Evaluation of Feline Permanent Canine Tooth Mineral Density Using Micro-Computed Tomography
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Studied Samples
2.2. Micro-CT Image Acquisition Protocol
2.3. Mineral Density Analysis Protocol and Reconstruction of 3D Images
2.4. Statistical Analysis
3. Result
3.1. Tridimensional Morphology
3.2. Mineral Density
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clarke, D.E.; Caiafa, A. Oral Examination in the cat: A systematic approach. J. Feline Med. Surg. 2014, 16, 873–886. [Google Scholar] [CrossRef]
- Féliz-Matos, L.; Hernández, L.M.; Abreu, N. Dental bleaching techniques; hydrogen-carbamide peroxides and light sources for activation, an update. Open Dent. J. 2015, 8, 264–268. [Google Scholar] [CrossRef] [Green Version]
- Davis, G.R.; Evershed, A.N.; Mills, D. Quantitative high contrast X-ray microtomography for dental research. J. Dent. 2013, 41, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Eberspächer-Schweda, M.C.; Schmitt, K.; Handschuh, S.; Fuchs-Baumgartinger, A.; Reiter, A.M. Diagnostic Yield of Micro-Computed tomography (micro-CT) versus histopathology of a canine oral fibrosarcoma. J. Vet. Dent. 2020, 37, 14–21. [Google Scholar] [CrossRef]
- Chałas, R.; Szlązak, K.; Wójcik-Chęcińska, I.; Jaroszewicz, J.; Molak, R.; Czechowicz, K.; Paris, S.; Święszkowski, W.; Kurzydłowski, K.J. Observations of mineralised tissues of teeth in X-ray micro-computed tomography. Folia Morphol. 2017, 76, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Bruker. Bruker SkyScan 1276 Micro-CT—CMOS Edition. Blue Scientific. 2021. Available online: https://blue-scientific.com/product/bruker-skyscan-1276/ (accessed on 8 January 2022).
- Hayashi-Sakai, S.; Sakamoto, M.; Hayashi, T.; Kondo, T.; Sugita, K.; Sakai, J.; Shimomura-Kuroki, J.; Ike, M.; Nikkuni, Y.; Nishiyama, H. Evaluation of permanent and primary enamel and dentin mineral density using micro-computed tomography. Oral Radiol. 2019, 35, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Ding, L.; Wang, Y.; Han, S.; Zheng, S.; Guo, Q.; Li, W.; Zhou, X.; Zhang, L. The effects of 8DSS peptide on remineralization in a rat model of enamel caries evaluated by two nondestructive techniques. J. Appl. Biomater. Funct. Mater. 2019, 17, 228080001982779. [Google Scholar] [CrossRef] [Green Version]
- Farah, R.A.; Swain, M.V.; Drummond, B.K.; Cook, R.; Atieh, M. Mineral density of hypomineralised enamel. J. Dent. 2010, 38, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Shahmoradi, M.; Swain, M.V. Micro-CT analysis of naturally arrested brown spot enamel lesions. J. Dent. 2017, 56, 105–111. [Google Scholar] [CrossRef]
- Bommer, C.; Waller, T.; Hilbe, M.; Wiedemeier, D.; Meyer, N.; Mathes, S.; Jung, R. Efficacy and safety of P11-4 for the treatment of periodontal defects in dogs. Clin. Oral Investig. 2022, 26, 3151–3166. [Google Scholar] [CrossRef]
- Lee, S.; Bush, S.J.; Thorne, S.; Mawson, N.; Farquharson, C.; Bergkvist, G.T. Transcriptomic profiling of feline teeth highlights the role of matrix metalloproteinase 9 (MMP9) in tooth resorption. Sci. Rep. 2020, 10, 18958. [Google Scholar] [CrossRef]
- Reiter, A.M.; Mendoza, K.A. Feline odontoclastic resorptive lesions. An unsolved enigma in veterinary dentistry. Vet. Clin. N. Am. Small Anim. Pract. 2002, 32, 791–837. [Google Scholar] [CrossRef] [PubMed]
- Booij-Vrieling, H.E.; Tryfonidou, M.A.; Riemers, F.M.; Penning, L.C.; Hazewinkel, H.A. Inflammatory cytokines and the nuclear vitamin D receptor are implicated in the pathophysiology of dental resorptive lesions in cats. Vet. Immunol. Immunopathol. 2009, 132, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Muzylak, M.; Arnett, T.R.; Price, J.S.; Horton, M.A. The in vitro effect of pH on osteoclasts and bone resorption in the cat: Implications for the pathogenesis of FORL. J. Cell. Physiol. 2007, 213, 144–150. [Google Scholar] [CrossRef] [PubMed]
- DeLaurier, A.; Boyde, A.; Jackson, B.; Horton, M.A.; Price, J.S. Identifying early osteoclastic resorptive lesions in feline teeth: A model for understanding the origin of multiple idiopathic root resorption. J. Periodontal Res. 2009, 44, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Gabor, C.; Tam, E.; Shen, Y.; Haapasalo, M. Prevalence of internal inflammatory root resorption. J. Endod. 2012, 38, 24–27. [Google Scholar] [CrossRef]
- Gorrel, C. Tooth resorption in cats: Pathophysiology and treatment options. J. Feline Med. Surg. 2015, 17, 37–43. [Google Scholar] [CrossRef]
- De Menezes Oliveira, M.A.H.D.M.; Torres, C.P.; Gomes-Silva, J.M.; Chinelatti, M.A.; De Menezes, F.C.H.; Palma-Dibb, R.G.; Borsatto, M.C. Microstructure and mineral composition of dental enamel of permanent and deciduous teeth. Microsc. Res. Tech. 2010, 73, 572–577. [Google Scholar] [CrossRef]
- Sulyanto, R.; Kang, M.; Srirangapatanam, S.; Berger, M.; Candamo, F.; Wang, Y.; Dickson, J.; Ng, M.; Ho, S. Biomineralization of dental tissues treated with silver diamine fluoride. J. Dent. Res. 2021, 100, 1099–1108. [Google Scholar] [CrossRef]
- Sarna-Boś, K.; Boguta, P.; Skic, K.; Wiącek, D.; Maksymiuk, P.; Sobieszczański, J.; Chałas, R. Physicochemical Properties and Surface Characteristics of Ground Human Teeth. Molecules 2022, 27, 5852. [Google Scholar] [CrossRef]
- Gaêta-Araujo, H.; Nascimento, E.H.L.; Brasil, D.M.; Madlum, D.V.; Haiter-Neto, F.; Oliveira-Santos, C. Influence of reconstruction parameters of micro-computed tomography on the analysis of bone mineral density. Imaging Sci. Dent. 2020, 50, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.-H.; Baik, J.; Won, Y. Assessment of the bone mineral density and microstructure of the human femoral head according to different tip-apex distances can guide the treatment of intertrochanteric hip fractures. Hip Pelvis 2021, 33, 190–199. [Google Scholar] [CrossRef]
- Aerssens, J.; Boonen, S.; Lowet, G.; Dequeker, J. Interspecies differences in bone composition, density, and quality: Potential implications for in vivo bone research. Endocrinology 1998, 139, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Goodis, H.; Marshall, G.; White, J. The effects of storage after extraction of the teeth on human dentine permeability in vitro. Arch. Oral Biol. 1991, 36, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Secilmis, A.; Dilber, E.; Gokmen, F.; Ozturk, N.; Telatar, T. Effects of storage solutions on mineral contents of dentin. J. Dent. Sci. 2011, 6, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Jameson, M.; Tidmarsh, B.; Hood, J. Effect of storage media on subsequent water loss and regain by human and bovine dentine and on mechanical properties of human dentine in vitro. Arch. Oral Biol. 1994, 39, 759–767. [Google Scholar] [CrossRef]
- Tomaszewska, I.M.; Leszczyński, B.; Wróbel, A.; Gładysz, T.; Duncan, H.F. A micro-computed tomographic (micro-CT) analysis of the root canal morphology of maxillary third molar teeth. Ann. Anat. 2018, 215, 83–92. [Google Scholar] [CrossRef]
- Mazzi-Chaves, J.F.; Leoni, G.B.; Oliveira, J.S.; Silva-Sousa, Y.T.C.; Silva, R.G.; Pauwels, R.; Sousa-Neto, M.D. Influence of anatomical features in the endodontic treatment planning of maxillary anterior teeth. Braz. Oral Res. 2022, 36, e005. [Google Scholar] [CrossRef] [PubMed]
- Campbell, R.D.; Peralta, S.; Fiani, N.; Scrivani, P.V. Comparing intraoral radiography and computed tomography for detecting radiographic signs of periodontitis and endodontic disease in dogs: An agreement study. Front. Vet. Sci. 2016, 3, 68. [Google Scholar] [CrossRef] [Green Version]
Tooth | Region | Mean | Standard Deviation | Median | Maximum Value | Minimum Value | p |
---|---|---|---|---|---|---|---|
Total tissues | Total | 1.374 | 0.040 | 1.365 | 1.436 | 1.323 | 0.0003 |
Coronal | 1.367 | 0.039 | 1.354 | 1.432 | 1.312 | 0.0275 | |
Middle | 1.339 | 0.035 | 1.331 | 1.392 | 1.288 | 0.0038 | |
Apical | 1.416 | 0.035 | 1.409 | 1.494 | 1.330 | <0.0001 | |
Hard tissues | Total | 1.402 | 0.035 | 1.396 | 1.451 | 1.341 | 0.0009 |
Coronal | 1.393 | 0.041 | 1.408 | 1.450 | 1.315 | 0.0133 | |
Middle | 1.372 | 0.031 | 1.372 | 1.415 | 1.320 | 0.0038 | |
Apical | 1.441 | 0.038 | 1.436 | 1.505 | 1.389 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, G.; Babo, P.S.; Azevedo, J.; Gomes, M.E.; Viegas, C.; Requicha, J.F. Evaluation of Feline Permanent Canine Tooth Mineral Density Using Micro-Computed Tomography. Vet. Sci. 2023, 10, 217. https://doi.org/10.3390/vetsci10030217
Silva G, Babo PS, Azevedo J, Gomes ME, Viegas C, Requicha JF. Evaluation of Feline Permanent Canine Tooth Mineral Density Using Micro-Computed Tomography. Veterinary Sciences. 2023; 10(3):217. https://doi.org/10.3390/vetsci10030217
Chicago/Turabian StyleSilva, Graça, Pedro S. Babo, Jorge Azevedo, Manuela E. Gomes, Carlos Viegas, and João F. Requicha. 2023. "Evaluation of Feline Permanent Canine Tooth Mineral Density Using Micro-Computed Tomography" Veterinary Sciences 10, no. 3: 217. https://doi.org/10.3390/vetsci10030217