Potential Effect of Dietary Supplementation of Tannin-Rich Forage on Mitigation of Greenhouse Gas Production, Defaunation and Rumen Function
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Forage Samples and Treatments
2.3. In Situ Rumen Degradation, In Vitro Digestibility and Microbial Biomass Production
2.4. Protozoa Population
2.5. Gas, CH4 and CO2 Production
2.6. Chemical Analysis
2.7. Experimental Design and Statistical Analyzes
3. Results
3.1. Rumen Degradation, Digestibility and Microbial Biomass Production
3.2. Rumen Protozoa Population
3.3. Gas, CH4 and CO2 Production
4. Discussion
4.1. Rumen Degradation, Digestibility and Microbial Biomass Production
4.2. Rumen Protozoan Population
4.3. Gas, CH4 and CO2 Production
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barros-Rodríguez, M.; Rovalino-Núñez, V.; Núñez-Torres, O.; Mera-Andrade, R.; Artieda Rojas, J.; Vaca-Freire, L.; Curay-Quispe, S.; Ortiz Tirado, P.; Solorio Sánchez, J.; Iraola, J. Composición química, cinética de degradación ruminal y producción de gas in vitro de arvenses con potencial forrajero. Livest. Res. Rural. Dev. 2017, 29, 4. Available online: http://www.lrrd.org/lrrd29/4/barr29071.html (accessed on 2 October 2022).
- Núñez Torres, O.P.; Barros Rodriguez, M.; Sanchez, D.; Guishca-Cunuhay, C. Comportamiento productivo, degradación ruminal y producción de gas in vitro en ovinos alimentados con dietas a base de residuos pos-cosecha de Chenopodium quinoa. Rev. Investig. Vet. Perú. 2018, 29, 765–773. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Tirado, P.; Barros-Rodriguez, M.; Mayorga-Paredes, S.; Chay-Canul, A.; Guishca-Cunuhay, C.; Romero-Herrera, R.; Reyes, H. Influence of cutting age on chemical composition, rumen degradation kinetics and in vitro digestibility of green hydroponic fodder of Avena sativa. Trop. Subtrop. Agroecosystems 2019, 22. Available online: https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/3082/1346 (accessed on 2 October 2022). [CrossRef]
- Andino, M.; Barros-Rodriguez, M.; Burgos, J.V.; Andrade-Yucailla, V.; Acosta-Lozano, N.; Aragadvay-Yungan, R.; Mayorga-Paredes, S. Effect of the cutting age of Brachiaria decumbens on rumen functions and in vitro gas production. Trop. Subtrop. Agroecosystems 2019, 22. Available online: https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/3080/1337 (accessed on 2 October 2022). [CrossRef]
- Charmley, E.; Williams, S.R.O.; Moate, P.J.; Hegarty, R.S.; Herd, R.M.; Oddy, V.E.; Reyenga, P.; Staunton, K.M.; Anderson, A.; Hannah, M.C. A universal equation to predict methane production of forage-fed cattle in Australia. Anim. Prod. Sci. 2016, 56, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Piñeiro, V.A.T.; Canul, J.R.S.; Casanova, L.F.; Chay, C.A.J.; Ayala, B.J.A.; Aguilar, C.F.P.; Solorio, F.J.S.; Ku, J.C.V. Enteric methane emission in sheep fed Pennisetum purpureumand tropical trees containing condensed tannins. Rev Mex Cienc Pecu. 2017, 8, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Archimède, H.; Martin, C.; Périacarpin, F.; Rochette, Y.; Etienne, T.S.; Anais, C.; Doreau, M. Methane emission of Blackbelly rams consuming whole sugarcane forage compared with Dichanthium sp. hay. Anim. Feed Sci. Technol. 2014, 190, 30–37. [Google Scholar] [CrossRef]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Ellis, J.L.; Dijkstra, J.; Kebreab, E.; Bannink, A.; Odongo, N.E.; McBride, B.W.; France, J. Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle. J. Agric. Sci. 2008, 146, 213–233. [Google Scholar] [CrossRef] [Green Version]
- Gerber, P.J.; Hristov, A.N.; Henderson, B.; Makkar, H.; Oh, J.; Lee, C.; Meinen, R.; Montes, F.; Ott, T.; Firkins, J.; et al. Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: A review. Animal 2013, 7, 220–234. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Ortiz, L.; Chavez-Garcia, D.; Barros-Rodríguez, M.; Andrade-Yucailla, V.; Lima-Orozco, R.; Macías-Rodríguez, E.; Guishca-Cunuhay, C.; Zeidan Mohamed Salem, A. Rumen Function and In Vitro Gas Production of Diets Influenced by Two Levels of Tannin-Rich Forage. Fermentation 2022, 8, 607. [Google Scholar] [CrossRef]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; Haan, C. Livestock’s Longs Adow: Environmental Issues and Options. Food and Agriculture Organization of the United Nations. 2006. Available online: https://www.fao.org/3/a0701e/a0701e00.pdf (accessed on 2 October 2022).
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; Available online: https://www.fao.org/3/i3437e/i3437e.pdf (accessed on 2 October 2022).
- FAO (Food and Agriculture Organization of the United Nations). Global Livestock Environmental Assessment Model (GLEAM); FAO: Rome, Italy, 2021; Available online: https://www.fao.org/gleam/en/ (accessed on 2 October 2022).
- Meza-Bone, G.; Meza-Bone, C.; Avellaneda-Cevallos, J.; Cabezas-Congo, R.; Villamar-Torres, R.; Cabanilla-Campos, M.; Vivas-Arturo, W.; Intriago-Flor, F.; Meza-Bone, F.; Zapatier-Santillan, A.; et al. Rumen Fermentation Profile and Greenhouse Gas Mitigation of Three Forage Species from Agroforestry Systems in Dry and Rainy Seasons. Fermentation 2022, 8, 630. [Google Scholar] [CrossRef]
- Canul-Solis, J.; Campos-Navarrete, M.; Piñeiro-Vázquez, A.; Casanova-Lugo, F.; Barros-Rodríguez, M.; Chay-Canul, A.; Cárdenas-Medina, J.; Castillo-Sánchez, L. Mitigation of rumen methane emissions with foliage and pods of tropical trees. Animals 2020, 10, 843. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Gendley, M.K.; Sahu, J.; Patel, P.K.; Chandrakar, K.; Dubey, A. Silvopastoral system: A prototype of livestock agroforestry. J. Pharm. Innov. 2019, 8, 76–82. Available online: https://www.thepharmajournal.com/archives/2019/vol8issue2/PartB/8-1-94-847.pdf (accessed on 2 October 2022).
- Oyelami, B.A.; Osikabor, B. Adoption of Silvopastoral Agroforestry System for a Sustainable Cattle Production in Nigeria. J. Appl. Sci. Environ. Manag. 2022, 26, 1397–1402. [Google Scholar] [CrossRef]
- Castro-Montoya, J.M.; Dickhoefer, U. The nutritional value of tropical legume forages fed to ruminants as affected by their growth habit and fed form: A systematic review. Anim. Feed Sci. Technol. 2020, 269, 114641. [Google Scholar] [CrossRef]
- Aragadvay-Yungán, R.G.; Barros-Rodríguez, M.; Ortiz, L.; Carro, M.D.; Navarro Marcos, C.; Elghandour, M.M.M.Y.; Salem, A.Z.M. Mitigation of ruminal methane production with enhancing the fermentation by supplementation of different tropical forage legumes. Environ. Sci. Pollut. Res. 2021, 29, 3438–3445. [Google Scholar] [CrossRef]
- Elghandour, M.M.Y.; Rodríguez-Ocampo, I.; Parra-Garcia, A.; Salem, A.Z.M.; Greiner, R.; Marquez-Molina, O.; Barros-Rodriguez, M.; Barbabosa-Pilego, A. Biogas production from prickly pear cactus containing diets supplemented with Moringa oleifera leaf extract for a cleaner environmental livestock production. J. Clean. Prod. 2018, 185, 547–553. [Google Scholar] [CrossRef]
- Sun, K.; Liu, H.; Fan, H.; Liu, T.; Zheng, C. Research progress on the application of feed additives in ruminal methane emission reduction: A review. PeerJ. 2021, 9, e11151. [Google Scholar] [CrossRef]
- Cardoso-Gutierrez, E.; Aranda-Aguirre, E.; Robles-Jimenez, L.E.; Castelán-Ortega, O.A.; Chay-Canul, A.J.; Foggi, G.; Angeles-Hernandez, J.C.; Vargas-Bello-Pérez, E.; González-Ronquillo, M. Effect of tannins from tropical plants on methane production from ruminants: A systematic review. Vet. Anim. Sci. 2021, 14, 100214. [Google Scholar] [CrossRef]
- Ku-Vera, J.C.; Jiménez-Ocampo, R.; Valencia-Salazar, S.S.; Montoya-Flores, M.D.; Molina Botero, I.C.; Arango, J.; Solorio Sánchez, F.J. Role of secondary plant metabolites on enteric methane mitigation in ruminants. Front. Vet. Sci. 2020, 7, 584. [Google Scholar] [CrossRef] [PubMed]
- Bruinenberg, M.H.; van der Honing, Y.; Agnew, R.E.; Yan, T.; van Vuuren, A.M.; Valk, H. Energy metabolism of dairy cows fed on grass. Livest. Prod. Sci. 2002, 75, 117–128. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 2010, 91, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Aboagye, I.A.; Beauchemin, K.A. Potential of molecular weight and structure of tannins to reduce methane emissions from ruminants: A review. Animals 2019, 9, 856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espinoza-Velasco, B.; Mella, M.R. Vegetable tannins, ruminal microbiota and ruminant metabolism interaction. Trop. Subtrop. Agroecosystems 2022, 25, 856. Available online: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v25i1.39692 (accessed on 2 October 2022).
- Min, B.R.; Barry, T.N.; Attwood, G.T.; McNabb, W.C. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: A review. Anim. Feed Sci. Technol. 2003, 106, 3–19. [Google Scholar] [CrossRef]
- Silanikove, N.; Perevolotsky, A.; Provenza, F.D. Use of tannin-binding chemicals to assay for tannins and their negative postingestive effects in ruminants. Anim. Feed Sci. Technol. 2001, 91, 69–81. [Google Scholar] [CrossRef]
- Lamy, E.; Rawel, H.; Schweigert, F.J.; Capela e Silva, F.; Ferreira, A.; Costa, A.R.; Antunes, C.; Almeida, A.; Varela, A.; Sales-Baptista, E. The effect of tannins on Mediterranean ruminant ingestive behavior: The role of the oral cavity. Molecules 2011, 16, 2766–2784. [Google Scholar] [CrossRef] [Green Version]
- Waghorn, G. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production-Progress and challenges. Anim. Feed Sci. Technol. 2008, 147, 116–139. [Google Scholar] [CrossRef]
- Vargas-Ortiz, L.; Andrade-Yucailla, V.; Barros-Rodríguez, M.; Lima-Orozco, R.; Macías-Rodríguez, E.; Contreras-Barros, K.; Guishca-Cunuhay, C. Influence of Acacia mearnsii Fodder on Rumen Digestion and Mitigation of Greenhouse Gas Production. Animals 2022, 12, 2250. [Google Scholar] [CrossRef]
- Avila, A.S.; Zambom, M.A.; Faccenda, A.; Fischer, M.L.; Anschau, F.A.; Venturini, T.; Faciola, A.P. Effects of black wattle (Acacia mearnsii) condensed tannins on intake, protozoa population, ruminal fermentation, and nutrient digestibility in Jersey steers. Animals 2020, 10, 1011. [Google Scholar] [CrossRef]
- Ørskov, E.R.; Hovell, D.; Mould, F. The use of the nylon bag technique for the evaluation of feedstuffs. Trop. Anim. Prod. 1980, 5, 195–213. [Google Scholar]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Blümmel, M.; Makkar, H.P.S.; Becker, K. In vitro gas production: A technique revisited. J. Anim. Physiol. Anim. Nutr. 1997, 77, 24–34. [Google Scholar] [CrossRef]
- Ogimoto, K.; Imai, S. Atlas of Rumen Microbiology; Scientific Societies Press: Tokyo, Japan, 1981; p. 231. [Google Scholar]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; Mcallan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminants feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Krishnamoorthy, U.; Soller, H.; Steingass, H.; Menke, K.H. A comparative study on rumen fermentation of energy supplements in vitro. J. Anim. Physiol. Anim. Nutr. 1991, 65, 28–35. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Price, M.L.; Van Scoyoc, S.; Butler, L.G. A critical evaluation of the vanillin reaction assay for tannin in sorghum grain. J. Agric. Food Chem. 1978, 26, 1214–1218. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics, a Biometrical Approach, 3rd ed; McGraw-Hill: Boston, MA, USA, 1997. [Google Scholar]
- Mueller-Harvey, I. Unravelling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 2006, 86, 2010–2037. [Google Scholar] [CrossRef]
- Soltan, Y.A.; Patra, A.K. Ruminal Microbiome Manipulation to Improve Fermentation Efficiency in Ruminants. In Animal Feed Science and Nutrition-Production, Health and Environment; Patra, A., Ed.; IntechOpen: London, UK, 2021; Available online: https://www.intechopen.com/chapters/79866 (accessed on 2 October 2022).
- Bae, H.D.; McAllister, T.A.; Yanke, L.J.; Cheng, K.J.; Muir, A.D. Effect of condensed tannins on endoglucanase activity and filter paper digestion by Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 1993, 59, 2132–2138. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.A.; McAllister, T.A.; Muir, A.D.; Cheng, K.J. Effects of sainfoin (Onobrychis viciifolia Scop.) condensed tannins on growth and proteolysis by four strains of ruminal bacterium. Appl. Environ. Microbiol. 1994, 60, 1374–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, B.R.; Attwood, G.T.; McNabb, W.C.; Molan, A.L.; Barry, T.N. The effect of condensed tannins from Lotus corniculatus on the proteolytic activities and growth of rumen bacteria. Anim. Feed Sci. Technol. 2005, 121, 45–58. [Google Scholar] [CrossRef]
- Goel, G.; Makkar, H.P. Methane mitigation from ruminants using tannins and saponins. Trop. Anim. Health Prod. 2012, 44, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Kozloski, G.V.; Härter, C.J.; Hentz, F.; de Ávila, S.C.; Orlandi, T.; Stefanello, C.M. Intake, digestibility and nutrients supply to wethers fed ryegrass and intraruminally infused with levels of Acacia mearnsii tannin extract. Small Rumin. Res. 2012, 106, 125–130. [Google Scholar] [CrossRef]
- Cieslak, A.; Zmora, P.; Pers-Kamczyc, E.; Szumacher-Strabel, M. Effects of tannins source (Vaccinium vitis idaea L.) on rumen microbial fermentation in vivo. Anim. Feed Sci. Technol. 2012, 176, 102–106. [Google Scholar] [CrossRef]
- Buccioni, A.; Serra, A.; Minieri, S.; Mannelli, F.; Cappucci, A.; Benvenuti, D.; Rapaccini, S.; Conte, G.; Mele, M. Milk production, composition, and milk fatty acid profile from grazing sheep fed diets supplemented with chestnut tannin extract and extruded linseed. Small Rumin. Res. 2015, 130, 200–207. [Google Scholar] [CrossRef]
- Castro-Montoya, J.; Henke, A.; Molkentin, J.; Knappstein, K.; Susenbeth, A.; Dickhoefer, U. Relationship between milk odd and branched-chain fatty acids and urinary purine derivatives in dairy cows supplemented with quebracho tannins-A study to test milk fatty acids as predictors of rumen microbial protein synthesis. Anim. Feed Sci. Technol. 2016, 214, 22–33. [Google Scholar] [CrossRef]
- Vasta, V.; Daghio, M.; Cappucci, A.; Buccioni, A.; Serra, A.; Viti, C.; Mele, O. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 2019, 102, 3781–3804. [Google Scholar] [CrossRef]
- Pathak, A.K.; Dutta, N.; Pattanaik, A.K.; Singh, A.; Narang, A.; Sharma, K. Effect of condensed tannins supplementation from tanniferous tree leaves on methane production and efficiency of microbial biomass production in vitro. Anim. Nutr. Feed Technol. 2015, 15, 91–100. [Google Scholar] [CrossRef]
- Albores-Moreno, S.; Alayón-Gamboa, J.A.; Miranda-Romero, L.A.; Alarcón-Zúñiga, B.; Jiménez-Ferrer, G.; Ku-Vera, J.C.; Piñeiro-Vázquez, A.T. Effect of tree foliage supplementation of tropical grass diet on in vitro digestibility and fermentation, microbial biomass synthesis and enteric methane production in ruminants. Trop. Anim. Health Prod. 2019, 51, 893–904. [Google Scholar] [CrossRef]
- Tan, H.Y.; Sieo, C.C.; Abdullah, N.; Liang, J.B.; Huang, X.D.; Ho, Y.W. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim. Feed Sci. Technol. 2011, 169, 185–193. [Google Scholar] [CrossRef]
- Barros-Rodríguez, M.A.; Solorio-Sánchez, F.J.; Sandoval-Castro, C.A.; Klieve, A.; Rojas-Herrera, R.A.; Briceño-Poot, E.G.; Ku-Vera, J.C. Rumen function in vivo and in vitro in sheep fed Leucaena leucocephala. Trop. Anim. Health Prod. 2015, 47, 757–764. [Google Scholar] [CrossRef]
- Barros-Rodríguez, M.; Oña-Rodríguez, J.; Mera-Andrade, R.; Artieda-Rojas, J.; Curay-Quispe, S.; Avilés-Esquivel, D.; Guishca-Cunuhay, C. Degradación ruminal de dietas a base de biomasa pos-cosecha de Amaranthus cruentus: Efecto sobre los protozoos del rumen y producción de gas in vitro. Rev. Investig. Vet. Perú. 2017, 28, 812–821. [Google Scholar] [CrossRef] [Green Version]
- Gunun, P.; Cherdthong, A.; Khejornsart, P.; Wanapat, M.; Polyorach, S.; Kang, S.; Kaewwongsa, W.; Gunun, N. The Effect of Phytonutrients in Terminalia chebula Retz. on Rumen Fermentation Efficiency, Nitrogen Utilization, and Protozoal Population in Goats. Animals 2022, 12, 2022. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Becker, K.; Abel, H.J.; Szegletti, C. Degradation of condensed tannins by rumen microbes exposed to Quebracho tannins (QT) in rumen simulation technique (RUSITECH) and effects of QT on fermentative processes in the RUSITEC. J. Sci. Food Agric. 1995, 69, 495–500. [Google Scholar] [CrossRef]
- Jayanegara, A.; Leiber, F.; Kreuzer, M. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J. Anim. Physiol. Anim. Nutr. 2012, 96, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Yanza, Y.R.; Fitri, A.; Suwignyo, B.; Elfahmi; Hidayatik, N.; Kumalasari, N.R.; Irawan, A.; Jayanegara, A. The Utilisation of Tannin Extract as a Dietary Additive in Ruminant Nutrition: A Meta-Analysis. Animals 2021, 11, 3317. [Google Scholar] [CrossRef] [PubMed]
- Bilek, R.S.; Tyler, S.C.; Kurihara, M.; Yagi, K. Investigation of cattle methane production and emission over a 24-hour period using measurements of δ13C and δD of emitted CH4 and rumen water. J. Geophys. Res. Atmos. 2001, 106, 15405–15413. [Google Scholar] [CrossRef]
- Ángeles-Mayorga, Y.; Cen-Cen, E.R.; Crosby-Galván, M.M.; Ramírez-Bribiesca, J.E.; Candelaria-Martínez, B.; Sánchez-Villarreal, A.; Ramírez-Mella, M. Foliage of Tropical Trees and Shrubs and Their Secondary Metabolites Modify In Vitro Ruminal Fermentation, Methane and Gas Production without a Tight Correlation with the Microbiota. Animals 2022, 12, 2628. [Google Scholar] [CrossRef]
Item | Treatments | |||
---|---|---|---|---|
T1 | T2 | T3 | T4 | |
Corn stover | 1000 | 850 | 700 | 550 |
A. mearnsii leaves a | 0 | 150 | 300 | 450 |
Total | 1000 | 1000 | 1000 | 1000 |
Chemical composition | ||||
Dry matter | 870.0 | 881.4 | 887.3 | 885.1 |
Organic matter | 894.5 | 916.5 | 920.9 | 922.4 |
Crude protein | 96.6 | 104.9 | 114.2 | 117.5 |
Neutral detergent fiber | 658.9 | 619.9 | 567.8 | 542.5 |
Acid detergent fiber | 360.3 | 341.6 | 325.5 | 312.8 |
Non-fiber carbohydrate | 138.08 | 187.06 | 229.59 | 251.28 |
Fat | 1.02 | 4.74 | 9.41 | 11.22 |
Ash | 105.4 | 83.4 | 79.0 | 77.5 |
Condensed tannins | 0 | 30.5 | 64.0 | 95.8 |
T1 | T2 | T3 | T4 | SE | p Value | |
---|---|---|---|---|---|---|
Degradation kinetics | ||||||
A | 275.6 a | 291.9 a | 265.3 a | 273.2 a | 22.10 | 0.8710 |
B | 530.0 a | 473.0 ab | 434.0 b | 412.0 b | 23.52 | 0.0137 |
A + B | 806.0 a | 764.0 ab | 699.0 bc | 685.0 c | 18.31 | 0.0008 |
c | 0.045 a | 0.039 a | 0.041 a | 0.034 a | 0.0067 | 0.7049 |
Effective degradation | ||||||
0.02 k | 639.0 a | 598.0 b | 551.0 c | 513.0 d | 9.13 | 0.0001 |
0.05 k | 524.0 a | 495.0 ab | 457.0 bc | 427.0 c | 9.84 | 0.0001 |
0.08 k | 465.0 a | 444.0 ab | 410.0 bc | 388.0 c | 9.43 | 0.0001 |
IVDMD (%) | 53.40 a | 49.76 ab | 46.08 b | 38.31 b | 1.84 | 0.0002 |
MBP (mg/0.5 g DM) | 314.50 a | 321.10 a | 274.40 b | 216.30 c | 7.74 | 0.0001 |
Population of rumen protozoa | ||||||
Holotrich (Log10) | ||||||
12 h | 3.8 a | 2.4 b | 1.5 c | 0.5 d | 0.12 | 0.0001 |
24 h | 3.8 a | 1.9 b | 1.0 c | 0 d | 0.15 | 0.0001 |
Entodiniomorph (Log10) | ||||||
12 h | 4.1 a | 3.5 b | 2.9 c | 1.6 d | 0.10 | 0.0001 |
24 h | 4.0 a | 3.1 b | 2.2 c | 1.1 d | 0.14 | 0.0001 |
T1 | T2 | T3 | T4 | SE | p-Value | |
---|---|---|---|---|---|---|
Gas production parameters | ||||||
D | 166.8 a | 168.4 a | 145.5 b | 117.8 c | 3.47 | 0.0001 |
k | 0.038 c | 0.043 bc | 0.052 ab | 0.061 a | 0.0024 | 0.0001 |
Gas production (mL/0.5 g fermented DM) | ||||||
12 h | 61.3 a | 68.9 a | 66.9 a | 66.0 a | 3.52 | 0.4958 |
24 h | 96.8 a | 105.6 a | 97.9 a | 92.3 a | 3.97 | 0.1636 |
48 h | 138.9 a | 148.7 a | 135.5 a | 120.3 b | 3.32 | 0.0002 |
CH4 production (mL/0.5 g fermented DM) | ||||||
12 h | 3.5 a | 1.4 b | 1.0 b | 1.1 b | 0.61 | 0.0377 |
24 h | 12.9 a | 10.3 b | 6.4 b | 6.7 b | 1.78 | 0.0415 |
48 h | 22.6 a | 18.4 b | 12.7 c | 8.1 d | 1.01 | <0.0001 |
CO2 production (mL/0.5 g fermented DM) | ||||||
12 h | 29.8 a | 30.3 a | 25.2 a | 26.3 a | 2.14 | 0.2839 |
24 h | 68.8 a | 71.5 a | 55.8 b | 45.6 c | 2.37 | <0.0001 |
48 h | 79.4 a | 85.1 a | 76.6 a | 82.2 a | 5.55 | 0.7255 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta-Lozano, N.; Barros-Rodríguez, M.; Guishca-Cunuhay, C.; Andrade-Yucailla, V.; Contreras-Barros, K.; Sandoval-Castro, C.; Elghandour, M.M.M.Y.; Zeidan Mohamed Salem, A. Potential Effect of Dietary Supplementation of Tannin-Rich Forage on Mitigation of Greenhouse Gas Production, Defaunation and Rumen Function. Vet. Sci. 2023, 10, 467. https://doi.org/10.3390/vetsci10070467
Acosta-Lozano N, Barros-Rodríguez M, Guishca-Cunuhay C, Andrade-Yucailla V, Contreras-Barros K, Sandoval-Castro C, Elghandour MMMY, Zeidan Mohamed Salem A. Potential Effect of Dietary Supplementation of Tannin-Rich Forage on Mitigation of Greenhouse Gas Production, Defaunation and Rumen Function. Veterinary Sciences. 2023; 10(7):467. https://doi.org/10.3390/vetsci10070467
Chicago/Turabian StyleAcosta-Lozano, Néstor, Marcos Barros-Rodríguez, Carlos Guishca-Cunuhay, Veronica Andrade-Yucailla, Katherine Contreras-Barros, Carlos Sandoval-Castro, Mona Mohamad Mohamad Yasseen Elghandour, and Abdelfattah Zeidan Mohamed Salem. 2023. "Potential Effect of Dietary Supplementation of Tannin-Rich Forage on Mitigation of Greenhouse Gas Production, Defaunation and Rumen Function" Veterinary Sciences 10, no. 7: 467. https://doi.org/10.3390/vetsci10070467
APA StyleAcosta-Lozano, N., Barros-Rodríguez, M., Guishca-Cunuhay, C., Andrade-Yucailla, V., Contreras-Barros, K., Sandoval-Castro, C., Elghandour, M. M. M. Y., & Zeidan Mohamed Salem, A. (2023). Potential Effect of Dietary Supplementation of Tannin-Rich Forage on Mitigation of Greenhouse Gas Production, Defaunation and Rumen Function. Veterinary Sciences, 10(7), 467. https://doi.org/10.3390/vetsci10070467