The Immunoprotection of OmpH Gene Deletion Mutation of Pasteurella multocida on Hemorrhagic Sepsis in Qinghai Yak
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Location and Animals
2.3. Bacterial Strains, Plasmid and Culture Condition
2.4. Construction of Mutant Strain
2.5. Vaccination Experiments in Yaks for Protection
2.6. Bacterial Loads in Different Tissues
2.7. Proteomic Analysis
2.8. Statistical Analysis
3. Results
3.1. Construction of Mutant Strain
3.2. Dynamics of the Proliferation of P0910 and ΔOmpH of P. multocida
3.3. Clinical Symptoms of P0910 and ΔOmpH of P. multocida Infection
3.4. Proteomics Analysis
3.4.1. Proteome Profiles during Infection with P. multocida P0910 and ΔOmpH
3.4.2. Bioinformatics Analyses
3.4.3. Validation of the Differentially Expressed Proteins Using qPCR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, J.; Wei, X.; Liu, W.; Chen, S.; Ahmed, Z.; Sun, W.; Lei, C.; Ma, Z. Paternal genetic diversity, differentiation and phylogeny of three white yak breeds/populations in China. Sci. Rep. 2022, 12, 19331. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Zhang, Q.; Zhao, J. Differential expression of proteins in Datong Yak and Chaidamu Yellow Cattle longissimus lumborum muscles and relation to meat water holding capacity. Kafkas Univ. Vet Fakültesi Derg. 2018, 24, 691–700. [Google Scholar]
- Moustafa, A.M.; Seemann, T.; Gladman, S.; Adler, B.; Harper, M.; Boyce, J.; Bennett, M. Comparative Genomic Analysis of Asian Haemorrhagic Septicaemia-Associated Strains of Pasteurella multocida Identifies More than 90 Haemorrhagic Septicaemia-Specific Genes. PLoS ONE 2015, 10, e0130296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivachandra, S.B.; Viswas, K.; Kumar, A. A review of hemorrhagic septicemia in cattle and buffalo. Anim. Health Res. Rev. 2011, 12, 67–82. [Google Scholar] [CrossRef]
- Boyce, J.D.; Seemann, T.; Adler, B.; Harper, M. Pathogenomics of Pasteurella multocida. Curr. Top. Microbiol. Immunol. 2012, 361, 23–38. [Google Scholar]
- Guan, L.; Zhang, L.; Xue, Y.; Yang, J.; Zhao, Z. Molecular pathogenesis of the hyaluronic acid capsule of Pasteurella multocida. Microb. Pathog. 2020, 149, 104380. [Google Scholar] [CrossRef]
- Thanasarasakulpong, A.; Poolperm, P.; Tankaew, P.; Sawada, T.; Sthitmatee, N. Protectivity conferred by immunization with intranasal recombinant outer membrane protein H from Pasteurella multocida serovar A:1 in chickens. J. Vet. Med. Sci. 2015, 77, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Apinda, N.; Muenthaisong, A.; Chomjit, P.; Sangkakam, K.; Nambooppha, B.; Rittipornlertrak, A.; Koonyosying, P.; Yao, Y.; Nair, V.; Sthitmatee, N. Simultaneous Protective Immune Responses of Ducks against Duck Plague and Fowl Cholera by Recombinant Duck Enteritis Virus Vector Expressing Pasteurella multocida OmpH Gene. Vaccines 2022, 10, 1358. [Google Scholar] [CrossRef]
- Varinrak, T.; Muenthaisong, A.; Apinda, N.; Sawada, T.; Sthitmatee, N. Construction and characterization of an OmpH-deficient mutant of Pasteurella multocida strain X-73. Avian Pathol. 2019, 48, 4–11. [Google Scholar] [CrossRef]
- Borrathybay, E.; Sawada, T.; Kataoka, Y.; Okiyama, E.; Kawamoto, E.; Amao, H. Capsule thickness and amounts of a 39 kDa capsular protein of avian Pasteurella multocida type A strains correlate with their pathogenicity for chickens. Vet. Microbiol. 2003, 97, 215–227. [Google Scholar] [CrossRef]
- Sthitmatee, N.; Kataoka, Y.; Sawada, T. Inhibition of capsular protein synthesis of Pasteurella multocida strain P-1059. J. Vet. Med. Sci. 2011, 73, 1445–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orynbayev, M.; Sultankulova, K.; Sansyzbay, A.; Rystayeva, R.; Shorayeva, K.; Namet, A.; Fereidouni, S.; Ilgekbayeva, G.; Barakbayev, K.; Kopeyev, S.; et al. Biological characterization of Pasteurella multocida present in the Saiga population. BMC Microbiol. 2019, 19, 37. [Google Scholar] [CrossRef] [PubMed]
- Bringhenti, L.; Pallu, M.; Silva, J.; Tomazi, T.; Tomazi, A.; Rodrigues, M.; Cruzado-Bravo, M.; Bilby, T.; Bicalho, R. Effect of treatment of pneumonia and otitis media with tildipirosin or florfenicol + flunixin meglumine on health and upper respiratory tract microbiota of preweaned Holstein dairy heifers. J. Dairy Sci. 2021, 104, 10291–10309. [Google Scholar] [CrossRef] [PubMed]
- Clemmons, E.A.; Alfson, K.J.; Dutton, J.W., 3rd. Transboundary Animal Diseases, an Overview of 17 Diseases with Potential for Global Spread and Serious Consequences. Animals 2021, 11, 2039. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, S.; Naito, T.; Shigetomi, R.; Kosugi, Y.; Nakayama, K.; Takatsu, H.; Shin, H. The N- or C-terminal cytoplasmic regions of P4-ATPases determine their cellular localization. Mol. Biol. Cell 2020, 31, 2115–2124. [Google Scholar] [CrossRef]
- Christodoulides, M.; McGuinness, B.; Heckels, J. Immunization with synthetic peptides containing epitopes of the class 1 outer-membrane protein of Neisseria meningitidis: Production of bactericidal antibodies on immunization with a cyclic peptide. J. Gen. Microbiol. 1993, 139, 1729–1738. [Google Scholar] [CrossRef] [Green Version]
- Urban, A.; Ansmant, I.; Motorin, Y. Optimisation of expression and purification of the recombinant Yol066 (Rib2) protein from Saccharomyces cerevisiae. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 786, 187–195. [Google Scholar] [CrossRef]
- Lei, S.Y.; Lin, F.M.; Zhao, J.; Zhang, H.J.; Jia, C.H.; Ge, L.P.; Zhao, J. Evaluation of immune effects of Pasteurella multocida local serotype inactivated vaccine on yaks. J. Qinghai Univ. 2021, 39, 57–63. [Google Scholar]
- Tan, H.Y.; Nagoor, N.; Sekaran, S. Cloning, expression and protective capacity of 37 kDa outer membrane protein gene (ompH) of Pasteurella multocida serotype B:2. Trop. Biomed. 2010, 27, 430–441. [Google Scholar]
- Davies, R.L.; MacCorquodale, R.; Caffrey, B. Diversity of avian Pasteurella multocida strains based on capsular PCR typing and variation of the OmpA and OmpH outer membrane proteins. Vet. Microbiol. 2003, 91, 169–182. [Google Scholar] [CrossRef]
- Boyce, J.D.; Chung, J.; Adler, B. Pasteurella multocida capsule: Composition, function and genetics. J. Biotechnol. 2000, 83, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Harper, M.; Boyce, J.; Adler, B. Pasteurella multocida pathogenesis: 125 years after Pasteur. FEMS Microbiol. Lett. 2006, 265, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sawada, T.; Borrathybay, E.; Kawamoto, E.; Koeda, T.; Ohta, S. Fowl Cholera in Japan: Disease Occurrence and Characteristics of Pasteurella multocida Isolates. Bull Nippon Vet. Zootech. Coll. 1999, 48, 21–32. [Google Scholar]
- Sthitmatee, N.; Yano, T.; Lampang, K.; Suphavilai, C.; Kataoka, Y.; Sawada, T. A 39-kDa capsular protein is a major cross-protection factor as demonstrated by protection of chickens with a live attenuated Pasteurella multocida strain of P-1059. J. Vet. Med. Sci. 2013, 75, 923–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, L.; Yin, X.; Yang, Y.; Wu, L.; Wu, H.; Li, B.; Guo, Z.; Ye, J. Functional characterization of a mannose-binding lectin (MBL) from Nile tilapia (Oreochromis niloticus) in non-specific cell immunity and apoptosis in monocytes/macrophages. Fish Shellfish Immunol. 2019, 87, 265–274. [Google Scholar] [CrossRef]
- Vu-Khac, H.; Trinh, T.; Nguyen, T.; Nguyen, X.; Nguyen, T. Prevalence of virulence factor, antibiotic resistance, and serotype genes of Pasteurella multocida strains isolated from pigs in Vietnam. Vet. World 2020, 13, 896–904. [Google Scholar] [CrossRef]
- Chaoprasid, P.; Dersch, P. The Cytotoxic Necrotizing Factors (CNFs)-A Family of Rho GTPase-Activating Bacterial Exotoxins. Toxins 2021, 13, 901. [Google Scholar] [CrossRef]
- Wang, X.; Wang, F.; Lin, L.; Liang, W.; Liu, S.; Hua, L.; Wang, X.; Chen, H.; Peng, Z.; Wu, B. Transcriptome Differences in Pig Tracheal Epithelial Cells in Response to Pasteurella Multocida Infection. Front. Vet. Sci. 2021, 8, 682514. [Google Scholar] [CrossRef]
- Husada, F.; Bountra, K.; Tassis, K.; de Boer, M.; Romano, M.; Rebuffat, S.; Beis, K.; Cordes, T. Conformational dynamics of the ABC transporter McjD seen by single-molecule FRET. EMBO J. 2018, 37, e100056. [Google Scholar] [CrossRef]
- Tassis, K.; Vietrov, R.; de Koning, M.; de Boer, M.; Gouridis, G.; Cordes, T. Single-molecule studies of conformational states and dynamics in the ABC importer OpuA. FEBS Lett. 2021, 595, 717–734. [Google Scholar] [CrossRef]
- Dou, Y.; Rutanhira, H.; Chen, X.; Mishra, A.; Wang, C.; Fletcher, H. Role of extracytoplasmic function sigma factor PG1660 (RpoE) in the oxidative stress resistance regulatory network of Porphyromonas gingivalis. Mol. Oral Microbiol. 2018, 33, 89–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tutar, L.; Tutar, Y. Heat shock proteins; an overview. Curr. Pharm. Biotechnol. 2010, 11, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Huo, X.; Gu, H.; Wu, D.; Hu, Y. Acid resistance system CadBA is implicated in acid tolerance and biofilm formation and is identified as a new virulence factor of Edwardsiella tarda. Vet. Res. 2021, 52, 117. [Google Scholar] [CrossRef]
- Li, X.; Han, X.; Sun, C.; Li, G.; Wang, K.; Li, X.; Qiao, R. Analysis of mRNA and Long Non-Coding RNA Expression Profiles in Developing Yorkshire Pig Spleens. Animals 2021, 11, 2768. [Google Scholar] [CrossRef] [PubMed]
Name | Sequence (5′-3′) |
---|---|
Wu2309 | 5′ GGAATTCAATAGAGGCATTTACCCG 3′ |
Wu2310 | 5′ GGTACC CATTTACATCAACTTTTG 3′ |
Wu2311 | 5′TGTAAATGGGTACCTGTTGAAGGTGGCTGG 3′ |
Wu2312 | 5′ CGGGATCC AACGCACTTCAACTTGTCC 3′ |
RRP7A-F | 5′ CCCCAAACCAGTTCCTG 3′ |
RRP7A-R | 5′ GCACCGAGTCCGTGTAAT 3′ |
ABCA13-F | 5′ CTGAACGAGGACAAGAT 3′ |
ABCA13-R | 5′ AGACGGAGACCAAGTAA 3′ |
ATP10A-F | 5′ TTTCAGTCCGCCATTC 3′ |
ATP10A-R | 5′ CGGTGAGAACCCAAATC 3′ |
IFN-γ-F | 5′ ATGACACCACCTGAACGTCTCTTC 3′ |
IFN-γ-R | 5′ CTACAGAGCGAAGGCTCCAAAGAAGACAGTACT 3′ |
IL-10-F | 5′ AGGGCACCCAGTCTGAGAACA 3′ |
IL-10-R | 5′ CGGCCTTGCTCTTGTTTTCAC 3′ |
dnaJ-F | 5′ TGTTGCCTACGATACCCTAAGC 3′ |
dnaJ-R | 5′ GCTTGCTCACCGCCTGTAA 3′ |
HSPBP1-F | 5′ CTTTGCTCCATGGGGATGGT 3′ |
HSPBP1-R | 5′ GATCCATGCTGTCGTCGGTA 3′ |
Post-Infection Time/h | Number | Thymus/CFU/g | Lungs/CFU/g | Spleen/CFU/g | Lymph Nodes/CFU/g | Liver/CFU/g | Kidneys/CFU/g | Heart/CFU/g |
---|---|---|---|---|---|---|---|---|
24 | P0910-1 | 3.0 × 106 | 2.67 × 104 | 3.57 × 105 | 1.23 × 105 | 6.67 × 104 | 2.43 × 104 | 1.33 × 103 |
P0910-2 | 1.23 × 106 | 1.98 × 104 | 7.33 × 104 | 1.60 × 104 | 0.67 × 104 | 1.43 × 104 | 1.21 × 103 | |
P0910-3 | 5.66 × 105 | 0.91 × 103 | 2.67 × 103 | 2.31 × 103 | 0.16 × 103 | 4.28 × 102 | 0.68 × 102 | |
ΔOmpH-1 | 3.7 × 105 | 1.02 × 103 | 1.59 × 104 | 3.28 × 104 | 3.66 × 103 | 4.48 × 103 | 2.00 × 102 | |
ΔOmpH-2 | 2.3 × 104 | 2.36 × 104 | 3.33 × 102 | 2.77 × 103 | 5.67 × 102 | 2.97 × 103 | 4.29 × 103 | |
ΔOmpH-3 | 4.8 × 105 | 6.28 × 103 | 8.16 × 104 | 6.31 × 102 | 4.16 × 104 | 3.28 × 103 | 1.87 × 102 | |
48 | P0910-4 | 1.98 × 107 | 3.12 × 107 | 2.33 × 106 | 9.43 × 106 | 1.06 × 107 | 8.93 × 105 | 6.67 × 105 |
P0910-5 | 1.89 × 107 | 1.50 × 105 | 6.98 × 104 | 4.13 × 104 | 1.70 × 105 | 7.93 × 104 | 4.71 × 104 | |
P0910-6 | 1.43 × 106 | 0.88 × 103 | 4.11 × 104 | 2.23 × 104 | 3.18 × 103 | 6.26 × 103 | 0.91 × 103 | |
ΔOmpH-4 | 1.3 × 106 | 4.62 × 104 | 5.39 × 105 | 4.09 × 103 | 5.58 × 105 | 5.13 × 104 | 9.11 × 103 | |
ΔOmpH-5 | 7.21 × 106 | 5.59 × 106 | 4.18 × 104 | 6.12 × 103 | 7.70 × 104 | 8.85 × 103 | 6.68 × 103 | |
ΔOmpH-6 | 5.00 × 106 | 5.80 × 103 | 2.15 × 104 | 7.55 × 104 | 9.22 × 103 | 7.52 × 103 | 3.04 × 102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, J.; Zhao, M.; Ma, K.; Zhang, H.; Gui, L.; Sun, H.; Ren, H.; Okabayashi, T.; Zhao, J. The Immunoprotection of OmpH Gene Deletion Mutation of Pasteurella multocida on Hemorrhagic Sepsis in Qinghai Yak. Vet. Sci. 2023, 10, 221. https://doi.org/10.3390/vetsci10030221
Jia J, Zhao M, Ma K, Zhang H, Gui L, Sun H, Ren H, Okabayashi T, Zhao J. The Immunoprotection of OmpH Gene Deletion Mutation of Pasteurella multocida on Hemorrhagic Sepsis in Qinghai Yak. Veterinary Sciences. 2023; 10(3):221. https://doi.org/10.3390/vetsci10030221
Chicago/Turabian StyleJia, Jianlei, Meng Zhao, Kairu Ma, Hongjian Zhang, Linsheng Gui, Huzhi Sun, Huiying Ren, Tamaki Okabayashi, and Jing Zhao. 2023. "The Immunoprotection of OmpH Gene Deletion Mutation of Pasteurella multocida on Hemorrhagic Sepsis in Qinghai Yak" Veterinary Sciences 10, no. 3: 221. https://doi.org/10.3390/vetsci10030221
APA StyleJia, J., Zhao, M., Ma, K., Zhang, H., Gui, L., Sun, H., Ren, H., Okabayashi, T., & Zhao, J. (2023). The Immunoprotection of OmpH Gene Deletion Mutation of Pasteurella multocida on Hemorrhagic Sepsis in Qinghai Yak. Veterinary Sciences, 10(3), 221. https://doi.org/10.3390/vetsci10030221