Seroprevalence of Swine Influenza A Virus (swIAV) Infections in Commercial Farrow-to-Finish Pig Farms in Greece
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampled Pig Farms
2.2. Trial Design and Sampling
2.3. Serology
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olsen, B.; Munster, V.J.; Wallensten, A.; Waldenström, J.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Global Patterns of Influenza a Virus in Wild Birds. Science 2006, 312, 384–388. [Google Scholar] [CrossRef]
- Simon-Grifé, M.; Martín-Valls, G.E.; Vilar, M.J.; García-Bocanegra, I.; Mora, M.; Martín, M.; Mateu, E.; Casal, J. Seroprevalence and Risk Factors of Swine Influenza in Spain. Vet. Microbiol. 2011, 149, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, J.J.; Karriker, L.A.; Ramirez, A.; Schwartz, K.J.; Stevenson, G.W. Diseases of Swine, 10th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2012. [Google Scholar]
- Brown, I.H. History and Epidemiology of Swine Influenza in Europe. Curr. Top. Microbiol. Immunol. 2013, 370, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Simon, G.; Larsen, L.E.; Dürrwald, R.; Foni, E.; Harder, T.; Reeth, K.V.; Markowska-Daniel, I.; Reid, S.M.; Dan, A.; Maldonado, J.; et al. European Surveillance Network for Influenza in Pigs: Surveillance Programs, Diagnostic Tools and Swine Influenza Virus Subtypes Identified in 14 European Countries from 2010 to 2013. PLoS ONE 2014, 9, e115815. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.J.; Langat, P.; Reid, S.M.; Lam, T.T.-Y.; Cotten, M.; Kelly, M.; Van Reeth, K.; Qiu, Y.; Simon, G.; Bonin, E.; et al. Molecular Epidemiology and Evolution of Influenza Viruses Circulating within European Swine between 2009 and 2013. J. Virol. 2015, 89, 9920–9931. [Google Scholar] [CrossRef] [PubMed]
- Brown, I.H. The Epidemiology and Evolution of Influenza Viruses in Pigs. Vet. Microbiol. 2000, 74, 29–46. [Google Scholar] [CrossRef]
- Thacker, E.L. Immunology of the Porcine Respiratory Disease Complex. Vet. Clin. N. Am. Food Anim. Pract. 2001, 17, 551–565. [Google Scholar] [CrossRef]
- López-Robles, G.; Montalvo-Corral, M.; Burgara-Estrella, A.; Hernández, J. Serological and Molecular Prevalence of Swine Influenza Virus on Farms in Northwestern Mexico. Vet. Microbiol. 2014, 172, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Thacker, E.; Janke, B. Swine Influenza Virus: Zoonotic Potential and Vaccination Strategies for the Control of Avian and Swine Influenzas. J. Infect. Dis. 2008, 197 (Suppl. S1), S19–S24. [Google Scholar] [CrossRef]
- Loeffen, W.L.A.; Hunneman, W.A.; Quak, J.; Verheijden, J.H.M.; Stegeman, J.A. Population Dynamics of Swine Influenza Virus in Farrow-to-Finish and Specialised Finishing Herds in the Netherlands. Vet. Microbiol. 2009, 137, 45–50. [Google Scholar] [CrossRef]
- Kida, H.; Ito, T.; Yasuda, J.; Shimizu, Y.; Itakura, C.; Shortridge, K.F.; Kawaoka, Y.; Webster, R.G. Potential for Transmission of Avian Influenza Viruses to Pigs. J. Gen. Virol. 1994, 75 Pt 9, 2183–2188. [Google Scholar] [CrossRef] [PubMed]
- Webster, R.G.; Bean, W.J.; Gorman, O.T.; Chambers, T.M.; Kawaoka, Y. Evolution and Ecology of Influenza A Viruses. Microbiol. Rev. 1992, 56, 152–179. [Google Scholar] [CrossRef] [PubMed]
- Crisci, E.; Mussá, T.; Fraile, L.; Montoya, M. Review: Influenza Virus in Pigs. Mol. Immunol. 2013, 55, 200–211. [Google Scholar] [CrossRef]
- Loeffen, W.L.A.; Kamp, E.M.; Stockhofe-Zurwieden, N.; van Nieuwstadt, A.P.K.M.I.; Bongers, J.H.; Hunneman, W.A.; Elbers, A.R.W.; Baars, J.; Nell, T.; Zijderveld, F.G. van Survey of Infectious Agents Involved in Acute Respiratory Disease in Finishing Pigs. Vet. Rec. 1999, 145, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Terebuh, P.; Olsen, C.W.; Wright, J.; Klimov, A.; Karasin, A.; Todd, K.; Zhou, H.; Hall, H.; Xu, X.; Kniffen, T.; et al. Transmission of Influenza A Viruses between Pigs and People, Iowa, 2002–2004. Influenza Other Respir. Viruses 2010, 4, 387–396. [Google Scholar] [CrossRef]
- Bennett, R.; IJpelaar, J. Updated Estimates of the Costs Associated with Thirty Four Endemic Livestock Diseases in Great Britain: A Note. J. Agric. Econ. 2005, 56, 135–144. [Google Scholar] [CrossRef]
- Brons, N.; Neto, R.; Vila, T.; Pasini, M.; Joisel, F. Outbreak of Swine Influenza, Subtype H1N2: A Case Report and Its Financial Consequences. In Proceedings of the 6th International Symposium on Emerging and Re-Emerging Pig Diseases, Barcelona, Spain, 12–15 June 2021; Available online: https://www.thepigsite.com/articles/proceedings-of-6th-international-symposium-on-emerging-and-reemerging-pig-diseases (accessed on 10 August 2023).
- Deblanc, C.; Gorin, S.; Quéguiner, S.; Gautier-Bouchardon, A.V.; Ferré, S.; Amenna, N.; Cariolet, R.; Simon, G. Pre-Infection of Pigs with Mycoplasma Hyopneumoniae Modifies Outcomes of Infection with European Swine Influenza Virus of H1N1, but Not H1N2, Subtype. Vet. Microbiol. 2012, 157, 96–105. [Google Scholar] [CrossRef]
- Fablet, C.; Marois-Créhan, C.; Simon, G.; Grasland, B.; Jestin, A.; Kobisch, M.; Madec, F.; Rose, N. Infectious Agents Associated with Respiratory Diseases in 125 Farrow-to-Finish Pig Herds: A Cross-Sectional Study. Vet. Microbiol. 2012, 157, 152–163. [Google Scholar] [CrossRef]
- Loeffen, W.L.A.; Nodelijk, G.; Heinen, P.P.; van Leengoed, L.A.M.G.; Hunneman, W.A.; Verheijden, J.H.M. Estimating the Incidence of Influenza-Virus Infections in Dutch Weaned Piglets Using Blood Samples from a Cross-Sectional Study. Vet. Microbiol. 2003, 91, 295–308. [Google Scholar] [CrossRef]
- Vincent, A.L.; Lager, K.M.; Janke, B.H.; Gramer, M.R.; Richt, J.A. Failure of Protection and Enhanced Pneumonia with a US H1N2 Swine Influenza Virus in Pigs Vaccinated with an Inactivated Classical Swine H1N1 Vaccine. Vet. Microbiol. 2008, 126, 310–323. [Google Scholar] [CrossRef]
- World Organization for Animal Health. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; World Organization for Animal Health: Geneva, Switzerland, 2018. [Google Scholar]
- Olsen, C.W. The Emergence of Novel Swine Influenza Viruses in North America. Virus Res. 2002, 85, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Rose, N.; Hervé, S.; Eveno, E.; Barbier, N.; Eono, F.; Dorenlor, V.; Andraud, M.; Camsusou, C.; Madec, F.; Simon, G. Dynamics of Influenza A Virus Infections in Permanently Infected Pig Farms: Evidence of Recurrent Infections, Circulation of Several Swine Influenza Viruses and Reassortment Events. Vet. Res. 2013, 44, 72. [Google Scholar] [CrossRef]
- Simon-Grifé, M.; Martín-Valls, G.E.; Vilar, M.J.; Busquets, N.; Mora-Salvatierra, M.; Bestebroer, T.M.; Fouchier, R.A.; Martín, M.; Mateu, E.; Casal, J. Swine Influenza Virus Infection Dynamics in Two Pig Farms; Results of a Longitudinal Assessment. Vet. Res. 2012, 43, 24. [Google Scholar] [CrossRef]
- Maldonado, J.; Van Reeth, K.; Riera, P.; Sitjà, M.; Saubi, N.; Espuña, E.; Artigas, C. Evidence of the Concurrent Circulation of H1N2, H1N1 and H3N2 Influenza A Viruses in Densely Populated Pig Areas in Spain. Vet. J. 2006, 172, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Van Reeth, K.; Brown, I.H.; Dürrwald, R.; Foni, E.; Labarque, G.; Lenihan, P.; Maldonado, J.; Markowska-Daniel, I.; Pensaert, M.; Pospisil, Z.; et al. Seroprevalence of H1N1, H3N2 and H1N2 Influenza Viruses in Pigs in Seven European Countries in 2002–2003. Influ. Other Respir. Viruses 2008, 2, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Madec, F.; Gourreau, J.M.; Kaiser, C.; Le Dantec, J.; Vannier, P.; Aymard, M. Etude de la persistance d’une activite du virus grippal H1N1 (swine) dans les elevages porcins en dehors des phases epidemiques. Comp. Immunol. Microbiol. Infect. Dis. 1985, 8, 247–258. [Google Scholar] [CrossRef]
- Kyriakis, C.S.; Papatsiros, V.G.; Athanasiou, L.V.; Valiakos, G.; Brown, I.H.; Simon, G.; Van Reeth, K.; Tsiodras, S.; Spyrou, V.; Billinis, C. Serological Evidence of Pandemic H1N1 Influenza Virus Infections in Greek Swine. Zoonoses Public Health 2016, 63, 370–373. [Google Scholar] [CrossRef]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 10 August 2023).
- Douglas, B.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Canty, A.; Ripley, B. Boot: Bootstrap R (S-Plus) Functions. R Package Version 2022, 1, 3–18. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Thacker, B.J.; Cain, C.M.; Janke, B.H.; Kinker, D.R. Swine Influenza Virus Passive Antibody Levels in Pigs from Vaccinated or Nonvaccinated Sows; Iowa State University: Ames, IA, USA, 1998. [Google Scholar]
- Pardo, F.O.C.; Wayne, S.; Culhane, M.R.; Perez, A.; Allerson, M.; Torremorell, M. Effect of Strain-Specific Maternally-Derived Antibodies on Influenza A Virus Infection Dynamics in Nursery Pigs. PLoS ONE 2019, 14, e0210700. [Google Scholar] [CrossRef]
- Cador, C.; Hervé, S.; Andraud, M.; Gorin, S.; Paboeuf, F.; Barbier, N.; Quéguiner, S.; Deblanc, C.; Simon, G.; Rose, N. Maternally-Derived Antibodies Do Not Prevent Transmission of Swine Influenza A Virus between Pigs. Vet. Res. 2016, 47, 86. [Google Scholar] [CrossRef] [PubMed]
- Corzo, C.A.; Allerson, M.; Gramer, M.; Morrison, R.B.; Torremorell, M. Detection of Airborne Influenza a Virus in Experimentally Infected Pigs with Maternally Derived Antibodies. Transbound. Emerg. Dis. 2014, 61, 28–36. [Google Scholar] [CrossRef]
- Ferreira, J.B.; Grgić, H.; Friendship, R.; Wideman, G.; Nagy, É.; Poljak, Z. Longitudinal Study of Influenza A Virus Circulation in a Nursery Swine Barn. Vet. Res. 2017, 48, 63. [Google Scholar] [CrossRef] [PubMed]
- Ryt-Hansen, P.; Larsen, I.; Kristensen, C.S.; Krog, J.S.; Larsen, L.E. Limited Impact of Influenza A Virus Vaccination of Piglets in an Enzootic Infected Sow Herd. Res. Vet. Sci. 2019, 127, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Allerson, M.W.; Davies, P.R.; Gramer, M.R.; Torremorell, M. Infection Dynamics of Pandemic 2009 H1N1 Influenza Virus in a Two-Site Swine Herd. Transbound Emerg. Dis. 2014, 61, 490–499. [Google Scholar] [CrossRef]
- Cador, C.; Rose, N.; Willem, L.; Andraud, M. Maternally Derived Immunity Extends Swine Influenza A Virus Persistence within Farrow-to-Finish Pig Farms: Insights from a Stochastic Event-Driven Metapopulation Model. PLoS ONE 2016, 11, e0163672. [Google Scholar] [CrossRef]
- Diaz, A.; Marthaler, D.; Corzo, C.; Muñoz-Zanzi, C.; Sreevatsan, S.; Culhane, M.; Torremorell, M. Multiple Genome Constellations of Similar and Distinct Influenza A Viruses Co-Circulate in Pigs During Epidemic Events. Sci. Rep. 2017, 7, 11886. [Google Scholar] [CrossRef]
- Markowska-Daniel, I.; Pomorska-Mól, M.; Pejsak, Z. The Influence of Age and Maternal Antibodies on the Postvaccinal Response against Swine Influenza Viruses in Pigs. Vet. Immunol. Immunopathol. 2011, 142, 81–86. [Google Scholar] [CrossRef]
- Deblanc, C.; Hervé, S.; Gorin, S.; Cador, C.; Andraud, M.; Quéguiner, S.; Barbier, N.; Paboeuf, F.; Rose, N.; Simon, G. Maternally-Derived Antibodies Do Not Inhibit Swine Influenza Virus Replication in Piglets but Decrease Excreted Virus Infectivity and Impair Post-Infectious Immune Responses. Vet. Microbiol. 2018, 216, 142–152. [Google Scholar] [CrossRef]
- de Boer, G.F.; Back, W.; Osterhaus, A.D. An ELISA for Detection of Antibodies against Influenza A Nucleoprotein in Humans and Various Animal Species. Arch. Virol. 1990, 115, 47–61. [Google Scholar] [CrossRef]
- Fleck, R.; Behrens, A. Evaluation of a Maternal Antibody Decay Curve for H1N1 Swine Influenza Virus Using the Hemagglutination Inhibition and the IDEXX ELISA Tests; American Association of Swine Veterinarians: Perry, IA, USA, 2002. [Google Scholar]
- Takemae, N.; Parchariyanon, S.; Ruttanapumma, R.; Hiromoto, Y.; Hayashi, T.; Uchida, Y.; Saito, T. Swine Influenza Virus Infection in Different Age Groups of Pigs in Farrow-to-Finish Farms in Thailand. Virol. J. 2011, 8, 537. [Google Scholar] [CrossRef] [PubMed]
- Davidson, N.; Stroud, D. African-Western Eurasian Flyways: Current Knowledge, Population Status and Future Challenges; The Stationery Office: Edinburgh, UK, 2006; pp. 63–73. [Google Scholar]
- Lagring, R.; Mpazigou, F.; Koedam, N.; Chan, C.W. Monitoring Wetlands along the ‘Western-Greek Bird Migration Route’. Spatio-Temporal Change Detection Using Remote Sensing and GIS in Logarou Lagoon, Western Greece: A Pilot Study. In Proceedings of the 6th European Conference on Ecological Restoration, Ghent, Begium, 8–12 September 2008. [Google Scholar]
- Merken, R.; Deboelpaep, E.; Teunen, J.; Saura, S.; Koedam, N. Wetland Suitability and Connectivity for Trans-Saharan Migratory Waterbirds. PLoS ONE 2015, 10, e0135445. [Google Scholar] [CrossRef]
- Karris, G.; Barboutis, C.; Chatzidakis, D.; Xirouchakis, S.; Vardanis, Y.; Evangelidis, A.; Dimitriadis, C.; Fransson, T. Arriving to Europe Extremely Lean—Spring Migration of Some Passerines at Three Small Greek Islands. In Proceedings of the 10th Conference of the European Ornithologists’ Union, Badajoz, Spain, 24–28 August 2015. [Google Scholar]
- Karris, G.; Xirouchakis, S.M.; Grivas, C.; Voulgaris, M.-D.; Sfenthourakis, S.; Giokas, S. Estimating the Population Size of Scopoli’s Shearwaters (Calonectris Diomedea) Frequenting the Strofades Islands (Ionian Sea, Western Greece) by Raft Counts and Surveys of Breeding Pairs. North-West. J. Zool. 2017, 13, 101–108. [Google Scholar]
- Koutoulis, K. Present and Future of Poultry Industry in Greece. In Proceedings of the 12th Pan-Hellenic Veterinary Congress, Athens, Greece, 6 April 2012. [Google Scholar]
- Brown, J.D.; Luttrell, M.P.; Berghaus, R.D.; Kistler, W.; Keeler, S.P.; Howey, A.; Wilcox, B.; Hall, J.; Niles, L.; Dey, A.; et al. Prevalence of Antibodies to Type a Influenza Virus in Wild Avian Species Using Two Serologic Assays. J. Wildl. Dis. 2010, 46, 896–911. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control; European Union Reference Laboratory for Avian Influenza; Adlhoch, C.; Fusaro, A.; Gonzales, J.L.; Kuiken, T.; Marangon, S.; Mirinaviciute, G.; Niqueux, É.; et al. Avian Influenza Overview December 2022–March 2023. EFSA J. 2023, 21, e07917. [Google Scholar] [CrossRef]
- Stallknecht, D.E. Impediments to Wildlife Disease Surveillance, Research, and Diagnostics. Curr. Top. Microbiol. Immunol. 2007, 315, 445–461. [Google Scholar] [CrossRef] [PubMed]
- Blagodatski, A.; Trutneva, K.; Glazova, O.; Mityaeva, O.; Shevkova, L.; Kegeles, E.; Onyanov, N.; Fede, K.; Maznina, A.; Khavina, E.; et al. Avian Influenza in Wild Birds and Poultry: Dissemination Pathways, Monitoring Methods, and Virus Ecology. Pathogens 2021, 10, 630. [Google Scholar] [CrossRef]
- Tsiouris, V.; Mavromati, N.; Mantzios, T.; Kiskinis, K.; Sossidou, E.; Georgopoulou, I. The Role of Poultry Farms and Wild Birds During 2016–2017 Avian Influenza Epizootic in Europe. J. Hell. Vet. Med. Soc. 2021, 72, 2917–2924. [Google Scholar] [CrossRef]
- Nurhayati; Wibawa, H.; Mahawan, T.; Zenal, F.C.; Schoonman, L.; Pfeiffer, C.N.; Stevenson, M.; Punyapornwithaya, V. Herd-Level Risk Factors for Swine Influenza (H1N1) Seropositivity in West Java and Banten Provinces of Indonesia (2016–2017). Front. Vet. Sci. 2020, 7, 544279. [Google Scholar] [CrossRef]
- Brown, J.; Williams, O.; Finch, S.; Porter, B.; Bunn, J. Influenza Surveillance in Swine—Procedures. Available online: https://www.aphis.usda.gov/animal_health/animal_dis_spec/swine/downloads/influenza_surv_swine_proc_manual.pdf (accessed on 10 August 2023).
- OIE/FAO Strategy Document for Surveillance and Monitoring of Influenzas in Animals. Available online: https://www.fao.org/animal-health/situation-updates/global-aiv-with-zoonotic-potential/en (accessed on 10 August 2023).
- Kuiken, T.; Leighton, F.A.; Fouchier, R.A.M.; LeDuc, J.W.; Peiris, J.S.M.; Schudel, A.; Stöhr, K.; Osterhaus, A.D.M.E. Public Health. Pathogen Surveillance in Animals. Science 2005, 309, 1680–1681. [Google Scholar] [CrossRef]
- Harder, T.; de Wit, S.; Gonzales, J.L.; Ho, J.H.P.; Mulatti, P.; Prajitno, T.Y.; Stegeman, A. Epidemiology-Driven Approaches to Surveillance in HPAI-Vaccinated Poultry Flocks Aiming to Demonstrate Freedom from Circulating HPAIV. Biologicals 2023, 83, 101694. [Google Scholar] [CrossRef]
- Lee, S.; Ntakiyisumba, E.; Seol, J.-W.; Won, G. Risk Factors Influencing Swine Influenza A Virus Infection in South Korea: A Systematic Review and Meta-Analysis of Prevalence and Seroprevalence. Front. Vet. Sci. 2022, 9, 1003351. [Google Scholar] [CrossRef]
- Senthilkumar, D.; Kulkarni, D.D.; Venkatesh, G.; Gupta, V.; Patel, P.; Dixit, M.; Singh, B.; Bhatia, S.; Tosh, C.; Dubey, S.C.; et al. Widespread Prevalence of Antibodies Against Swine Influenza A (Pdm H1N1 09) Virus in Pigs of Eastern Uttar Pradesh, India. Curr. Microbiol. 2021, 78, 2753–2761. [Google Scholar] [CrossRef]
- Anderson, B.D.; Ma, M.-J.; Wang, G.-L.; Bi, Z.-Q.; Lu, B.; Wang, X.-J.; Wang, C.-X.; Chen, S.-H.; Qian, Y.-H.; Song, S.-X.; et al. Prospective Surveillance for Influenza A Virus in Chinese Swine Farms. Emerg. Microbes Infect. 2018, 7, 1–10. [Google Scholar] [CrossRef]
- Ma, M.-J.; Wang, G.-L.; Anderson, B.D.; Bi, Z.-Q.; Lu, B.; Wang, X.-J.; Wang, C.-X.; Chen, S.-H.; Qian, Y.-H.; Song, S.-X.; et al. Evidence for Cross-Species Influenza A Virus Transmission Within Swine Farms, China: A One Health, Prospective Cohort Study. Clin. Infect. Dis. 2018, 66, 533–540. [Google Scholar] [CrossRef]
- Borkenhagen, L.K.; Wang, G.-L.; Simmons, R.A.; Bi, Z.-Q.; Lu, B.; Wang, X.-J.; Wang, C.-X.; Chen, S.-H.; Song, S.-X.; Li, M.; et al. High Risk of Influenza Virus Infection Among Swine Workers: Examining a Dynamic Cohort in China. Clin. Infect. Dis. 2020, 71, 622–629. [Google Scholar] [CrossRef]
- Pitzer, V.E.; Aguas, R.; Riley, S.; Loeffen, W.L.A.; Wood, J.L.N.; Grenfell, B.T. High Turnover Drives Prolonged Persistence of Influenza in Managed Pig Herds. J. R. Soc. Interface 2016, 13, 20160138. [Google Scholar] [CrossRef]
- Salvesen, H.A.; Whitelaw, C.B.A. Current and prospective control strategies of influenza A virus in swine. Porc. Health Manag. 2021, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Culhane, M.R.; Schroeder, D.C.; Cheeran, M.C.-J.; Galina Pantoja, L.; Jansen, M.L.; Torremorell, M. Vaccination Decreases the Risk of Influenza A Virus Reassortment but Not Genetic Variation in Pigs. eLife 2022, 11, e78618. [Google Scholar] [CrossRef] [PubMed]
- López-Valiñas, Á.; Valle, M.; Wang, M.; Darji, A.; Cantero, G.; Chiapponi, C.; Segalés, J.; Ganges, L.; Núñez, J.I. Vaccination against Swine Influenza in Pigs Causes Different Drift Evolutionary Patterns upon Swine Influenza Virus Experimental Infection and Reduces the Likelihood of Genomic Reassortments. Front. Cell. Infect. Microbiol. 2023, 13, 197. [Google Scholar] [CrossRef] [PubMed]
- Baudon, E.; Peyre, M.; Peiris, M.; Cowling, B.J. Epidemiological features of influenza circulation in swine populations: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0179044. [Google Scholar] [CrossRef] [PubMed]
Age Group | No. of Animals Sampled | No. of Positive Samples | Seroprevalence within the Sample |
---|---|---|---|
Gilts | 146 | 69 | 47% |
Sows parity 1–2 | 161 | 85 | 53% |
Sows parity 3–4 | 136 | 82 | 60% |
Sows parity 5–6 | 134 | 83 | 62% |
Pigs 4 weeks | 181 | 60 | 33% |
Pigs 7 weeks | 171 | 27 | 16% |
Pigs 12 weeks | 180 | 18 | 10% |
Pigs 16 weeks | 155 | 31 | 20% |
Pigs 20 weeks | 152 | 43 | 28% |
Total | 1416 | 498 | 35% |
Age Group | swIAV Vaccination | |||||
---|---|---|---|---|---|---|
No | Yes | |||||
No. of Samples | No. of Samples | Seroprevalence within the Sample | No. of Samples | No. of Samples | Seroprevalence within the Sample | |
Gilts | 88 | 24 | 27% | 58 | 45 | 78% |
Sows, parity 1–2 | 97 | 33 | 34% | 64 | 52 | 81% |
Sows, parity 3–4 | 80 | 30 | 38% | 56 | 52 | 93% |
Sows, parity 5–6 | 81 | 36 | 44% | 53 | 47 | 89% |
Pigs 4 weeks | 113 | 20 | 18% | 68 | 40 | 59% |
Pigs 7 weeks | 103 | 11 | 11% | 68 | 16 | 24% |
Pigs 12 weeks | 110 | 10 | 9% | 70 | 8 | 11% |
Pigs 16 weeks | 88 | 8 | 9% | 67 | 23 | 34% |
Pigs 20 weeks | 88 | 19 | 22% | 64 | 24 | 38% |
Total | 848 | 191 | 23% | 568 | 307 | 54% |
Age Group | Location | |||||
---|---|---|---|---|---|---|
North Greece | Thessaly | West Greece | Central Greece | South Greece | Crete | |
a | ||||||
Gilts | 10/13 (77%) | 4/5 (80%) | 14/16 (88%) | 11/16 (69%) | 1/3 (33%) | 5/5 (100%) |
Sows, parity 1–2 | 13/14 (93%) | 0/5 (0%) | 20/24 (83%) | 13/13 (100%) | 1/3 (33%) | 5/5 (100%) |
Sows, parity 3–4 | 13/13 (100%) | 0/0 (0%) | 21/23 (91%) | 12/12 (100%) | 1/3 (33%) | 5/5 (100%) |
Sows, parity 5–6 | 12/12 (100%) | 0/0 (0%) | 13/15 (87%) | 16/18 (89&) | 1/3 (33%) | 5/5 (100%) |
Pigs 4 weeks | 12/13 (92%) | 4/5 (80%) | 8/24 (33%) | 11/18 (61&) | 0/3 (0%) | 5/5 (100%) |
Pigs 7 weeks | 3/13 (23%) | 0/5 (0%) | 10/24 (42%) | 0/18 (0%) | 0/3 (0%) | 3/5 (60%) |
Pigs 12 weeks | 1/13 (8%) | 0/5 (0%) | 4/27 (15%) | 2/17 (12%) | 0/3 (0%) | 1/5 (20%) |
Pigs 16 weeks | 9/13 (69%) | 1/5 (20%) | 4/23 (17%) | 6/18 (33%) | 0/3 (0%) | 3/5 (60%) |
Pigs 20 weeks | 12/13 (92%) | 0/5 (0%) | 2/22 (9%) | 7/16 (44%) | 0/3 (0%) | 3/5 (60%) |
Total | 85/117 (73%) | 9/35 (26%) | 96/198 (48%) | 78/146 (53%) | 4/27 (15%) | 35/45 (78%) |
b | ||||||
Gilts | 9/21 (43%) | 2/11 (18%) | 7/24 (29%) | 3/13 (23%) | 3/18 (17%) | 0/1 (0%) |
Sows, parity 1–2 | 14/22 (64%) | 3/13 (23%) | 9/30 (30%) | 3/16 (19%) | 2/11 (18%) | 2/5 (40%) |
Sows, parity 3–4 | 4/13 (31%) | 7/10 (70%) | 11/25 (44%) | 2/15 (13%) | 5/11 (45%) | 1/6 (17%) |
Sows, parity 5–6 | 6/18 (33%) | 6/7 (86%) | 15/28 (54%) | 1/13 (8%) | 4/11 (36%) | 4/4 (100%) |
Pigs 4 weeks | 9/37 (24%) | 2/16 (12%) | 7/27 (26%) | 0/14 (0%) | 2/14 (14%) | 0/5 (0%) |
Pigs 7 weeks | 3/37 (8%) | 2/10 (20%) | 4/22 (18%) | 2/15 (13%) | 0/14 (0%) | 0/5 (0%) |
Pigs 12 weeks | 2/37 (5%) | 3/16 (19%) | 2/23 (9%) | 3/15 (20%) | 0/14 (0%) | 0/5 (0%) |
Pigs 16 weeks | 1/27 (4%) | 4/11 (36%) | 1/19 (5%) | 2/15 (13%) | 0/11 (0%) | 0/5 (0%) |
Pigs 20 weeks | 4/24 (17%) | 6/16 (38%) | 2/17 (12%) | 5/15 (33%) | 2/11 (18%) | 0/5 (0%) |
Total | 52/236 (22%) | 35/110 (32%) | 58/215 (27%) | 21/131 (16%) | 18/115 (16%) | 7/41 (17%) |
Variable | Level | Coefficient (95% CI) | p-Value |
---|---|---|---|
Reference level | Gilts in swIAV-unvaccinated farms | 0 | - |
Age group | Sows, parity 1–2 | 0.227 (−0.27; 0.72) | 0.37 |
Sows, parity 3–4 | 0.604 (0.08; 1.13) | 0.02 * | |
Sows, parity 5–6 | 0.712 (0.19; 1.24) | 0.008 * | |
Pigs 4 weeks | −0.738 (−1.23; −0.24) | 0.003 * | |
Pigs 7 weeks | −1.91 (−2.5; −1.34) | <0.001 * | |
Pigs 12 weeks | −2.46 (−3.11; −1.85) | <0.001 * | |
Pigs 16 weeks | −1.64 (−2.21; −1.08) | <0.001 * | |
Pigs 20 weeks | −1.1 (−1.62; −0.56) | <0.001 * | |
swIAV Vaccination | Yes | 1.76 (1.48; 2.04) | <0.001 * |
No | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papatsiros, V.G.; Papakonstantinou, G.I.; Meletis, E.; Koutoulis, K.; Athanasakopoulou, Z.; Maragkakis, G.; Labronikou, G.; Terzidis, I.; Kostoulas, P.; Billinis, C. Seroprevalence of Swine Influenza A Virus (swIAV) Infections in Commercial Farrow-to-Finish Pig Farms in Greece. Vet. Sci. 2023, 10, 599. https://doi.org/10.3390/vetsci10100599
Papatsiros VG, Papakonstantinou GI, Meletis E, Koutoulis K, Athanasakopoulou Z, Maragkakis G, Labronikou G, Terzidis I, Kostoulas P, Billinis C. Seroprevalence of Swine Influenza A Virus (swIAV) Infections in Commercial Farrow-to-Finish Pig Farms in Greece. Veterinary Sciences. 2023; 10(10):599. https://doi.org/10.3390/vetsci10100599
Chicago/Turabian StylePapatsiros, Vasileios G., Georgios I. Papakonstantinou, Eleftherios Meletis, Konstantinos Koutoulis, Zoi Athanasakopoulou, Georgios Maragkakis, Georgia Labronikou, Ilias Terzidis, Polychronis Kostoulas, and Charalambos Billinis. 2023. "Seroprevalence of Swine Influenza A Virus (swIAV) Infections in Commercial Farrow-to-Finish Pig Farms in Greece" Veterinary Sciences 10, no. 10: 599. https://doi.org/10.3390/vetsci10100599
APA StylePapatsiros, V. G., Papakonstantinou, G. I., Meletis, E., Koutoulis, K., Athanasakopoulou, Z., Maragkakis, G., Labronikou, G., Terzidis, I., Kostoulas, P., & Billinis, C. (2023). Seroprevalence of Swine Influenza A Virus (swIAV) Infections in Commercial Farrow-to-Finish Pig Farms in Greece. Veterinary Sciences, 10(10), 599. https://doi.org/10.3390/vetsci10100599