RaspberrySet: Dataset of Annotated Raspberry Images for Object Detection
Abstract
1. Summary
2. Data Description
3. Methods
3.1. Image Capturing
3.2. Image Annotation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lācis, G.; Kota-Dombrovska, I.; Strautiņa, S. Evaluation of Red Raspberry Cultivars Used for Breeding and Commercial Growing in the Baltic Region. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2017, 71, 203–210. [Google Scholar] [CrossRef][Green Version]
- Mimma, N.-E.-A.; Ahmed, S.; Rahman, T.; Khan, R. Fruits Classification and Detection Application Using Deep Learning. Sci. Program. 2022, 2022, 4194874. [Google Scholar] [CrossRef]
- Apolo-Apolo, O.E.; Martínez-Guanter, J.; Egea, G.; Raja, P.; Pérez-Ruiz, M. Deep Learning Techniques for Estimation of the Yield and Size of Citrus Fruits Using a UAV. Eur. J. Agron. 2020, 115, 126030. [Google Scholar] [CrossRef]
- Sudars, K.; Namatevs, I.; Judvaitis, J.; Balass, R.; Nikulins, A.; Peter, A.; Strautina, S.; Kaufmane, E.; Kalnina, I. YOLOv5 Deep Neural Network for Quince and Raspberry Detection on RGB Images. In Proceedings of the 2022 Workshop on Microwave Theory and Techniques in Wireless Communications (MTTW), Riga, Latvia, 5 October 2022; IEEE: New York, NY, USA, 2022; pp. 19–22. [Google Scholar]
- Bresilla, K.; Perulli, G.D.; Boini, A.; Morandi, B.; Corelli Grappadelli, L.; Manfrini, L. Single-Shot Convolution Neural Networks for Real-Time Fruit Detection Within the Tree. Front. Plant Sci. 2019, 10, 611. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Li, Z.; Guo, R.; Li, M.; Chen, Y.; Li, G. A Review of Computer Vision Technologies for Plant Phenotyping. Comput. Electron. Agric. 2020, 176, 105672. [Google Scholar] [CrossRef]
Cultivars and Hybrids | Fruit Laterals per Cane | Fruit per Fruit Lateral | The Average Weight of Fruit, g | Yield per Cane, g | Yield per Bush, g | Fruit Length, mm | Fruit Width, mm | Shape Index (Ratio Length, Width) | Account of Drupe | Fruit Glossiness (Score 1–9) | Fruit Firmness (Score 1–9) | Fruit Shape | Fruit Colour |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bozhestvennaja | 10.5 | 7.2 | 2.7 | 204.1 | 1633.0 | 23.1 | 15.6 | 1.5 | 106.2 | 2.0 | 6.0 | trapezoidal | light red |
Glen Ample | 6.9 | 7.3 | 2.2 | 110.8 | 886.5 | 17.7 | 18.2 | 1.0 | 64.5 | 2.2 | 6.5 | broad conical | light red |
Kapriz Bogov | 13.9 | 7.8 | 2.1 | 227.7 | 1821.5 | 20.0 | 18.7 | 1.1 | 81.1 | 4.9 | 4.0 | broad conical | red |
Lina | 11.7 | 8.5 | 2.7 | 268.5 | 2148.1 | 17.7 | 15.8 | 1.1 | 85.5 | 3.0 | 6.0 | broad conical | light red |
Lubetovskaja | 13.2 | 10.1 | 2.1 | 280.0 | 2239.8 | 17.4 | 15.4 | 1.1 | 71.0 | 3.7 | 5.0 | conical | dark red |
Octavia | 8.7 | 8.8 | 2.2 | 168.4 | 1347.5 | 18.4 | 17.4 | 1.1 | 79.3 | 3.0 | 7.0 | broad conical | light red |
Patricija | 15.6 | 8.7 | 2.3 | 312.2 | 2497.2 | 25.7 | 18.1 | 1.4 | 112.3 | 3.8 | 4.7 | trapezoidal | light red |
Ruvi | 15.4 | 9.1 | 1.8 | 252.3 | 2018.0 | 15.8 | 14.9 | 1.1 | 77.6 | 4.0 | 5.0 | conical | light red |
Shahrizada | 9.7 | 6 | 2.3 | 133.9 | 1070.9 | 17.7 | 15.3 | 1.2 | 86.5 | 4.2 | 6.3 | conical | dark red |
Sulamifa | 18.6 | 7.8 | 1.3 | 188.6 | 1508.8 | 21.4 | 17.3 | 1.2 | 75.6 | 2.1 | 3.7 | trapezoidal | dark red |
S1-12-13 | 15.4 | 9.1 | 1.8 | 252.3 | 2018.0 | 11.7 | 11.8 | 1.0 | 74.3 | 5.6 | 6.3 | conical | dark red |
S11-25a-4 | 15.1 | 12.4 | 2.5 | 468.1 | 3744.8 | 17.3 | 16.6 | 1.0 | 80.1 | 3.8 | 4.2 | conical | red |
S2-6-13 | 21.5 | 11.7 | 2 | 503.1 | 4024.8 | 17.0 | 15.1 | 1.1 | 94.8 | 2.9 | 5.7 | trapezoidal | red |
S2-6-8 | 18.2 | 14.4 | 1.8 | 471.7 | 3774.0 | 19.0 | 18.2 | 1.0 | 75.5 | 2.2 | 4.4 | conical | light red |
Cultivars and Hybrids | Length of Cane, cm | Length of Fruiting Part of the Cane, cm | Fruit Laterals per Cane | The Average Weight of Fruit, g | Yield per Cane, g | Yield per Bush, g | Fruit Length, mm | Fruit Width, mm | Shape Index (Ratio Length: Width) | Account of Drupe | Fruit Glossiness (Score 1–9) | Fruit Firmness (Score 1–9) | Fruit Shape | Fruit Colour |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Brilliantovaja | 77.6 | 42.5 | 12.0 | 2.7 | 27.6 | 220.8 | 23.8 | 21.4 | 1.1 | 78.2 | 4.9 | 5.0 | conical | red |
Gerakl | 129.1 | 57.8 | 16.1 | 2.2 | 53.0 | 424.0 | 17.3 | 19.7 | 0.9 | 56.8 | 4.4 | 7.1 | round | dark red |
Poemat | 135.0 | 40.7 | 13.8 | 2.7 | 81.4 | 651.2 | 17.2 | 17.4 | 1.0 | 72.7 | 4.2 | 5.9 | round | light red |
Polana | 132.8 | 47.8 | 16.0 | 2.2 | 124.7 | 997.6 | 23.4 | 20.3 | 1.2 | 108.7 | 6.7 | 5.0 | conical | red |
Polonez | 138.1 | 35.9 | 11.8 | 2.2 | 81.1 | 649.0 | 21.5 | 18.0 | 1.2 | 103.2 | 5.6 | 6.4 | conical | light red |
Rubinovij Gigant | 127.6 | 52.8 | 17.5 | 2.1 | 50.7 | 405.6 | 20.3 | 22.2 | 0.9 | 67.5 | 5.4 | 6.3 | broad conical | red |
Rubinovoje Ožerelje | 125.0 | 40.7 | 13.2 | 2.1 | 84.4 | 675.2 | 24.1 | 18.9 | 1.3 | 82.2 | 4.8 | 6.7 | conical | red |
B6R9 | 103.0 | 43.5 | 13.7 | 3.3 | 135.6 | 1084.8 | 18.1 | 18.6 | 1.0 | 66.3 | 5.2 | 4.3 | round | dark red |
P6R3 | 1074 | 41.2 | 14.4 | 3.9 | 183.1 | 1464.8 | 24.0 | 21.6 | 1.1 | 113.9 | 8.0 | 7.0 | conical | red |
P6R33 | 111.8 | 45.2 | 13.9 | 2.9 | 157.9 | 1263.2 | 19.6 | 19.4 | 1.0 | 70.2 | 6.9 | 6.7 | round | red |
Software|Platform | Version | Information |
---|---|---|
Label Studio | 1.7.1 | https://github.com/heartexlabs/label-studio (accessed on 9 December 2022) |
Date | Classes | No. of Images | Time | Air Temperature, °C | Humidity, % | PPFD, µmol/m2/s | Soil Temperature, °C | Soil Moisture Content, % |
---|---|---|---|---|---|---|---|---|
15 June 2021 | “Buds”, “Flowers”, “Unripe Berries” | Range 1 (3516–4076)—558 images | 11:13–11:55 | 21.8 | 56.7 | 1387.8 | 18.7 | 18.5 |
6 June 2021 | “Buds”, “Flowers”, “Unripe Berries” | Range 2 (4132–4456)—324 images | 9:19–9:59 | 19.7 | 49.1 | 1472.2 | 17.5 | 15.3 |
2 July 2021 | “Buds”, “Flowers”, “Unripe Berries”, “Ripe Berries”, “Damaged Buds” | Range 3 (5095–5803)—678 images | 8:48–10:18 | 26.9 | 54.8 | 1430.3 | 23.6 | 9.8 |
6 August 2021 | “Buds”, “Flowers”, “Unripe Berries”, “Ripe Berries”, “Damaged Buds” | Range 4 (6843–7390)—512 images | 8:55–9:33 | 19.0 | 57.0 | 854.0 | 18.6 | 9.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strautiņa, S.; Kalniņa, I.; Kaufmane, E.; Sudars, K.; Namatēvs, I.; Nikulins, A.; Edelmers, E. RaspberrySet: Dataset of Annotated Raspberry Images for Object Detection. Data 2023, 8, 86. https://doi.org/10.3390/data8050086
Strautiņa S, Kalniņa I, Kaufmane E, Sudars K, Namatēvs I, Nikulins A, Edelmers E. RaspberrySet: Dataset of Annotated Raspberry Images for Object Detection. Data. 2023; 8(5):86. https://doi.org/10.3390/data8050086
Chicago/Turabian StyleStrautiņa, Sarmīte, Ieva Kalniņa, Edīte Kaufmane, Kaspars Sudars, Ivars Namatēvs, Arturs Nikulins, and Edgars Edelmers. 2023. "RaspberrySet: Dataset of Annotated Raspberry Images for Object Detection" Data 8, no. 5: 86. https://doi.org/10.3390/data8050086
APA StyleStrautiņa, S., Kalniņa, I., Kaufmane, E., Sudars, K., Namatēvs, I., Nikulins, A., & Edelmers, E. (2023). RaspberrySet: Dataset of Annotated Raspberry Images for Object Detection. Data, 8(5), 86. https://doi.org/10.3390/data8050086