Handling Dataset with Geophysical and Geological Variables on the Bolivian Andes by the GMT Scripts
Abstract
:1. Introduction
1.1. Background
1.2. Study Objectives
2. Materials and Methods
3. Study Area
4. Results
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CSV | Comma-Separated Values |
EGM | Earth Gravitational Model |
EGM2008 | Earth Gravitational Models of 2008 |
GEBCO | The General Bathymetric Chart of the Oceans |
GIS | Geographic Information System |
GMT | Generic Mapping Tools |
QGIS | Quantum GIS |
IRIS | Incorporated Research Institutions for Seismology |
NGA | National Geospatial-Intelligence Agency |
NGDC | National Geophysical Data Center |
NOAA | National Oceanic and Atmospheric Administration |
SIO | Scripps Institution of Oceanography |
SRTM | Shuttle Radar Topography Mission |
USGS | United States Geological Survey |
References
- Chen, C.; Judge, J.; Hulse, D. PyLUSAT: An open-source Python toolkit for GIS-based land use suitability analysis. Environ. Model. Softw. 2022, 151, 105362. [Google Scholar] [CrossRef]
- Ortolano, G.; Visalli, R.; Godard, G.; Cirrincione, R. Quantitative X-ray Map Analyser (Q-XRMA): A new GIS-based statistical approach to Mineral Image Analysis. Comput. Geosci. 2018, 115, 56–65. [Google Scholar] [CrossRef]
- Lemenkova, P. Console-Based Mapping of Mongolia Using GMT Cartographic Scripting Toolset for Processing TerraClimate Data. Geosciences 2022, 12, 140. [Google Scholar] [CrossRef]
- Omran, A.; Dietrich, S.; Abouelmagd, A.; Michael, M. New ArcGIS tools developed for stream network extraction and basin delineations using Python and java script. Comput. Geosci. 2016, 94, 140–149. [Google Scholar] [CrossRef]
- Cadieux, N.; Kalacska, M.; Coomes, O.T.; Tanaka, M.; Takasaki, Y. A Python Algorithm for Shortest-Path River Network Distance Calculations Considering River Flow Direction. Data 2020, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.; Tong, X.; Zhang, Y.; Qiu, C.; Wu, X.; Lai, G.; Li, H.; Guo, C.; Zhang, Y. Global multi-scale grid integer coding and spatial indexing: A novel approach for big earth observation data. ISPRS J. Photogramm. Remote Sens. 2020, 163, 202–213. [Google Scholar] [CrossRef]
- Xia, J.; Yang, C.; Li, Q. Building a spatiotemporal index for Earth Observation Big Data. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 245–252. [Google Scholar] [CrossRef]
- Nativi, S.; Mazzetti, P.; Santoro, M.; Papeschi, F.; Craglia, M.; Ochiai, O. Big Data challenges in building the Global Earth Observation System of Systems. Environ. Model. Softw. 2015, 68, 1–26. [Google Scholar] [CrossRef]
- Wagemann, J.; Siemen, S.; Seeger, B.; Bendix, J. Users of open Big Earth data—An analysis of the current state. Comput. Geosci. 2021, 157, 104916. [Google Scholar] [CrossRef]
- Mori, F.; Mendicelli, A.; Falcone, G.; Acunzo, G.; Spacagna, R.L.; Naso, G.; Moscatelli, M. Ground motion prediction maps using seismic-microzonation and machine learning. Nat. Hazards Earth Syst. Sci. 2022, 22, 947–966. [Google Scholar] [CrossRef]
- Lazar, A.; Shellito, B.A. Comparing machine learning classification schemes—A GIS approach. In Proceedings of the Fourth International Conference on Machine Learning and Applications (ICMLA’05), Los Angeles, CA, USA, 15–17 December 2005; p. 7. [Google Scholar] [CrossRef]
- Arabameri, A.; Pal, S.C.; Rezaie, F.; Nalivan, O.A.; Chowdhuri, I.; Saha, A.; Lee, S.; Moayedi, H. Modeling groundwater potential using novel GIS-based machine-learning ensemble techniques. J. Hydrol. Reg. Stud. 2021, 36, 100848. [Google Scholar] [CrossRef]
- Zuo, R.; Wang, J.; Yin, B. Visualization and interpretation of geochemical exploration data using GIS and machine learning methods. Appl. Geochem. 2021, 134, 105111. [Google Scholar] [CrossRef]
- Sun, T.; Chen, F.; Zhong, L.; Liu, W.; Wang, Y. GIS-based mineral prospectivity mapping using machine learning methods: A case study from Tongling ore district, eastern China. Ore Geol. Rev. 2019, 109, 26–49. [Google Scholar] [CrossRef]
- Buck, V.; Stäbler, F.; Mohrmann, J.; González, E.; Greinert, J. Visualising geospatial time series datasets in realtime with the Digital Earth Viewer. Comput. Graph. 2022, 103, 121–128. [Google Scholar] [CrossRef]
- Lemenkova, P. Mapping topographic, geophysical and gravimetry data of Pakistan—A contribution to geological understanding of Sulaiman Fold Belt and Muslim Bagh Ophiolite Complex. Geophysica 2021, 56, 3–26. [Google Scholar] [CrossRef]
- Zhao, S. Remote sensing data fusion using support vector machine. In Proceedings of the IGARSS 2004—2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 4, pp. 2575–2578. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, P. BIM/GIS data integration from the perspective of information flow. Autom. Constr. 2022, 136, 104166. [Google Scholar] [CrossRef]
- Kreklow, J.; Tetzlaff, B.; Kuhnt, G.; Burkhard, B. A Rainfall Data Intercomparison Dataset of RADKLIM, RADOLAN, and Rain Gauge Data for Germany. Data 2019, 4, 118. [Google Scholar] [CrossRef] [Green Version]
- Devoto, S.; Hastewell, L.J.; Prampolini, M.; Furlani, S. Dataset of Gravity-Induced Landforms and Sinkholes of the Northeast Coast of Malta (Central Mediterranean Sea). Data 2021, 6, 81. [Google Scholar] [CrossRef]
- Demir Altıntaş, Y.; Ilal, M.E. Loose coupling of GIS and BIM data models for automated compliance checking against zoning codes. Autom. Constr. 2021, 128, 103743. [Google Scholar] [CrossRef]
- Ma, Z.; Mei, G. Deep learning for geological hazards analysis: Data, models, applications, and opportunities. Earth-Sci. Rev. 2021, 223, 103858. [Google Scholar] [CrossRef]
- Lemenkova, P. Seismicity in the Afar Depression and Great Rift Valley, Ethiopia. Environ. Res. Eng. Manag. 2022, 78, 83–96. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Mercier, A.; Betbeder, J.; Denize, J.; Roger, J.L.; Spicher, F.; Lacoux, J.; Roger, D.; Baudry, J.; Hubert-Moy, L. Estimating crop parameters using Sentinel-1 and 2 datasets and geospatial field data. Data Brief 2021, 38, 107408. [Google Scholar] [CrossRef] [PubMed]
- Balenzano, A.; Mattia, F.; Satalino, G.; Lovergine, F.P.; Palmisano, D.; Davidson, M.W. Dataset of Sentinel-1 surface soil moisture time series at 1 km resolution over Southern Italy. Data Brief 2021, 38, 107345. [Google Scholar] [CrossRef]
- Allenby, R.J. Origin of the Bolivian Andean orocline: A geologic study utilizing Landsat and shuttle imaging radar. Tectonophysics 1987, 142, 137–154. [Google Scholar] [CrossRef]
- Lombardo, U.; Grützner, C. Tectonic geomorphology and active faults in the Bolivian Amazon. Glob. Planet. Chang. 2021, 203, 103544. [Google Scholar] [CrossRef]
- Samara e Silva Medeiros, E.; Machado, C.C.C.; Galvíncio, J.D.; de Moura, M.S.B.; de Araujo, H.F.P. Data of plant diversity, spectral reflectance at specie level and satellite spectral variables from the largest dry forest nucleus in South America. Data Brief 2019, 25, 104335. [Google Scholar] [CrossRef]
- Talib, O.C.; Shimon, W.; Sarah, K.; Tonian, R. Detection of sinkhole activity in West-Central Florida using InSAR time series observations. Remote Sens. Environ. 2022, 269, 112793. [Google Scholar] [CrossRef]
- Li, S.; Xu, W.; Li, Z. Review of the SBAS InSAR Time-series algorithms, applications, and challenges. Geod. Geodyn. 2022, 13, 114–126. [Google Scholar] [CrossRef]
- Neugirg, F.; Kaiser, A.; Huber, A.; Heckmann, T.; Schindewolf, M.; Schmidt, J.; Becht, M.; Haas, F. Using terrestrial LiDAR data to analyse morphodynamics on steep unvegetated slopes driven by different geomorphic processes. CATENA 2016, 142, 269–280. [Google Scholar] [CrossRef]
- Nakao, K.; Kabeya, D.; Awaya, Y.; Yamasaki, S.; Tsuyama, I.; Yamagawa, H.; Miyamoto, K.; Araki, M.G. Assessing the regional-scale distribution of height growth of Cryptomeria japonica stands using airborne LiDAR, forest GIS database and machine learning. For. Ecol. Manag. 2022, 506, 119953. [Google Scholar] [CrossRef]
- Szabó, S.; Deák, B.; Kovács, Z.; Kertész, Á.; Bertalan-Balázs, B. Dataset for landscape pattern analysis from a climatic perspective. Data Brief 2019, 25, 104187. [Google Scholar] [CrossRef] [PubMed]
- Rujoiu-Mare, M.R.; Mihai, B.A. Mapping Land Cover Using Remote Sensing Data and GIS Techniques: A Case Study of Prahova Subcarpathians. Procedia Environ. Sci. 2016, 32, 244–255. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Xian, G.; Zhou, Q.; Pengra, B.W. A novel automatic phenology learning (APL) method of training sample selection using multiple datasets for time-series land cover mapping. Remote Sens. Environ. 2021, 266, 112670. [Google Scholar] [CrossRef]
- Kral, U.; Sönmez, E.C.; Reimer, F. Data description of “City boundary and urban district boundaries, Vienna, 1920”. Data Brief 2021, 38, 107382. [Google Scholar] [CrossRef] [PubMed]
- Ostafin, K.; Jasionek, M.; Kaim, D.; Miklar, A. Historical dataset of mills for Galicia in the Austro-Hungarian Empire/southern Poland from 1880 to the 1930s. Data Brief 2022, 40, 107709. [Google Scholar] [CrossRef]
- Bratu, I.A. Digitizing maps procedure for scientific forestry administration by GIS database. Case study: Rasinari forestry administration. In Proceedings of the 2019 International Conference on ENERGY and ENVIRONMENT (CIEM), Timisoara, Romania, 17–18 October 2019; pp. 95–98. [Google Scholar] [CrossRef]
- Waqar, M.M.; Rehman, F.; Ikram, M. Land suitability assessment for rice crop using geospatial techniques. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, Australia, 21–26 July 2013; pp. 2844–2847. [Google Scholar] [CrossRef]
- Gavette, P.; Page-Schmit, K. Utilizing Historic Cartography in 3D for Archaeological Prospection on Alcatraz. In Proceedings of the 2018 3rd Digital Heritage International Congress (DigitalHERITAGE) Held Jointly with 2018 24th International Conference on Virtual Systems Multimedia (VSMM 2018), San Francisco, CA, USA, 26–30 October 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Li, S.S.; Zhou, W.; Li, A.B. Image Watermark Similarity Calculation of GIS Vector Data. Procedia Eng. 2012, 29, 1331–1337. [Google Scholar] [CrossRef] [Green Version]
- Koch, A.; Heipke, C. Semantically correct 2.5D GIS data—The integration of a DTM and topographic vector data. ISPRS J. Photogramm. Remote Sens. 2006, 61, 23–32. [Google Scholar] [CrossRef]
- Li, A.B.; Li, S.S.; Lv, G.N. Disguise and Reduction Methods of GIS Vector Data Based on Difference Expansion Principle. Procedia Eng. 2012, 29, 1344–1350. [Google Scholar] [CrossRef] [Green Version]
- Viana-Fons, J.; Gonzálvez-Maciá, J.; Payá, J. Development and validation in a 2D-GIS environment of a 3D shadow cast vector-based model on arbitrarily orientated and tilted surfaces. Energy Build. 2020, 224, 110258. [Google Scholar] [CrossRef]
- Güler, C.; Beyhan, B.; Tağa, H. PolyMorph-2D: An open-source GIS plug-in for morphometric analysis of vector-based 2D polygon features. Geomorphology 2021, 386, 107755. [Google Scholar] [CrossRef]
- Lindh, P.; Lemenkova, P. Evaluation of Different Binder Combinations of Cement, Slag and CKD for S/S Treatment of TBT Contaminated Sediments. Acta Mech. Autom. 2021, 15, 236–248. [Google Scholar] [CrossRef]
- Lemenkova, P. Submarine tectonic geomorphology of the Pliny and Hellenic Trenches reflecting geologic evolution of the southern Greece. Rud. Geol. Naft. Zb. 2021, 36, 33–48. [Google Scholar] [CrossRef]
- Li, K.; Chen, S.; Hu, G. Seismic labeled data expansion using variational autoencoders. Artif. Intell. Geosci. 2020, 1, 24–30. [Google Scholar] [CrossRef]
- Lemenkov, V.; Lemenkova, P. Using TeX Markup Language for 3D and 2D Geological Plotting. Found. Comput. Decis. Sci. 2021, 46, 43–69. [Google Scholar] [CrossRef]
- Zhou, R.; Cai, Y.; Zong, J.; Yao, X.; Yu, F.; Hu, G. Automatic fault instance segmentation based on mask propagation neural network. Artif. Intell. Geosci. 2020, 1, 31–35. [Google Scholar] [CrossRef]
- Lemenkov, V.; Lemenkova, P. Measuring Equivalent Cohesion Ceq of the Frozen Soils by Compression Strength Using Kriolab Equipment. Civ. Environ. Eng. Rep. 2021, 31, 63–84. [Google Scholar] [CrossRef]
- Schenke, H. General Bathymetric Chart of the Oceans (GEBCO). In Encyclopedia of Marine Geosciences, 1st ed.; Springer: Dordrecht, The Netherlands, 2016; pp. 268–269. [Google Scholar] [CrossRef]
- Lemenkova, P. GEBCO Gridded Bathymetric Datasets for Mapping Japan Trench Geomorphology by Means of GMT Scripting Toolset. Geod. Cartogr. 2020, 46, 98–112. [Google Scholar] [CrossRef]
- Pavlis, N.K.; Holmes, S.; Kenyon, S.C.; Factor, J.K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. 2012, 117, B04406. [Google Scholar] [CrossRef] [Green Version]
- Sandwell, D.T.; Müller, R.D.; Smith, W.H.F.; Garcia, E.; Francis, R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 2014, 7346, 65–67. [Google Scholar] [CrossRef]
- Hubbard, B.E.; Crowley, J.K. Mineral mapping on the Chilean–Bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery: Data dimensionality issues and solutions. Remote Sens. Environ. 2005, 99, 173–186. [Google Scholar] [CrossRef]
- Suetova, I.A.; Ushakova, L.A.; Lemenkova, P. Geoinformation mapping of the Barents and Pechora Seas. Geogr. Nat. Resour. 2005, 4, 138–142. [Google Scholar] [CrossRef]
- Lemenkova, P. Dataset compilation by GRASS GIS for thematic mapping of Antarctica: Topographic surface, ice thickness, subglacial bed elevation and sediment thickness. Czech Polar Rep. 2021, 11, 67–85. [Google Scholar] [CrossRef]
- Klaučo, M.; Gregorová, B.; Stankov, U.; Marković, V.; Lemenkova, P. Determination of ecological significance based on geostatistical assessment: A case study from the Slovak Natura 2000 protected area. Open Geosci. 2013, 5, 28–42. [Google Scholar] [CrossRef]
- Klauco, M.; Gregorová, B.; Koleda, P.; Stankov, U.; Markovic, V.; Lemenkova, P. Land Planning as a Support for Sustainable Development Based on Tourism: A Case Study of Slovak Rural Region. Environ. Eng. Manag. J. 2017, 16, 449–458. [Google Scholar] [CrossRef]
- QGIS Association. QGIS Geographic Information System; QGIS Association, 2021; Available online: https://www.qgis.org/en/site/about/index.html (accessed on 14 April 2022).
- Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.F.; Tian, D. The Generic Mapping Tools version 6. Geochem. Geophys. Geosyst. 2019, 20, 5556–5564. [Google Scholar] [CrossRef] [Green Version]
- Gauger, S.; Kuhn, G.; Gohl, K.; Feigl, T.; Lemenkova, P.; Hillenbrand, C. Swath-bathymetric mapping. Rep. Polar Mar. Res. 2007, 557, 38–45. [Google Scholar] [CrossRef]
- Lemenkova, P. Variations in the bathymetry and bottom morphology of the Izu-Bonin Trench modelled by GMT. Bull. Geogr. Phys. Geogr. Ser. 2020, 18, 41–60. [Google Scholar] [CrossRef]
- Lemenkova, P. Geophysical Mapping of Ghana Using Advanced Cartographic Tool GMT. Kartogr. Geoinf. 2021, 20, 16–37. [Google Scholar] [CrossRef]
- Falcone, G.; Acunzo, G.; Mendicelli, A.; Mori, F.; Naso, G.; Peronace, E.; Porchia, A.; Romagnoli, G.; Tarquini, E.; Moscatelli, M. Seismic amplification maps of Italy based on site-specific microzonation dataset and one-dimensional numerical approach. Eng. Geol. 2021, 289, 106170. [Google Scholar] [CrossRef]
- Jiang, C.; Yahong, D.; Huangdong, M.; You, X.; Ge, C. A microtremor study to reveal the dynamic response of earth fissure site: The case study in Fenwei Basins, China. Environ. Earth Sci. 2022, 81, 80. [Google Scholar] [CrossRef]
- Fayjaloun, R.; Negulescu, C.; Roullé, A.; Auclair, S.; Gehl, P.; Faravelli, M. Sensitivity of Earthquake Damage Estimation to the Input Data (Soil Characterization Maps and Building Exposure): Case Study in the Luchon Valley, France. Geosciences 2021, 11, 249. [Google Scholar] [CrossRef]
- Anderson, R.B.; Long, S.P.; Horton, B.K.; Calle, A.Z.; Soignard, E. Late Paleozoic Gondwanide deformation in the Central Andes: Insights from RSCM thermometry and thermal modeling, southern Bolivia. Gondwana Res. 2021, 94, 222–242. [Google Scholar] [CrossRef]
- Arguedas, J.D. Alcide d’Orbigny: Estudios Sobre la Geología de Bolivia. El Naturalista Francés Alcide Dessaline d’Orbigny en la Visión de los Bolivianos; Institut Français d’Études Andines: Lima, Peru, 2002; pp. 195–210. [Google Scholar] [CrossRef]
- Forbes, D. On the Geology of Bolivia and Southern Peru. Q. J. Geol. Soc. 1861, 17, 7–62. [Google Scholar] [CrossRef]
- Suárez Soruco, R. Compendio de Geología de Bolivia; Revista Técnica de Yacimientos Petrolíferos Fiscales Bolivianos: Cochabamba, Bolivia, 2000; Volume 18. [Google Scholar]
- Ahfeld, F.; Branisa, L. Geologia de Bolivia; Instituto Boliviano del Petroleo, Editorial Don Bosco: La Paz, Bolivia, 1960. [Google Scholar]
- Allenby, R.J. Origin of rectangular and aligned lakes in the Beni Basin of Bolivia. Tectonophysics 1988, 145, 1–20. [Google Scholar] [CrossRef]
- Ramos, V.A. Fifty years of plate tectonics in the Central Andes. J. S. Am. Earth Sci. 2021, 105, 102997. [Google Scholar] [CrossRef]
- Fernandez, G.A.; Assumpção, M.; Nieto, M.; Griffiths, T.; Convers, J. Focal mechanism of the 5.1Mw 2014 Lloja earthquake, Bolivia: Probing the transition between extensional stresses of the central Altiplano and compressional stresses of the sub-Andes. J. S. Am. Earth Sci. 2019, 91, 102–107. [Google Scholar] [CrossRef]
- Funning, G.J.; Barke, R.M.D.; Lamb, S.H.; Minaya, E.; Parsons, B.; Wright, T.J. The 1998 Aiquile, Bolivia earthquake: A seismically active fault revealed with InSAR. Earth Planet. Sci. Lett. 2005, 232, 39–49. [Google Scholar] [CrossRef]
- Lima, I.Q.; Muñoz, M.O.; Ramos Ramos, O.E.; Aguirre, J.Q.; Maity, J.P.; Ahmad, A.; Bhattacharya, P. Hydrogeochemical contrasts in the shallow aquifer systems of the Lower Katari Basin and Southern Poopó Basin, Bolivian Altiplano. J. S. Am. Earth Sci. 2021, 105, 102914. [Google Scholar] [CrossRef]
- Lima, I.Q.; Ramos Ramos, O.E.; Muñoz, M.O.; Chambi Tapia, M.I.; Aguirre, J.Q.; Ahmad, A.; Maity, J.P.; Islam, M.; Prosun Bhattacharya, T. Geochemical mechanisms of natural arsenic mobility in the hydrogeologic system of Lower Katari Basin, Bolivian Altiplano. J. Hydrol. 2021, 594, 125778. [Google Scholar] [CrossRef]
- Avilés, G.P.F.; Descloitres, M.; Duwig, C.; Rossier, Y.; Spadini, L.; Legchenko, A.; Soruco, A.; Argollo, J.; Pérez, M.; Medinaceli, W. Insight into the Katari-Lago Menor Basin aquifer, Lake Titicaca-Bolivia, inferred from geophysical (TDEM), hydrogeological and geochemical data. J. S. Am. Earth Sci. 2020, 99, 102479. [Google Scholar] [CrossRef]
- Borsa, A.A.; Fricker, H.A.; Bills, B.G.; Minster, J.B.; Carabajal, C.C.; Quinn, K.J. Topography of the salar de Uyuni, Bolivia from kinematic GPS. Geophys. J. Int. 2008, 172, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Dorbath, C.; Granet, M. Local earthquake tomography of the Altiplano and the Eastern Cordillera of northern Bolivia. Tectonophysics 1996, 259, 117–136. [Google Scholar] [CrossRef]
- Dahm, T.; Krüger, F. Higher-degree moment tensor inversion using far-field broad-band recordings: Theory and evaluation of the method with application to the 1994 Bolivia deep earthquake. Geophys. J. Int. 1999, 137, 35–50. [Google Scholar] [CrossRef] [Green Version]
- Boger, S.D.; Raetz, M.; Giles, D.; Etchart, E.; Fanning, C.M. U-Pb age from the Sunsás region of Eastern Bolivia, evidence for allochthonous origin of the Paraguá Block. Precambrian Res. 2005, 139, 121–146. [Google Scholar] [CrossRef]
- Redwood, S.D.; Rice, C.M. Petrogenesis of Miocene basic shoshonitic lavas in the Bolivian Andes and implications for hydrothermal gold, silver and tin deposits. J. S. Am. Earth Sci. 1997, 10, 203–221. [Google Scholar] [CrossRef]
- Iqbal, B.A. The economics of tin mining in Bolivia: By M. A. Ayub World Bank, Washington, DC, 1985. Resour. Policy 1986, 12, 153–154. [Google Scholar] [CrossRef]
- Diaz-Cuellar, V. The political economy of mining in Bolivia during the government of the Movement Towards Socialism (2006–2015). Extr. Ind. Soc. 2017, 4, 120–130. [Google Scholar] [CrossRef]
- Guédron, S.; Tolu, J.; Delaere, C.; Sabatier, P.; Barre, J.; Heredia, C.; Brisset, E.; Campillo, S.; Bindler, R.; Fritz, S.C.; et al. Reconstructing two millennia of copper and silver metallurgy in the Lake Titicaca region (Bolivia/Peru) using trace metals and lead isotopic composition. Anthropocene 2021, 34, 100288. [Google Scholar] [CrossRef]
- Pavilonis, B.; Grassman, J.; Johnson, G.; Diaz, Y.; Caravanos, J. Characterization and risk of exposure to elements from artisanal gold mining operations in the Bolivian Andes. Environ. Res. 2017, 154, 1–9. [Google Scholar] [CrossRef]
- Narins, T.P. The battery business: Lithium availability and the growth of the global electric car industry. Extr. Ind. Soc. 2017, 4, 321–328. [Google Scholar] [CrossRef]
- Sanchez-Lopez, M.D. Territory and lithium extraction: The Great Land of Lipez and the Uyuni Salt Flat in Bolivia. Political Geogr. 2021, 90, 102456. [Google Scholar] [CrossRef]
- Plotzki, A.; May, J.H.; Preusser, F.; Roesti, B.; Denier, S.; Lombardo, U.; Veit, H. Geomorphology and evolution of the late Pleistocene to Holocene fluvial system in the south-eastern Llanos de Moxos, Bolivian Amazon. CATENA 2015, 127, 102–115. [Google Scholar] [CrossRef] [Green Version]
- Dumont, J.F.; Fournier, M. Geodynamic environment of Quaternary morphostructures of the subandean foreland basins of Peru and Bolivia: Characteristics and study methods. Quat. Int. 1994, 21, 129–142. [Google Scholar] [CrossRef]
- May, J.H. Dunes and dunefields in the Bolivian Chaco as potential records of environmental change. Aeolian Res. 2013, 10, 89–102. [Google Scholar] [CrossRef]
- Baumann, M.; Levers, C.; Macchi, L.; Bluhm, H.; Waske, B.; Gasparri, N.I.; Kuemmerle, T. Mapping continuous fields of tree and shrub cover across the Gran Chaco using Landsat 8 and Sentinel-1 data. Remote Sens. Environ. 2018, 216, 201–211. [Google Scholar] [CrossRef]
- Thomas, E.; Semo, L.; Morales, M.; Noza, Z.; Nuñez, H.; Cayuba, A.; Noza, M.; Humaday, N.; Vaya, J.; Van Damme, P. Ethnomedicinal practices and medicinal plant knowledge of the Yuracarés and Trinitarios from Indigenous Territory and National Park Isiboro-Sécure, Bolivian Amazon. J. Ethnopharmacol. 2011, 133, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Burbridge, R.E.; Mayle, F.E.; Killeen, T.J. Fifty-thousand-year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon. Quat. Res. 2004, 61, 215–230. [Google Scholar] [CrossRef]
- Cadima, X.; Van Zonneveld, M.; Scheldeman, X.; Castañeda, N.; Patiño, F.; Beltran, M.; Van Damme, P. Endemic wild potato (Solanum spp.) biodiversity status in Bolivia: Reasons for conservation concerns. J. Nat. Conserv. 2014, 22, 113–131. [Google Scholar] [CrossRef]
- Capriles, J.M.; Albarracin-Jordan, J. The earliest human occupations in Bolivia: A review of the archaeological evidence. Quat. Int. 2013, 301, 46–59. [Google Scholar] [CrossRef]
- Rivadeneyra-Vera, C.; Assumpção, M.; Minaya, E.; Aliaga, P.; Avila, G. Determination of the fault plane and rupture size of the 2013 Santa Cruz earthquake, Bolivia, 5.2 Mw, by relative location of the aftershocks. J. S. Am. Earth Sci. 2016, 71, 54–62. [Google Scholar] [CrossRef]
- Tono, Y.; Yomogida, K. Origin of short-period signals following P-diffracted waves: A case study of the 1994 Bolivian deep earthquake. Phys. Earth Planet. Inter. 1997, 103, 1–16. [Google Scholar] [CrossRef]
- González-Maurel, O.; Deegan, F.M.; Le Roux, P.; Harris, C.; Troll, V.R.; Godoy, B. Constraining the sub-arc, parental magma composition for the giant Altiplano-Puna Volcanic Complex, northern Chile. Sci. Rep. 2020, 10, 6864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemenkova, P. Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Pol. Cartogr. Rev. 2019, 51, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Petersen, M.D.; Harmsen, S.C.; Jaiswal, K.S.; Rukstales, K.S.; Luco, N.; Haller, K.M.; Mueller, C.S.; Shumway, A.M. Seismic Hazard, Risk, and Design for South America. Bull. Seismol. Soc. Am. 2018, 108, 781–800. [Google Scholar] [CrossRef]
- Barone, A.; Fedi, M.; Tizzani, P.; Castaldo, R. Multiscale Analysis of DInSAR Measurements for Multi-Source Investigation at Uturuncu Volcano (Bolivia). Remote Sens. 2019, 11, 703. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L. Recovering permanent displacements from seismic records of the June 9, 1994 Bolivia deep earthquake. Geophys. Res. Lett. 2003, 30, 1740. [Google Scholar] [CrossRef]
- Ekström, G. Calculation of static deformation following the Bolivia Earthquake by summation of Earth’s normal modes. Geophys. Res. Lett. 1995, 22, 2289–2292. [Google Scholar] [CrossRef]
- Heine, K. Late Quaternary glaciations of Bolivia. In Developments in Quaternary Sciences; Elsevier: Amsterdam, The Netherlands, 2004; Volume 2, Chapter Part C; pp. 83–88. [Google Scholar] [CrossRef]
- La Frenierre, J.; Huh, K.; Mark, B.G. Ecuador, Peru and Bolivia. In Quaternary Glaciations—Extent and Chronology: A Closer Look; Elsevier: Amsterdam, The Netherlands, 2011; Volume 15. [Google Scholar]
- Latrubesse, E.M.; Baker, P.A.; Argollo, J. Geomorphology of Natural Hazards and Human-induced Disasters in Bolivia. Dev. Earth Surf. Process. 2009, 13, 181–194. [Google Scholar] [CrossRef]
- Latrubesse, E.M.; Stevaux, J.C.; Cremon, E.H.; May, J.H.; Tatumi, S.H.; Hurtado, M.A.; Bezada, M.; Argollo, J.B. Late Quaternary megafans, fans and fluvio-aeolian interactions in the Bolivian Chaco, Tropical South America. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 356–357, 75–88. [Google Scholar] [CrossRef]
- May, J.H.; Argollo, J.; Veit, H. Holocene landscape evolution along the Andean piedmont, Bolivian Chaco. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 260, 505–520. [Google Scholar] [CrossRef]
- Holder, R.M.; Viete, D.R.; Brown, M.; Johnson, T.E. Metamorphism and the evolution of plate tectonics. Nature 2019, 572, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Tapia, J.; Murray, J.; Ormachea, M.; Tirado, N.; Nordstrom, D.K. Origin, distribution, and geochemistry of arsenic in the Altiplano-Puna plateau of Argentina, Bolivia, Chile, and Perú. Sci. Total. Environ. 2019, 678, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Bar, N.; Long, M.D.; Wagner, L.S.; Beck, S.L.; Zandt, G.; Tavera, H. Receiver function analysis reveals layered anisotropy in the crust and upper mantle beneath southern Peru and northern Bolivia. Tectonophysics 2019, 753, 93–110. [Google Scholar] [CrossRef]
- Lemenkova, P. GRASS GIS for topographic and geophysical mapping of the Peru-Chile Trench. Forum Geogr. 2020, 19, 143–157. [Google Scholar] [CrossRef]
- Millington, A.C.; Velez-Liendo, X.M.; Bradley, A.V. Scale dependence in multitemporal mapping of forest fragmentation in Bolivia: Implications for explaining temporal trends in landscape ecology and applications to biodiversity conservation. ISPRS J. Photogramm. Remote. Sens. 2003, 57, 289–299. [Google Scholar] [CrossRef]
- Lemenkova, P. Evaluating land cover types from Landsat TM using SAGA GIS for vegetation mapping based on ISODATA and K-means clustering. Acta Agric. Serbica 2021, 26, 159–165. [Google Scholar] [CrossRef]
- Vella, M.A.; Loget, N. Geomorphological map of the Tiwanaku River watershed in Bolivia: Implications for past and present human occupation. CATENA 2021, 206, 105508. [Google Scholar] [CrossRef]
- Lemenkova, P. Scripting cartographic techniques of R and GMT for geomorphological and topographic mapping of Peru. Entorno Geogr. 2021, 22, 36–55. [Google Scholar] [CrossRef]
- Nedel, I.M.; Fuck, R.A.; Ruiz, A.S.; Matos-Salinas, G.R.; Da C., D. Ferreira, A. Timing of Proterozoic magmatism in the Sunsas belt, Bolivian Precambrian Shield, SW Amazonian Craton. Geosci. Front. 2021, 12, 101247. [Google Scholar] [CrossRef]
- Jemio, L.C. Booms and Collapses of the Hydro Carbons Sector in Bolivia; Institute for Advanced Development Studies: La Paz, Bolivia, 2008. [Google Scholar]
- Collinson, D.W. Magnetic Properties of the Taiguati Formation, Bolivia. Geophys. J. Int. 1966, 11, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Lindh, P.; Lemenkova, P. Geochemical tests to study the effects of cement ratio on potassium and TBT leaching and the pH of the marine sediments from the Kattegat Strait, Port of Gothenburg, Sweden. Baltica 2022, 35, 47–59. [Google Scholar] [CrossRef]
- Ocola, L.C.; Meyer, R.P. Crustal Low-Velocity Zones Under the Peru-Bolivia Altiplano. Geophys. J. Int. 1972, 30, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Corchete, V.; Flores, D.; Oviedo, F. The first high-resolution gravimetric geoid for the Bolivian tableland: BOLGEO. Phys. Earth Planet. Inter. 2006, 157, 250–256. [Google Scholar] [CrossRef]
- Hinojosa, L.; Hennermann, K. A GIS approach to ecosystem services and rural territorial dynamics applied to the case of the gas industry in Bolivia. Appl. Geogr. 2012, 34, 487–497. [Google Scholar] [CrossRef]
- Lindh, P.; Lemenkova, P. Resonant Frequency Ultrasonic P-Waves for Evaluating Uniaxial Compressive Strength of the Stabilized Slag–Cement Sediments. Nord. Concr. Res. 2021, 65, 39–62. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemenkova, P. Handling Dataset with Geophysical and Geological Variables on the Bolivian Andes by the GMT Scripts. Data 2022, 7, 74. https://doi.org/10.3390/data7060074
Lemenkova P. Handling Dataset with Geophysical and Geological Variables on the Bolivian Andes by the GMT Scripts. Data. 2022; 7(6):74. https://doi.org/10.3390/data7060074
Chicago/Turabian StyleLemenkova, Polina. 2022. "Handling Dataset with Geophysical and Geological Variables on the Bolivian Andes by the GMT Scripts" Data 7, no. 6: 74. https://doi.org/10.3390/data7060074
APA StyleLemenkova, P. (2022). Handling Dataset with Geophysical and Geological Variables on the Bolivian Andes by the GMT Scripts. Data, 7(6), 74. https://doi.org/10.3390/data7060074