann, P.M. Estradiol Receptors Regulate Differential Connexin 43 Expression in F98 and C6 Glioma Cell Lines. PLoS ONE 2016, 11, 0150007. [Google Scholar] [CrossRef]
- Zirkin, B.R.; Papadopoulos, V. Leydig cells: Formation, function, and regulation. Biol. Reprod. 2018, 99, 101–111. [Google Scholar] [CrossRef]
- Di Lorenzo, M.; Mileo, A.; Laforgia, V.; De Falco, M.; Rosati, L. Alkyphenol Exposure Alters Steroidogenesis in Male Lizard Podarcis siculus. Animals 2021, 11, 1003. [Google Scholar] [CrossRef]
- Oskyrko, O.; Sreelatha, L.B.; Hanke, G.F.; Deichsel, G.; Carretero, M.A. Origin of introduced Italian wall lizard, Podarcis siculus (Rafinesque-Schmaltz, 1810) (Squamata: Lacertidae), in North America. BioInvasions Rec. 2022, 11, 1095–1106. [Google Scholar] [CrossRef]
Liver | Ovarian follicles | Testis |
---|---|---|
Collagen deposition and fibrosis | Collagen deposition and fibrosis | Collagen deposition and fibrosis |
Increase in glycogen, melanin, and lipofuscin granules | Changes in carbohydrate content and distribution | |
Loss of cellular adhesion | Loss of cellular junctions | |
Oxidative stress | ||
Disorganization of theca, granulosa and zona pellucida | Impairment of spermatogenesis | |
Proliferation of small stem cells and apoptosis of pyriform cells | ||
Endocrine disruption | Endocrine disruption | Endocrine disruption |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chianese, T.; Cominale, R.; Scudiero, R.; Rosati, L. Could Exposure to Glyphosate Pose a Risk to the Survival of Wild Animals? A Case Study on the Field Lizard Podarcis siculus. Vet. Sci. 2023, 10, 583. https://doi.org/10.3390/vetsci10090583
Chianese T, Cominale R, Scudiero R, Rosati L. Could Exposure to Glyphosate Pose a Risk to the Survival of Wild Animals? A Case Study on the Field Lizard Podarcis siculus. Veterinary Sciences. 2023; 10(9):583. https://doi.org/10.3390/vetsci10090583
Chicago/Turabian StyleChianese, Teresa, Roberta Cominale, Rosaria Scudiero, and Luigi Rosati. 2023. "Could Exposure to Glyphosate Pose a Risk to the Survival of Wild Animals? A Case Study on the Field Lizard Podarcis siculus" Veterinary Sciences 10, no. 9: 583. https://doi.org/10.3390/vetsci10090583
APA StyleChianese, T., Cominale, R., Scudiero, R., & Rosati, L. (2023). Could Exposure to Glyphosate Pose a Risk to the Survival of Wild Animals? A Case Study on the Field Lizard Podarcis siculus. Veterinary Sciences, 10(9), 583. https://doi.org/10.3390/vetsci10090583