TM–IoV: A First-of-Its-Kind Multilabeled Trust Parameter Dataset for Evaluating Trust in the Internet of Vehicles
Abstract
:1. Introduction and Background
2. Data Description
3. Methods
3.1. Trustor
3.2. Trustee
3.3. Packet Delivery Ratio (PDR)
3.4. Similarity (Sim)
3.4.1. External Similarity (ES)
3.4.2. Internal Similarity (IS)
3.5. Familiarity (Fam)
3.5.1. External Familiarity (EF)
3.5.2. Internal Familiarity (IF)
3.6. Reward/Punishment (RP)
3.7. Context
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, T.; Yi, J.; Wang, X.; Xiao, H.; Xu, C. Interaction Trust-Driven Data Distribution for Vehicle Social Networks: A Matching Theory Approach. IEEE Trans. Comput. Soc. Syst. 2024, 11, 4071–4086. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, R.; Wu, D.; Yang, B.; Zhang, P. Blockchain-Enabled Trust Management Model for the Internet of Vehicles. IEEE Internet Things J. 2023, 10, 12044–12054. [Google Scholar] [CrossRef]
- Adhikari, M.; Munusamy, A.; Hazra, A.; Menon, V.G.; Anavangot, V.; Puthal, D. Security in Edge-Centric Intelligent Internet of Vehicles: Issues and Remedies. IEEE Consum. Electron. Mag. 2022, 11, 24–31. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, F.; Yang, X.; Luo, J.; Yi, X.; Ning, J.; Huang, X. Secure Reputation-Based Authentication With Malicious Detection in VANETs. IEEE Trans. Dependable Secur. Comput. 2024, 1–15. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Zhou, Y. User-Centered Cooperative-Communication Strategy for 5G Internet of Vehicles. IEEE Internet Things J. 2022, 9, 13486–13497. [Google Scholar] [CrossRef]
- Shokrollahi, S.; Dehghan, M. TGRV: A Trust-Based Geographic Routing Protocol for VANETs. Ad Hoc Netw. 2023, 140, 103062. [Google Scholar] [CrossRef]
- Rathee, G.; Kumar, A.; Kerrache, C.A.; Calafate, C. A Trust Management Solution for 5G-based Future Generation Internet of Vehicles. Comput. Netw. 2024, 248, 110501. [Google Scholar] [CrossRef]
- Abbas, G.; Ullah, S.; Waqas, M.; Abbas, Z.H.; Bilal, M. A Position-based Reliable Emergency Message Routing Scheme for Road Safety in VANETs. Comput. Netw. 2022, 213, 109097. [Google Scholar] [CrossRef]
- Ullah, S.; Abbas, G.; Waqas, M.; Abbas, Z.H.; Khan, A.U. RSU Assisted Reliable Relay Selection for Emergency Eessage Routing in Intermittently Connected VANETs. Wirel. Netw. 2023, 29, 1311–1332. [Google Scholar] [CrossRef]
- Monfared, S.K.; Shokrollahi, S. DARVAN: A Fully Decentralized Anonymous and Reliable Routing for VANets. Comput. Netw. 2023, 223, 109561. [Google Scholar] [CrossRef]
- Guo, J.; Li, X.; Liu, Z.; Ma, J.; Yang, C.; Zhang, J.; Wu, D. TROVE: A Context-Awareness Trust Model for VANETs Using Reinforcement Learning. IEEE Internet Things J. 2020, 7, 6647–6662. [Google Scholar] [CrossRef]
- Tripathi, K.N.; Sharma, S.C. A Trust Based Model (TBM) to Detect Rogue Nodes in Vehicular Ad-hoc Networks (VANETS). Int. J. Syst. Assur. Eng. Manag. 2020, 11, 426–440. [Google Scholar] [CrossRef]
- Kuang, Y.; Xu, H.; Jiang, R.; Liu, Z. GTMS: A Gated Linear Unit Based Trust Management System for Internet of Vehicles Using Blockchain Technology. In Proceedings of the IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Wuhan, China, 9–11 December 2022; pp. 28–35. [Google Scholar]
- Li, W.; Meng, W.; Kwok, L.F. Surveying Trust-Based Collaborative Intrusion Detection: State-of-the-Art, Challenges and Future Directions. IEEE Commun. Surv. Tutorials 2022, 24, 280–305. [Google Scholar] [CrossRef]
- Kaur, G.; Kakkar, D. Hybrid Optimization Enabled Trust-based Secure Routing with Deep Learning-based Attack Detection in VANET. Ad Hoc Netw. 2022, 136, 102961. [Google Scholar] [CrossRef]
- Li, W.; Meng, W.; Yang, L.T. Enhancing Trust-based Medical Smartphone Networks via Blockchain-based Traffic Sampling. In Proceedings of the IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Shenyang, China, 20–22 October 2021; pp. 122–129. [Google Scholar]
- Wazid, M.; Das, A.K.; Shetty, S. TACAS-IoT: Trust Aggregation Certificate-Based Authentication Scheme for Edge-Enabled IoT Systems. IEEE Internet Things J. 2022, 9, 22643–22656. [Google Scholar] [CrossRef]
- Fernandes, C.P.; Montez, C.; Adriano, D.D.; Boukerche, A.; Wangham, M.S. A Blockchain-based Reputation System for Trusted VANET Nodes. Ad Hoc Netw. 2023, 140, 103071. [Google Scholar] [CrossRef]
- Aslan, M.; Sen, S. A Dynamic Trust Management Model for Vehicular Ad Hoc Networks. Veh. Commun. 2023, 2, 11304. [Google Scholar] [CrossRef]
- Alalwany, E.; Mahgoub, I. Security and Trust Management in the Internet of Vehicles (IoV): Challenges and Machine Learning Solutions. Sensors 2024, 24, 368. [Google Scholar] [CrossRef]
- Zhang, S.; He, R.; Xiao, Y.; Liu, Y. A Three-Factor Based Trust Model for Anonymous Bacon Message in VANETs. IEEE Trans. Veh. Technol. 2023, 72, 11304–11317. [Google Scholar] [CrossRef]
- Nazih, O.; Benamar, N.; Lamaazi, H.; Choaui, H. Towards Secure and Trustworthy Vehicular Fog Computing: A Survey. IEEE Access 2024, 12, 35154–35171. [Google Scholar] [CrossRef]
- Mahmood, A.; Sheng, Q.Z.; Zhang, W.E.; Wang, Y.; Sagar, S. Towards a Distributed Trust Management System for Misbehavior Detection in the Internet of Vehicles. ACM Trans. Cyber-Phys. Syst. 2023, 7, 1–25. [Google Scholar] [CrossRef]
- Sagar, S.; Mahmood, A.; Sheng, Q.Z.; Munazza, Z.; Farhan, S. Can We Quantify Trust? Towards a Trust-based Resilient SIoT Network. Computing 2024, 106, 557–577. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, D.; Wu, Y.; Zhong, H. Service Recommendation Model Based on Trust and QoS for Social Internet of Things. IEEE Trans. Serv. Comput. 2023, 16, 3736–3750. [Google Scholar] [CrossRef]
- Wang, Y.X.; Mahmood, A.; Sabri, M.F.M.; Zen, H.; Kho, L.C. MESMERIC: Machine Learning-based Trust Management Mechanism for the Internet of Vehicles. Sensors 2024, 24, 863. [Google Scholar] [CrossRef]
- Mahmood, A.; Siddiqui, S.A.; Sheng, Q.Z.; Zhang, W.E.; Suzuki, H.; Ni, W. Trust on Wheels: Towards Secure and Resource Efficient IoV Networks. Computing 2022, 104, 1337–1358. [Google Scholar] [CrossRef]
- Qi, J.X.; Zheng, N.; Xu, M.; Chen, P.; Li, W.Q. A Hybrid-Trust-based Emergency Message Dissemination Model for Vehicular Ad Hoc Networks. J. Inf. Secur. Appl. 2024, 81, 103699. [Google Scholar] [CrossRef]
- Azizi, M.; Shokrollahi, S. RTRV: An RSU-assisted Trust-based Routing Protocol for VANETs. Ad Hoc Netw. 2024, 154, 103387. [Google Scholar] [CrossRef]
- Lam, C.C.; Song, Y.; Cao, Y.; Zhang, Y.; Cai, B.; Ni, Q. Multidimensional Trust Evidence Fusion and Path-Backtracking Mechanism for Trust Management in VANETs. IEEE Internet Things J. 2024, 11, 18619–18634. [Google Scholar]
- Sagar, S.; Mahmood, A.; Sheng, Q.Z.; Zhang, W.E. Trust Computational Heuristic for Social Internet of Things: A Machine Learning-based Approach. In Proceedings of the IEEE International Conference on Communications (ICC), Virtual, 7–11 June 2020; pp. 1–6. [Google Scholar]
- Mao, W.; Hu, T.; Zhao, W. Reliable Task Offloading Mechanism based on Trusted Roadside Unit Service for Internet of Vehicles. Ad Hoc Netw. 2023, 139, 103045. [Google Scholar] [CrossRef]
Trustor | Trustee | PDR | Sim | ES | IS | Fam | EF | IF | RP | Context |
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0.7113 | 0.6833 | 1 | 0.3666 | 0.6801 | 1.0000 | 0.3602 | 0.5329 | 0.6 |
0 | 10 | 0.9625 | 0.9047 | 1 | 0.8094 | 0.6083 | 1.0000 | 0.2166 | 0.9271 | 0.8 |
0 | 78 | 0.7849 | 0.2117 | 0 | 0.4235 | 0.6138 | 1.0000 | 0.2276 | 0.6330 | 0.4 |
. | . | . | . | . | . | . | . | . | . | . |
5 | 9 | 0.7617 | 0.7646 | 1 | 0.5292 | 0.7765 | 1.0000 | 0.5529 | 0.6002 | 0.6 |
5 | 25 | 0.1275 | 0.7946 | 1 | 0.5892 | 0.6257 | 1.0000 | 0.2513 | 0.0533 | 0.4 |
5 | 65 | 0.9199 | 0.7658 | 1 | 0.5315 | 0.5569 | 1.0000 | 0.1138 | 0.8491 | 0.6 |
. | . | . | . | . | . | . | . | . | . | . |
9 | 10 | 0.7832 | 0.4056 | 0 | 0.8112 | 1.0000 | 1.0000 | 1.0000 | 0.6305 | 0.6 |
9 | 37 | 0.1610 | 0.9599 | 1 | 0.9199 | 0.5500 | 1.0000 | 0.1000 | 0.0696 | 0.4 |
9 | 70 | 0.4428 | 0.8090 | 1 | 0.6581 | 0.6116 | 1.0000 | 0.2232 | 0.2536 | 0.4 |
. | . | . | . | . | . | . | . | . | . | . |
17 | 21 | 0.2089 | 0.4289 | 0 | 0.8578 | 0.9807 | 1.0000 | 0.9614 | 0.0947 | 0.4 |
17 | 53 | 0.8233 | 0.7468 | 1 | 0.4935 | 0.6421 | 1.0000 | 0.2841 | 0.6900 | 0.6 |
17 | 59 | 0.6767 | 0.6915 | 1 | 0.3830 | 0.6421 | 1.0000 | 0.2841 | 0.4898 | 0.6 |
. | . | . | . | . | . | . | . | . | . | . |
23 | 24 | 0.9312 | 0.8760 | 1 | 0.7519 | 1.0000 | 1.0000 | 1.0000 | 0.8693 | 0.8 |
23 | 67 | 0.3746 | 0.2880 | 0 | 0.5760 | 0.7328 | 1.0000 | 0.4656 | 0.2004 | 0.0 |
23 | 70 | 0.8733 | 0.7228 | 1 | 0.4456 | 0.6758 | 1.0000 | 0.3516 | 0.7694 | 0.6 |
. | . | . | . | . | . | . | . | . | . | . |
27 | 40 | 0.9835 | 0.8466 | 1 | 0.6933 | 0.8098 | 1.0000 | 0.6196 | 0.9674 | 0.8 |
27 | 53 | 0.3995 | 0.1174 | 0 | 0.2348 | 0.7963 | 1.0000 | 0.5926 | 0.2191 | 0.0 |
27 | 74 | 0.7684 | 0.7259 | 1 | 0.4519 | 0.7694 | 1.0000 | 0.5388 | 0.6095 | 0.6 |
. | . | . | . | . | . | . | . | . | . | . |
35 | 36 | 0.7692 | 0.1149 | 0 | 0.2298 | 0.6487 | 1.0000 | 0.2973 | 0.6107 | 0.4 |
35 | 37 | 0.5302 | 0.8996 | 1 | 0.7993 | 0.8904 | 1.0000 | 0.7807 | 0.3314 | 0.6 |
35 | 54 | 0.1979 | 0.7465 | 1 | 0.4929 | 0.6607 | 1.0000 | 0.3213 | 0.0887 | 0.4 |
. | . | . | . | . | . | . | . | . | . | . |
40 | 41 | 0.5738 | 0.7033 | 1 | 0.4067 | 0.5661 | 1.0000 | 0.1321 | 0.3747 | 0.6 |
40 | 45 | 0.3765 | 0.6316 | 1 | 0.2632 | 0.6867 | 1.0000 | 0.3733 | 0.2018 | 0.4 |
40 | 59 | 0.7693 | 0.2638 | 0 | 0.5276 | 1.0000 | 1.0000 | 1.0000 | 0.6108 | 0.6 |
. | . | . | . | . | . | . | . | . | . | . |
43 | 45 | 0.4167 | 0.8005 | 1 | 0.6009 | 0.5899 | 1.0000 | 0.1797 | 0.2325 | 0.4 |
43 | 52 | 0.2337 | 0.7170 | 1 | 0.4339 | 0.6113 | 1.0000 | 0.2225 | 0.1086 | 0.4 |
43 | 58 | 0.9459 | 0.6806 | 1 | 0.3611 | 0.8295 | 1.0000 | 0.6590 | 0.8961 | 0.8 |
. | . | . | . | . | . | . | . | . | . | . |
50 | 52 | 0.4822 | 0.7346 | 1 | 0.4692 | 1.0000 | 1.0000 | 1.0000 | 0.2873 | 0.6 |
50 | 55 | 0.5339 | 0.8764 | 1 | 0.7527 | 1.0000 | 1.0000 | 1.0000 | 0.3350 | 0.6 |
50 | 62 | 0.7857 | 0.8393 | 1 | 0.6785 | 0.6659 | 1.0000 | 0.3317 | 0.6341 | 0.6 |
. | . | . | . | . | . | . | . | . | . | . |
54 | 57 | 0.6790 | 0.8617 | 1 | 0.7234 | 1.0000 | 1.0000 | 1.0000 | 0.4926 | 0.6 |
54 | 61 | 0.5491 | 0.8709 | 1 | 0.7417 | 0.7000 | 1.0000 | 0.4000 | 0.3498 | 0.6 |
54 | 75 | 0.3732 | 0.6680 | 1 | 0.3360 | 0.6025 | 1.0000 | 0.2049 | 0.1944 | 0.4 |
. | . | . | . | . | . | . | . | . | . | . |
60 | 61 | 0.6867 | 0.9094 | 1 | 0.8187 | 1.0000 | 1.0000 | 1.0000 | 0.5020 | 0.6 |
60 | 63 | 0.4465 | 0.8510 | 1 | 0.7020 | 0.6292 | 1.0000 | 0.2583 | 0.2567 | 0.4 |
60 | 75 | 0.3603 | 0.9066 | 1 | 0.8131 | 0.6722 | 1.0000 | 0.3444 | 0.1900 | 0.4 |
. | . | . | . | . | . | . | . | . | . | . |
63 | 65 | 0.8792 | 0.7572 | 1 | 0.5145 | 1.0000 | 1.0000 | 1.0000 | 0.7792 | 0.8 |
63 | 67 | 0.6562 | 0.7231 | 1 | 0.4462 | 1.0000 | 1.0000 | 1.0000 | 0.4653 | 0.6 |
63 | 74 | 0.4972 | 0.9154 | 1 | 0.8307 | 0.6249 | 1.0000 | 0.2497 | 0.3007 | 0.4 |
. | . | . | . | . | . | . | . | . | . | . |
70 | 71 | 0.5665 | 0.7666 | 1 | 0.5332 | 0.5753 | 1.0000 | 0.1505 | 0.3672 | 0.4 |
70 | 73 | 0.5879 | 0.7530 | 1 | 0.5059 | 0.6969 | 1.0000 | 0.3937 | 0.3893 | 0.6 |
70 | 76 | 0.9644 | 0.1530 | 0 | 0.3060 | 0.9343 | 1.0000 | 0.8685 | 0.9307 | 0.6 |
. | . | . | . | . | . | . | . | . | . | . |
74 | 75 | 0.1220 | 0.7480 | 1 | 0.4960 | 0.5500 | 1.0000 | 0.1000 | 0.0507 | 0.0 |
74 | 77 | 0.5229 | 0.7413 | 1 | 0.4826 | 0.9888 | 1.0000 | 0.9775 | 0.3245 | 0.6 |
74 | 78 | 0.2091 | 0.7263 | 1 | 0.4526 | 1.0000 | 1.0000 | 1.0000 | 0.0948 | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Mahmood, A.; Sabri, M.F.M.; Zen, H. TM–IoV: A First-of-Its-Kind Multilabeled Trust Parameter Dataset for Evaluating Trust in the Internet of Vehicles. Data 2024, 9, 103. https://doi.org/10.3390/data9090103
Wang Y, Mahmood A, Sabri MFM, Zen H. TM–IoV: A First-of-Its-Kind Multilabeled Trust Parameter Dataset for Evaluating Trust in the Internet of Vehicles. Data. 2024; 9(9):103. https://doi.org/10.3390/data9090103
Chicago/Turabian StyleWang, Yingxun, Adnan Mahmood, Mohamad Faizrizwan Mohd Sabri, and Hushairi Zen. 2024. "TM–IoV: A First-of-Its-Kind Multilabeled Trust Parameter Dataset for Evaluating Trust in the Internet of Vehicles" Data 9, no. 9: 103. https://doi.org/10.3390/data9090103
APA StyleWang, Y., Mahmood, A., Sabri, M. F. M., & Zen, H. (2024). TM–IoV: A First-of-Its-Kind Multilabeled Trust Parameter Dataset for Evaluating Trust in the Internet of Vehicles. Data, 9(9), 103. https://doi.org/10.3390/data9090103