SparrKULee: A Speech-Evoked Auditory Response Repository from KU Leuven, Containing the EEG of 85 Participants
Abstract
:1. Summary
2. Methods
2.1. Participants
2.2. Experimental Procedure
2.2.1. Behavioral
2.2.2. EEG
- Reference audiobook to which all participants listened, made for children and narrated by a male speaker. The length of the audiobook was around 15 min.
- Audiobooks made for children or adults. To keep the trial length around 15 min, some audiobooks were split into different partswhen the length exceeded 15 min.
- Audiobooks with noise made for children, to which speech-weighted noise was added, as explained below, to obtain an SNR of 5 dB.
- Podcasts from the series “Universiteit van Vlaanderen” (University of Flanders) [39]. Each episode of this podcast answers a scientific question, lasts around 15 min, and is narrated by a single speaker.
- Podcasts with video from the series “Universiteit van Vlaanderen” (University of Flanders) [39], while video material of the speaker was shown. The video material can be found on the website of Universiteit van Vlaanderen for each podcast separately. The video contains parts where the face of the speaker is visible.
- The dynamic range of the podcasts and podcasts with video was compressed by the producers of the stimuli, while that of the audiobooks was not.
2.2.3. Ses-Shortstories01
2.2.4. Ses-Varyingstories
2.3. Data Acquisition
2.3.1. EEG
2.3.2. Digitizer
2.4. Stimulus Preparation
2.5. Preprocessed Data
2.5.1. EEG
2.5.2. Speech Stimuli
2.6. Validation
2.6.1. Linear Forward/Backward Modeling
Model Training
Analysis
2.6.2. Non-Linear Models: Match-Mismatch Paradigm
Model Training
Analysis
3. Data Description
3.1. Raw Data
3.2. Stimuli
3.3. Preprocessed Data
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crosse, M.J.; Di Liberto, G.M.; Bednar, A.; Lalor, E.C. The multivariate temporal response function (mTRF) toolbox: A MATLAB toolbox for relating neural signals to continuous stimuli. Front. Hum. Neurosci. 2016, 10, 604. [Google Scholar] [CrossRef] [PubMed]
- Vanthornhout, J.; Decruy, L.; Wouters, J.; Simon, J.Z.; Francart, T. Speech Intelligibility Predicted from Neural Entrainment of the Speech Envelope. JARO-J. Assoc. Res. Otolaryngol. 2018, 19, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Iotzov, I.; Parra, L.C. EEG can predict speech intelligibility. J. Neural Eng. 2019, 16, 036008. [Google Scholar] [CrossRef] [PubMed]
- Thornton, M.; Mandic, D.; Reichenbach, T. Robust decoding of the speech envelope from EEG recordings through deep neural networks. J. Neural Eng. 2022, 19, 046007. [Google Scholar] [CrossRef]
- Accou, B.; Vanthornhout, J.; Hamme, H.V.; Francart, T. Decoding of the speech envelope from EEG using the VLAAI deep neural network. Sci. Rep. 2023, 13, 812. [Google Scholar] [CrossRef] [PubMed]
- Lesenfants, D.; Vanthornhout, J.; Verschueren, E.; Francart, T. Data-driven spatial filtering for improved measurement of cortical tracking of multiple representations of speech. J. Neural Eng. 2019, 16, 066017. [Google Scholar] [CrossRef] [PubMed]
- de Cheveigné, A.; Di Liberto, G.M.; Arzounian, D.; Wong, D.D.; Hjortkjær, J.; Fuglsang, S.; Parra, L.C. Multiway canonical correlation analysis of brain data. NeuroImage 2019, 186, 728–740. [Google Scholar] [CrossRef] [PubMed]
- de Cheveigné, A.; Slaney, M.; Fuglsang, S.A.; Hjortkjaer, J. Auditory stimulus-response modeling with a match-mismatch task. J. Neural Eng. 2021, 18, 046040. [Google Scholar] [CrossRef] [PubMed]
- de Taillez, T.; Kollmeier, B.; Meyer, B. Machine learning for decoding listeners’ attention from EEG evoked by continuous speech. Eur. J. Neurosci. 2017, 51, 1234–1241. [Google Scholar] [CrossRef] [PubMed]
- Monesi, M.J.; Accou, B.; Montoya-Martinez, J.; Francart, T.; Van hamme, H. An LSTM Based Architecture to Relate Speech Stimulus to Eeg. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing–Proceedings, Barcelona, Spain, 4–8 May 2020; pp. 941–945. [Google Scholar] [CrossRef]
- Jalilpour Monesi, M.; Accou, B.; Francart, T.; Van hamme, H. Extracting different levels of speech information from EEG using an LSTM-based model. In Proceedings of the Interspeech 2021, Brno, Czech Republic, 30 August–3 September 2021; International Speech Communication Association: Grenoble, France, 2021; pp. 526–530. [Google Scholar]
- Accou, B.; Monesi, M.J.; Van hamme, H.; Francart, T. Predicting speech intelligibility from EEG in a non-linear classification paradigm. J. Neural Eng. 2021, 18, 066008. [Google Scholar] [CrossRef]
- Ding, N.; Simon, J.Z. Emergence of neural encoding of auditory objects while listening to competing speakers. Proc. Natl. Acad. Sci. USA 2012, 109, 11854–11859. [Google Scholar] [CrossRef] [PubMed]
- Monesi, M.J.; Bollens, L.; Accou, B.; Vanthornhout, J.; Van Hamme, H.; Francart, T. Auditory EEG decoding challenge for ICASSP 2023. IEEE Open J. Signal Process. 2024, 5, 652–661. [Google Scholar] [CrossRef]
- Bollens, L.; Monesi, M.J.; Accou, B.; Vanthornhout, J.; Van Hamme, H.; Francart, T. ICASSP 2023 Auditory EEG Decoding Challenge. In Proceedings of the ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–2. [Google Scholar]
- Auditory EEG Challenge–ICASSP 2024. Available online: https://exporl.github.io/auditory-eeg-challenge-2024/ (accessed on 1 June 2024).
- Yang, L.; Van Dyck, B.; Van Hulle, M.M. Sea-Wave: Speech envelope reconstruction from auditory EEG with an adapted WaveNet. IEEE Open J. Signal Process. 2024, 5, 686–699. [Google Scholar] [CrossRef]
- Thornton, M.; Mandic, D.P.; Reichenbach, T. Decoding Envelope and Frequency-Following EEG Responses to Continuous Speech Using Deep Neural Networks. IEEE Open J. Signal Process. 2024, 5, 700–716. [Google Scholar] [CrossRef]
- Thornton, M.; Auernheimer, J.; Jehn, C.; Mandic, D.; Reichenbach, T. Detecting gamma-band responses to the speech envelope for the ICASSP 2024 Auditory EEG Decoding Signal Processing Grand Challenge. arXiv 2024, arXiv:2401.17380. [Google Scholar]
- Thornton, M.; Mandic, D.; Reichenbach, T. Relating EEG Recordings to Speech Using Envelope Tracking and the Speech-FFR. In Proceedings of the ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Borsdorf, M.; Pahuja, S.; Ivucic, G.; Cai, S.; Li, H.; Schultz, T. Multi-Head Attention and GRU for Improved Match-Mismatch Classification of Speech Stimulus and EEG Response. In Proceedings of the ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Cui, F.; Guo, L.; He, L.; Liu, J.; Pei, E.; Wang, Y.; Jiang, D. Relate Auditory Speech to EEG by Shallow-Deep Attention-Based Network. In Proceedings of the ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Piao, Z.; Kim, M.; Yoon, H.; Kang, H.G. HappyQuokka System for ICASSP 2023 Auditory EEG Challenge. In Proceedings of the ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Van Dyck, B.; Yang, L.; Van Hulle, M.M. Decoding Auditory EEG Responses Using an Adapted Wavenet. In Proceedings of the ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Broderick, M.P.; Anderson, A.J.; Di Liberto, G.M.; Crosse, M.J.; Lalor, E.C. Electrophysiological correlates of semantic dissimilarity reflect the comprehension of natural, narrative speech. Curr. Biol. 2018, 28, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Fuglsang, S.A.; Wong, D.D.; Hjortkjær, J. EEG and Audio Dataset for Auditory Attention Decoding. 2018. Available online: https://zenodo.org/records/1199011 (accessed on 1 June 2024).
- Etard, O.; Reichenbach, T. EEG Dataset for ‘Decoding of Selective Attention to Continuous Speech from the Human Auditory Brainstem Response’ and ‘Neural Speech Tracking in the Theta and in the Delta Frequency Band Differentially Encode Clarity and Comprehension of Speech in Noise’. 2022. Available online: https://zenodo.org/records/7086209 (accessed on 1 June 2024).
- Weissbart, H.; Kandylaki, K.; Reichenbach, T. EEG Dataset for ‘Cortical Tracking of Surprisal during Continuous Speech Comprehension’. 2022. Available online: https://zenodo.org/records/7086168 (accessed on 1 June 2024).
- Brennan, J.R. EEG Datasets for Naturalistic Listening to “Alice in Wonderland”. 2018. Available online: https://deepblue.lib.umich.edu/data/concern/data_sets/bn999738r (accessed on 1 June 2024).
- Vanheusden, F.J.; Kegler, M.; Ireland, K.; Georgia, C.; Simpson, D.; Reichenbach, T.; Bell, S. Dataset for: Hearing Aids Do Not Alter Cortical Entrainment to Speech at Audible Levels in Mild-to-Moderately Hearing-Impaired Subjects. 2019. Available online: https://eprints.soton.ac.uk/438737/ (accessed on 1 June 2024).
- Crosse, M.; Zuk, N.; Di Liberto, G.; Nidiffer, A.; Molholm, S.; Lalor, E. Linear Modeling of Neurophysiological Responses to Speech and Other Continuous Stimuli: Methodological Considerations for Applied Research. Front. Neurosci. 2021, 15, 705621. [Google Scholar] [CrossRef] [PubMed]
- Coren, S. The lateral preference inventory for measurement of handedness, footedness, eyedness, and earedness—Norms for young-adults. Bull. Psychon. Soc. 1993, 31, 1–3. [Google Scholar] [CrossRef]
- van Lier, H.; Drinkenburg, W.H.; van Eeten, Y.J.; Coenen, A.M. Effects of diazepam and zolpidem on EEG beta frequencies are behavior-specific in rats. Neuropharmacology 2004, 47, 163–174. [Google Scholar] [CrossRef]
- De Vos, A.; Vanvooren, S.; Vanderauwera, J.; Ghesquière, P.; Wouters, J. Atypical neural synchronization to speech envelope modulations in dyslexia. Brain Lang. 2017, 164, 106–117. [Google Scholar] [CrossRef]
- Power, A.J.; Colling, L.J.; Mead, N.; Barnes, L.; Goswami, U. Neural encoding of the speech envelope by children with developmental dyslexia. Brain Lang. 2016, 160, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hughson, W.; Westlake, H. Manual for program outline for rehabilitation of aural casualties both military and civilian. Trans. Am. Acad. Ophthalmol. Otolaryngol. 1944, 48, 1–15. [Google Scholar]
- Luts, H.; Jansen, S.; Dreschler, W.; Wouters, J. Development and Normative Data for the Flemish/Dutch Matrix Test. 2014. Available online: https://lirias.kuleuven.be/retrieve/293640 (accessed on 1 June 2024).
- Brand, T.; Kollmeier, B. Efficient adaptive procedures for threshold and concurrent slope estimates for psychophysics and speech intelligibility tests. J. Acoust. Soc. Am. 2002, 111, 2801–2810. [Google Scholar] [CrossRef] [PubMed]
- Universiteit van Vlaanderen. Available online: https://www.universiteitvanvlaanderen.be/podcast (accessed on 20 October 2022).
- Algoet, A. Invloed van het Geslacht van de Spreker en Luisteraar en Persoonlijke Appreciatie van het Verhaal op de Neurale Tracking van de Spraakomhullende. 2020. Available online: https://repository.teneo.libis.be/delivery/DeliveryManagerServlet?dps_pid=IE14186261& (accessed on 1 June 2024).
- Francart, T.; Van Wieringen, A.; Wouters, J. APEX 3: A multi-purpose test platform for auditory psychophysical experiments. J. Neurosci. Methods 2008, 172, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Somers, B.; Francart, T.; Bertrand, A. A generic EEG artifact removal algorithm based on the multi-channel Wiener filter. J. Neural Eng. 2018, 15, 036007. [Google Scholar] [CrossRef] [PubMed]
- Søndergaard, P.; Majdak, P. The Auditory Modeling Toolbox. In The Technology of Binaural Listening; Blauert, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 33–56. [Google Scholar]
- Biesmans, W.; Das, N.; Francart, T.; Bertrand, A. Auditory-Inspired Speech Envelope Extraction Methods for Improved EEG-Based Auditory Attention Detection in a Cocktail Party Scenario. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Simon, J.Z. Cortical entrainment to continuous speech: Functional roles and interpretations. Front. Hum. Neurosci. 2014, 8, 311. [Google Scholar] [CrossRef] [PubMed]
- Sharon, R.A.; Narayanan, S.; Sur, M.; Murthy, H.A. An Empirical Study of Speech Processing in the Brain by Analyzing the Temporal Syllable Structure in Speech-input Induced EEG. In Proceedings of the ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Crosse, M.J.; Butler, J.S.; Lalor, E.C. Congruent visual speech enhances cortical entrainment to continuous auditory speech in noise-free conditions. J. Neurosci. 2015, 35, 14195–14204. [Google Scholar] [CrossRef]
- Park, H.; Kayser, C.; Thut, G.; Gross, J. Lip movements entrain the observers’ low-frequency brain oscillations to facilitate speech intelligibility. eLife 2016, 5, e14521. [Google Scholar] [CrossRef]
- Puffay, C.; Accou, B.; Bollens, L.; Monesi, M.J.; Vanthornhout, J.; Van hamme, H.; Francart, T. Relating EEG to continuous speech using deep neural networks: A review. J. Neural Eng. 2023, 20, 041003. [Google Scholar] [CrossRef] [PubMed]
- Pernet, C.R.; Appelhoff, S.; Gorgolewski, K.J.; Flandin, G.; Phillips, C.; Delorme, A.; Oostenveld, R. EEG-BIDS, an extension to the brain imaging data structure for electroencephalography. Sci. Data 2019, 6, 103. [Google Scholar] [CrossRef] [PubMed]
- Gorgolewski, K.J.; Auer, T.; Calhoun, V.D.; Craddock, R.C.; Das, S.; Duff, E.P.; Flandin, G.; Ghosh, S.S.; Glatard, T.; Halchenko, Y.O.; et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci. Data 2016, 3, 160044. [Google Scholar] [CrossRef] [PubMed]
- Gramfort, A.; Luessi, M.; Larson, E.; Engemann, D.A.; Strohmeier, D.; Brodbeck, C.; Goj, R.; Jas, M.; Brooks, T.; Parkkonen, L.; et al. MEG and EEG Data Analysis with MNE-Python. Front. Neurosci. 2013, 7, 267. [Google Scholar] [CrossRef]
Dataset | Ref | Speech Material | Language | Participants | Average Time per Participant (min) | Total Time (min) |
---|---|---|---|---|---|---|
Broderick | [25] | Clean speech | English | 19 | 60 | 1140 |
Time-reversed speech | 10 | 60 | 600 | |||
Speech-in-noise | 21 | 30 | 630 | |||
DTU Fuglsang | [26] | Clean speech | Danish | 18 | 8.3 | 150 |
Etard | [27] | Clean speech | English | 18 | 10 | 180 |
Speech-in-noise | 18 | 30 | 540 | |||
Foreign language speech | Dutch | 12 | 40 | 480 | ||
Weissbart | [28] | Clean speech | English | 13 | 40 | 520 |
Brennan | [29] | Clean speech | English | 49 | 12.4 | 610 |
Vanheuseden | [30] | Clean speech | English | 17 | 24 | 410 |
SparrKULee | Clean speech | Dutch | 85 | 110 | 9320 | |
Speech-in-noise | 26 | 28.5 | 740 |
Experimental Procedure | Required Time (min) | Cumulative Time (min) |
---|---|---|
Fill in informed consent | 5 | 5 |
Fill in questionnaire | 5 | 10 |
Pure tone audiometry | 15 | 25 |
Speech audiometry (matrix test) | 25 | 50 |
Fit EEG equipment | 15 | 65 |
Listen to 3 stimuli | 50 | 115 |
First break | 5 | 120 |
Listen to 3 stimuli | 50 | 170 |
Second break | 5 | 175 |
Krios scan of EEG electrode positions | 10 | 185 |
Listen to 3 stimuli | 50 | 245 |
Subject | Stimulus |
---|---|
sub-002 | audiobook_1_artefact |
sub-011 | audiobook_6_1 |
sub-051 | audiobook_12_1 |
sub-051 | audiobook_12_2 |
sub-051 | podcast_23 |
sub-054 | audiobook_12_2 |
sub-056 | podcast_22 |
sub-060 | podcast_24 |
sub-064 | audiobook_14_2 |
sub-064 | podcast_30 |
sub-076 | audiobook_14_1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Accou, B.; Bollens, L.; Gillis, M.; Verheijen, W.; Van hamme, H.; Francart, T. SparrKULee: A Speech-Evoked Auditory Response Repository from KU Leuven, Containing the EEG of 85 Participants. Data 2024, 9, 94. https://doi.org/10.3390/data9080094
Accou B, Bollens L, Gillis M, Verheijen W, Van hamme H, Francart T. SparrKULee: A Speech-Evoked Auditory Response Repository from KU Leuven, Containing the EEG of 85 Participants. Data. 2024; 9(8):94. https://doi.org/10.3390/data9080094
Chicago/Turabian StyleAccou, Bernd, Lies Bollens, Marlies Gillis, Wendy Verheijen, Hugo Van hamme, and Tom Francart. 2024. "SparrKULee: A Speech-Evoked Auditory Response Repository from KU Leuven, Containing the EEG of 85 Participants" Data 9, no. 8: 94. https://doi.org/10.3390/data9080094
APA StyleAccou, B., Bollens, L., Gillis, M., Verheijen, W., Van hamme, H., & Francart, T. (2024). SparrKULee: A Speech-Evoked Auditory Response Repository from KU Leuven, Containing the EEG of 85 Participants. Data, 9(8), 94. https://doi.org/10.3390/data9080094