SaBi3d—A LiDAR Point Cloud Data Set of Car-to-Bicycle Overtaking Maneuvers
Abstract
:Abstract
Dataset
Dataset License
1. Summary
2. Materials and Methods
2.1. Related Work
2.1.1. Lasers and LiDARs on Bicycles
2.1.2. Autonomous Driving Data Sets
2.1.3. 3D Object Detection
2.2. Data Collection
2.3. Data Preparation
2.4. Metadata Generation
2.5. 3D Object Detection Benchmark
3. Results and Discussion
3.1. Results of 3D Object Detection
3.2. Features and Limitations of Data Set
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LiDAR | Light Detection and Ranging |
NDS | nuScenes Detection Score |
mAP | Mean Average Precision |
VISTA | Dual Cross-VIew SpaTial Attention |
FOV | Field of View |
CBGS | Class-balanced Grouping and Sampling |
1 | https://www.borealbikes.com (accessed on 18 July 2024). |
2 | https://github.com/naurril/SUSTechPOINTS (accessed on 18 July 2024). |
3 | For detailed description see: https://www.nuscenes.org/nuscenes#data-format (accessed on 18 July 2024). |
4 | https://github.com/nutonomy/nuscenes-devkit (accessed on 18 July 2024). |
5 | Code available at https://github.com/Gorilla-Lab-SCUT/VISTA (accessed on 18 July 2024). |
References
- Lindsay, G.; Macmillan, A.; Woodward, A. Moving urban trips from cars to bicycles: Impact on health and emissions. Aust. N. Z. J. Public Health 2011, 35, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Buehler, R.; Pucher, J.R. (Eds.) Cycling for Sustainable Cities; Urban and industrial environments, The MIT Press: Cambridge, MA, USA; London, UK, 2021. [Google Scholar]
- European Union. European Declaration on Cycling; European Union: Brussels, Belgium, 2023; C/2024/2377. [Google Scholar]
- Illek, G.; Braun, L.; Jellinek, R.; Reidlinger, B.; Leindl, A.; Chiu, K.; Homola, T. Radverkehrsförderung in Österreich; Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie: Wien, Austria, 2022. [Google Scholar]
- Wegman, F.; Zhang, F.; Dijkstra, A. How to make more cycling good for road safety? Accid. Anal. Prev. 2012, 44, 19–29. [Google Scholar] [CrossRef] [PubMed]
- European Transport Safety Council. How Safe is Walking and Cycling in Europe; PIN Flash Report 38; Technical report; European Transport Safety Council: Brussels, Belgium, 2020. [Google Scholar]
- Beck, B.; Perkins, M.; Olivier, J.; Chong, D.; Johnson, M. Subjective experiences of bicyclists being passed by motor vehicles: The relationship to motor vehicle passing distance. Accid. Anal. Prev. 2021, 155, 106102. [Google Scholar] [CrossRef] [PubMed]
- Merk, J.; Eckart, J.; Zeile, P. Subjektiven Verkehrsstress objektiv messen–ein EmoCycling-Mixed-Methods-Ansatz. In Proceedings of the CITIES 20.50–Creating Habitats for the 3rd Millennium: Smart–Sustainable–Climate Neutral. Proceedings of the REAL CORP 2021, 26th International Conference on Urban Development, Regional Planning and Information Society, Vienna, Austria, 7–10 September 2021; pp. 767–778. [Google Scholar]
- Gadsby, A.; Watkins, K. Instrumented bikes and their use in studies on transportation behaviour, safety, and maintenance. Transp. Rev. 2020, 40, 774–795. [Google Scholar] [CrossRef]
- Kapousizis, G.; Ulak, M.B.; Geurs, K.; Havinga, P.J. A review of state-of-the-art bicycle technologies affecting cycling safety: Level of smartness and technology readiness. Transp. Rev. 2023, 43, 430–452. [Google Scholar] [CrossRef]
- Beck, B.; Chong, D.; Olivier, J.; Perkins, M.; Tsay, A.; Rushford, A.; Li, L.; Cameron, P.; Fry, R.; Johnson, M. How Much Space Do Drivers Provide When Passing Cyclists? Understanding the Impact of Motor Vehicle and Infrastructure Characteristics on Passing Distance. Accid. Ana. Prev. 2019, 128, 253–260. [Google Scholar] [CrossRef] [PubMed]
- López, G.; Pérez-Zuriaga, A.M.; Moll, S.; García, A. Analysis of Overtaking Maneuvers to Cycling Groups on Two-Lane Rural Roads using Objective and Subjective Risk. Transp. Res. Rec. J. Transp. Res. Board 2020, 2674, 148–160. [Google Scholar] [CrossRef]
- Moll, S.; López, G.; Rasch, A.; Dozza, M.; García, A. Modelling Duration of Car-Bicycles Overtaking Manoeuvres on Two-Lane Rural Roads Using Naturalistic Data. Accid. Ana. Prev. 2021, 160, 106317. [Google Scholar] [CrossRef]
- Dozza, M.; Schindler, R.; Bianchi-Piccinini, G.; Karlsson, J. How Do Drivers Overtake Cyclists? Accid. Ana. Prev. 2016, 88, 29–36. [Google Scholar] [CrossRef]
- Rasch, A. Modelling Driver Behaviour in Longitudinal Vehicle-Pedestrian Scenarios. Master’s Thesis, Chalmers University of Technology, Göteborg, Sweden, 2018. [Google Scholar]
- Rasch, A.; Boda, C.N.; Thalya, P.; Aderum, T.; Knauss, A.; Dozza, M. How Do Oncoming Traffic and Cyclist Lane Position Influence Cyclist Overtaking by Drivers? Accid. Ana. Prev. 2020, 142, 105569. [Google Scholar] [CrossRef]
- Rasch, A.; Dozza, M. Modeling Drivers’ Strategy When Overtaking Cyclists in the Presence of Oncoming Traffic. IEEE Trans. Intell. Transp. Syst. 2022, 23, 2180–2189. [Google Scholar] [CrossRef]
- Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. nuScenes: A multimodal dataset for autonomous driving. arXiv 2020, arXiv:1903.11027. [Google Scholar]
- Jeon, W.; Rajamani, R. A novel collision avoidance system for bicycles. In Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 3474–3479. [Google Scholar] [CrossRef]
- Jeon, W.; Rajamani, R. Active Sensing on a Bicycle for Accurate Tracking of Rear Vehicle Maneuvers. In Proceedings of the ASME 2016 Dynamic Systems and Control Conference, Minneapolis, MN, USA, 12–14 October 2016; Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control. p. V002T31A004. [Google Scholar] [CrossRef]
- Jeon, W.; Rajamani, R. Rear Vehicle Tracking on a Bicycle Using Active Sensor Orientation Control. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2638–2649. [Google Scholar] [CrossRef]
- Jeon, W.; Rajamani, R. Active Sensing on a Bicycle for Simultaneous Search and Tracking of Multiple Rear Vehicles. IEEE Trans. Veh. Technol. 2019, 68, 5295–5308. [Google Scholar] [CrossRef]
- Jeon, W.; Xie, Z.; Craig, C.; Achtemeier, J.; Alexander, L.; Morris, N.; Donath, M.; Rajamani, R. A Smart Bicycle That Protects Itself: Active Sensing and Estimation for Car-Bicycle Collision Prevention. IEEE Control. Syst. Mag. 2021, 41, 28–57. [Google Scholar] [CrossRef]
- Xie, Z.; Rajamani, R. On-Bicycle Vehicle Tracking at Traffic Intersections Using Inexpensive Low-Density Lidar. In Proceedings of the 2019 American Control Conference (ACC), Philadelphia, PA, USA, 10–12 July 2019; pp. 593–598. [Google Scholar] [CrossRef]
- Xie, Z.; Jeon, W.; Rajamani, R. Low-Density Lidar Based Estimation System for Bicycle Protection. IEEE Trans. Intell. Veh. 2021, 6, 67–77. [Google Scholar] [CrossRef]
- Van Brummelen, J.; Emran, B.; Yesilcimen, K.; Najjaran, H. Reliable and Low-Cost Cyclist Collision Warning System for Safer Commute on Urban Roads. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 003731–003735. [Google Scholar]
- Muro, S.; Matsui, Y.; Hashimoto, M.; Takahashi, K. Moving-Object Tracking with Lidar Mounted on Two-wheeled Vehicle. In Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics, Prague, Czech Republic, 29–31 July 2019; SCITEPRESS-Science and Technology Publications: Setúbal, Portugal, 2019; pp. 453–459. [Google Scholar] [CrossRef]
- Niedermüller, A.; Beeking, M. Transformer Based 3D Semantic Segmentation of Urban Bicycle Infrastructure. J. Locat. Based Serv. 2024, 1–23. [Google Scholar] [CrossRef]
- Vogt, J.; Ilic, M.; Bogenberger, K. A Mobile Mapping Solution for VRU Infrastructure Monitoring via Low-Cost LiDAR-sensors. J. Locat. Based Serv. 2023, 17, 389–411. [Google Scholar] [CrossRef]
- Yoshida, N.; Yamanaka, H.; Matsumoto, S.; Hiraoka, T.; Kawai, Y.; Kojima, A.; Inagaki, T. Development of Safety Measures of Bicycle Traffic by Observation with Deep-Learning, Drive Recorder Data, Probe Bicycle with LiDAR, and Connected Simulators. In Proceedings of the Contributions to the 10th International Cycling Safety Conference 2022 (ICSC2022), Technische Universität, Dresden, Germany, 8–10 November 2022; pp. 183–185. [Google Scholar] [CrossRef]
- Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The KITTI vision benchmark suite. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361. [Google Scholar] [CrossRef]
- Sun, P.; Kretzschmar, H.; Dotiwalla, X.; Chouard, A.; Patnaik, V.; Tsui, P.; Guo, J.; Zhou, Y.; Chai, Y.; Caine, B.; et al. Scalability in Perception for Autonomous Driving: Waymo Open Dataset. arXiv 2020, arXiv:1912.04838. [Google Scholar]
- Erçelik, E.; Yurtsever, E.; Liu, M.; Yang, Z.; Zhang, H.; Topçam, P.; Listl, M.; Çaylı, Y.K.; Knoll, A. 3D Object Detection with a Self-supervised Lidar Scene Flow Backbone. In Proceedings of the Computer Vision–ECCV 2022, Tel Aviv, Israel, 23–27 October 2022; Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T., Eds.; Springer: Cham, Switzerland, 2022; pp. 247–265. [Google Scholar] [CrossRef]
- Lu, Y.; Hao, X.; Li, Y.; Chai, W.; Sun, S.; Velipasalar, S. Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Point Density Level Estimation. arXiv 2022, arXiv:2111.09515. [Google Scholar]
- Deng, S.; Liang, Z.; Sun, L.; Jia, K. VISTA: Boosting 3D Object Detection via Dual Cross-VIew SpaTial Attention. arXiv 2022, arXiv:2203.09704. [Google Scholar]
- Li, Y.; Chen, Y.; Qi, X.; Li, Z.; Sun, J.; Jia, J. Unifying Voxel-based Representation with Transformer for 3D Object Detection. arXiv 2022, arXiv:2206.00630. [Google Scholar]
- Lee, J.; Koh, J.; Lee, Y.; Choi, J.W. D-Align: Dual Query Co-attention Network for 3D Object Detection Based on Multi-frame Point Cloud Sequence. arXiv 2022, arXiv:2210.00087. [Google Scholar]
- Zheng, W.; Hong, M.; Jiang, L.; Fu, C.W. Boosting 3D Object Detection by Simulating Multimodality on Point Clouds. arXiv 2022, arXiv:2206.14971. [Google Scholar]
- Zhu, B.; Jiang, Z.; Zhou, X.; Li, Z.; Yu, G. Class-balanced Grouping and Sampling for Point Cloud 3D Object Detection. arXiv 2019, arXiv:1908.09492. [Google Scholar]
- Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef]
- Mao, J.; Shi, S.; Wang, X.; Li, H. 3D Object Detection for Autonomous Driving: A Review and New Outlooks. arXiv 2022, arXiv:2206.09474. [Google Scholar]
- Wu, Y.; Wang, Y.; Zhang, S.; Ogai, H. Deep 3D Object Detection Networks Using LiDAR Data: A Review. IEEE Sens. J. 2021, 21, 1152–1171. [Google Scholar] [CrossRef]
- Liang, W.; Xu, P.; Guo, L.; Bai, H.; Zhou, Y.; Chen, F. A survey of 3D object detection. Multimed. Tools Appl. 2021, 80, 29617–29641. [Google Scholar] [CrossRef]
- Zamanakos, G.; Tsochatzidis, L.; Amanatiadis, A.; Pratikakis, I. A comprehensive survey of LIDAR-based 3D object detection methods with deep learning for autonomous driving. Comput. Graph. 2021, 99, 153–181. [Google Scholar] [CrossRef]
- Fernandes, D.; Silva, A.; Névoa, R.; Simões, C.; Gonzalez, D.; Guevara, M.; Novais, P.; Monteiro, J.; Melo-Pinto, P. Point-cloud based 3D object detection and classification methods for self-driving applications: A survey and taxonomy. Inf. Fusion 2021, 68, 161–191. [Google Scholar] [CrossRef]
- Chen, Q.; Sun, L.; Cheung, E.; Yuille, A.L. Every View Counts: Cross-View Consistency in 3D Object Detection with Hybrid-Cylindrical-Spherical Voxelization. In Proceedings of the Advances in Neural Information Processing Systems, Online, 6–12 December 2020; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 21224–21235. [Google Scholar]
- Graham, B. Spatially-sparse convolutional neural networks. arXiv 2014, arXiv:1409.6070. [Google Scholar]
- Graham, B. Sparse 3D convolutional neural networks. arXiv 2015, arXiv:1505.02890. [Google Scholar]
- Graham, B.; van der Maaten, L. Submanifold Sparse Convolutional Networks. arXiv 2017, arXiv:1706.01307. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar] [CrossRef]
- Chen, Q.; Sun, L.; Wang, Z.; Jia, K.; Yuille, A. Object as Hotspots: An Anchor-Free 3D Object Detection Approach via Firing of Hotspots. arXiv 2020, arXiv:1912.12791. [Google Scholar]
- Yin, T.; Zhou, X.; Krähenbühl, P. Center-based 3D Object Detection and Tracking. arXiv 2021, arXiv:2006.11275. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Livox Tech. Livox Horizon: User Manual v1.0; Technical report; Livox Tech: Wanchai, Hong Kong, 2019. [Google Scholar]
- Li, E.; Wang, S.; Li, C.; Li, D.; Wu, X.; Hao, Q. SUSTech POINTS: A Portable 3D Point Cloud Interactive Annotation Platform System. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020; pp. 1108–1115. [Google Scholar] [CrossRef]
- Yan, Y.; Mao, Y.; Li, B. SECOND: Sparsely Embedded Convolutional Detection. Sensors 2018, 18, 3337. [Google Scholar] [CrossRef] [PubMed]
Scene Token Ending | Speed Limit | Predominant Infrastructure |
---|---|---|
15_22_38 | 50 | Suggested cycle lane |
15_29_23 | 50 | Suggested cycle lane |
15_34_06 | 30 | Cycle lane |
15_47_25 | 40, 50 | Share-the-road |
Table Name | Content in nuScenes | Changes in SaBi3d |
---|---|---|
attribute | Possible properties of instances, e.g., being parked or moving. | None; only one line is used (vehicle.moving). |
category | Object categories and subcategories. | None; only one line is used (vehicle.car). |
visibility | Fraction of annotation that is visible. | None; only one line is used (4; corresponding to 80–100% visibility). |
calibrated_sensor | Definition of sensors, including their orientation. | Position of sensor adjusted to correct height. |
sensor | List of sensors. | Sensor name changed. |
log | Information about the log files of the recording. | Empty file since no corresponding log files were recorded by the sensors. |
map | File paths to the respective map images. | Corresponding file changed to solid black PNG since no map data was recorded. Was used only for rendering images and not needed for object detection. |
ego_pose | Ego vehicle positions with respect to a global coordinate system. | All values set to zero since no ego location was recorded. Positions of detections are therefore relative to the bicycle and not to a global coordinate system. |
sample | References to the frames that were annotated at 2 Hz (sampling frequency: 10 Hz). | Adjusted to the data. Every frame is annotated at a sampling frequency of 5 Hz. |
sample_data | Paths to data files of the samples (LiDAR, Radar, image). | Adjusted to the data; only paths to LiDAR files. |
scene | One entry for every scene. | Adjusted to the data. |
instance | One entry for every unique vehicle (a particular vehicle might appear in multiple frames). | Adjusted to the data. |
sample_annotation | Cuboid bounding boxes indicating the position and properties of objects. | Adjusted to the data by transforming the output of the labeling tool appropriately. Coordinates were transformed from Euler angles to quaternions. Visibility was not annotated and set to 4 for every annotation. The number of LiDAR points contained in the cuboid was not annotated and set to a reasonable average of 1000. |
Model Training | mAP (car) |
---|---|
Provided checkpoint [35] | 85.0 |
Replicated, without resampling | 53.6 |
Replicated, with resampling | 85.5 |
Cars only | 58.1 |
Model Training | mAP (car) |
---|---|
Provided checkpoint [35] | 0.3 |
Fine-tuning checkpoint on nuScenes cars | 12.6 |
Fine-tuning checkpoint on SaBi3d | 80.2 |
Training on SaBi3d | 79.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odenwald, C.; Beeking, M. SaBi3d—A LiDAR Point Cloud Data Set of Car-to-Bicycle Overtaking Maneuvers. Data 2024, 9, 90. https://doi.org/10.3390/data9080090
Odenwald C, Beeking M. SaBi3d—A LiDAR Point Cloud Data Set of Car-to-Bicycle Overtaking Maneuvers. Data. 2024; 9(8):90. https://doi.org/10.3390/data9080090
Chicago/Turabian StyleOdenwald, Christian, and Moritz Beeking. 2024. "SaBi3d—A LiDAR Point Cloud Data Set of Car-to-Bicycle Overtaking Maneuvers" Data 9, no. 8: 90. https://doi.org/10.3390/data9080090