A Mobile Air Pollution Monitoring Data Set
Abstract
:1. Summary
2. Data Description
3. Methods
4. User Notes
5. Limitations and Recommendations
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rückerl, R.; Schneider, A.; Breitner, S.; Cyrys, J.; Peters, A. Health effects of particulate air pollution: A review of epidemiological evidence. Inhal. Toxicol. 2011, 23, 555–592. [Google Scholar] [CrossRef] [PubMed]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and cardio- respiratory mortality: A review. Environ. Health 2013, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef]
- Goldstein, I.; Landovitz, L. Analysis of air pollution patterns in New York City—I. Can one station represent the large metropolitan area? Atmos. Environ. 1977, 11, 47–52. [Google Scholar] [CrossRef]
- Goldstein, I.; Landovitz, L. Analysis of air pollution patterns in New York City—II. Can one aerometric station represent the area surrounding it? Atmos. Environ. 1977, 11, 53–57. [Google Scholar] [CrossRef]
- Elen, B.; Peters, J.; van Poppel, M.; Bleux, N.; Theunis, J.; Reggente, M.; Standaert, A. The Aeroflex: A bicycle for mobile air quality measurements. Sensors 2013, 13, 221–240. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.; Corr, D.; Deluca, P.; Kanaroglou, P.; McCarry, B. Mobile monitoring of air pollution in cities: The case of Hamilton, Ontario, Canada. J. Environ. Monit. 2009, 11, 998–1003. [Google Scholar] [CrossRef] [PubMed]
- Larson, T.; Henderson, S.B.; Brauer, M. Mobile monitoring of particle light absorption coefficient in an urban area as a basis for land use regression. Environ. Sci. Technol. 2009, 43, 4672–4678. [Google Scholar] [CrossRef]
- Adams, M.D.; Kanaroglou, P.S. Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models. J. Environ. Manag. 2016, 168, 133–141. [Google Scholar] [CrossRef]
- Xu, X.; Brook, J.R.; Guo, Y. A statistical assessment of saturation and mobile sampling strategies to estimate long-term average concentrations across urban areas. J. Air Waste Manag. Assoc. 2007, 57, 1396–1406. [Google Scholar] [CrossRef]
- Adams, M.D.; Kanaroglou, P.S. A Method for Reducing Classical Error in Long-Term Average Air Pollution Concentrations from incomplete Time-Series Data. In Edited Volume: Spatial Analysis in Health Geography; Kanaroglou, P.S., Delmelle, E.M., Paez, A., Eds.; Ashgate Publishing: Farnham, UK, 2015; pp. 183–196. [Google Scholar]
- Apte, J.S.; Messier, K.P.; Gani, S.; Brauer, M.; Kirchstetter, T.W.; Lunden, M.M.; Marshall, J.D.; Portier, C.J.; Vermeulen, R.C.H.; Hamburg, S.P. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data. Environ. Sci. Technol. 2017, 51, 6999–7008. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.; Corr, D.; Kanaroglou, P. Topographic and spatial impacts of temperature inversions on air quality using mobile air pollution surveys. Sci. Total Environ. 2010, 408, 5086–5096. [Google Scholar] [CrossRef] [PubMed]
- Kanaroglou, P.S.; Adams, M.D.; De Luca, P.F.; Corr, D.; Sohel, N. Estimation of sulfur dioxide air pollution concentrations with a spatial autoregressive model. Atmos. Environ. 2013, 79, 421–427. [Google Scholar] [CrossRef]
- Adams, M.D.; De Luca, P.F.; Corr, D.; Kanaroglou, P.S. Mobile Air Monitoring: Measuring Change in Air Quality in the City of Hamilton, 2005–2010. Soc. Indic. Res. 2012, 108, 351–364. [Google Scholar] [CrossRef]
- DeLuca, P.F.; Corr, D.; Wallace, J.; Kanaroglou, P. Effective mitigation efforts to reduce road dust near industrial sites: Assessment by mobile pollution surveys. J. Environ. Manag. 2012, 98, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.D.; Yiannakoulias, N.; Kanaroglou, P.S. Air pollution exposure: An activity pattern approach for active transportation. Atmos. Environ. 2016, 140, 52–59. [Google Scholar] [CrossRef]
- Arain, M.A.; Blair, R.; Finkelstein, N.; Brook, J.R.; Sahsuvaroglu, T.; Beckerman, B.; Zhang, L.; Jerrett, M. The use of wind fields in a land use regression model to predict air pollution concentrations for health exposure studies. Atmos. Environ. 2007, 41, 3453–3464. [Google Scholar] [CrossRef]
- Radisic, S.; Newbold, K.B.; Eyles, J.; Williams, A. Factors influencing health behaviours in response to the air quality health index: A cross-sectional study in Hamilton, Canada. Environ. Health Rev. 2016, 59, 17–29. [Google Scholar] [CrossRef]
- Simone, D.; Eyles, J.; Newbold, K.B.; Kitchen, P.; Williams, A. Air Quality in Hamilton: Who is Concerned? Perceptions from Three Neighbourhoods. Soc. Indic. Res. 2012, 108, 239–255. [Google Scholar] [CrossRef]
- Jerrett, M.; Burnett, R.T.; Kanaroglou, P.; Eyles, J.; Finkelstein, N.; Giovis, C.; Brook, J.R. A GIS–environmental justice analysis of particulate air pollution in Hamilton, Canada. Environ. Plan. A 2001, 33, 955–973. [Google Scholar] [CrossRef]
- Hamilton. 2001 to 2016 Census Population and Dwelling Counts by Ward for Hamilton; Hamilton, ON, Canada, 2017. Available online: https://www.hamilton.ca/moving-hamilton/community-profile/census-data-hamilton (accessed on 22 December 2018).
- Weichenthal, S.; Hatzopoulou, M.; Brauer, M. A picture tells a thousand…exposures: Opportunities and challenges of deep learning image analyses in exposure science and environmental epidemiology. Environ. Int. 2018. [Google Scholar] [CrossRef] [PubMed]
Column Name | Description |
---|---|
ID | Unique ID for each observation. |
CO | Carbon monoxide concentrations (ppm). |
NO | Nitric oxide concentrations (ppb). |
NO2 | Nitrogen dioxide concentrations (ppb). |
NOX | Total nitrogen oxides concentration (ppb). |
O3 | Ground level ozone concentration (ppb). |
PM1 | Particulate matter concentrations for PM < 1 µm. Units µg/m3. |
PM2 | Particulate matter concentrations for PM < 2.5 µm. Units µg/m3. |
PM10 | Particulate matter concentrations for PM < 10 µm. Units µg/m3. |
SO2 | Sulfur dioxide concentrations (ppb). |
POINT_X_START | Start Node of Line - X-coordinate, UTM 17N NAD83 projection. |
POINT_Y_START | Start Node of Line - Y-coordinate, UTM 17N NAD83 projection. |
POINT_X_END | End Node of Line - X-coordinate, UTM 17N NAD83 projection. |
POINT_Y_END | End Node of Line - Y-coordinate, UTM 17N NAD83 projection. |
START_TIME | Start of collection for line segment. Format: YYYY-MM-DD HH:MM:SS |
END_TIME | End of collection for line segment. Format: YYYY-MM-DD HH:MM:SS |
Pollutant | Instrument | Usage Dates | Response Time |
---|---|---|---|
Carbon Monoxide | Thermo 48C | Nov 2005–Oct 2011 | 60 s |
Carbon Monoxide | Thermo 48i | Nov 2011–End | 60 s |
Nitrogen Oxides (NO, NO2, NOX) | Thermo 42C | Nov 2005–Oct 2011 | 80 s |
Nitrogen Oxides (NO, NO2, NOX) | Teledyne 200 EU | Nov 2011–End | 20 s |
Ozone | Thermo 49C | Nov 2005–End | 20 s |
Particulate Matter (1, 2.5, 10) | Grimm 1.107 | Nov 2005–End | 6 s |
Sulfur Dioxide | Monitor Labs 8850 | Nov 2005–Oct 2011 | 240 s |
Sulfur Dioxide | Thermo 43C | Nov 2011–End | 110 s |
Pollutant | Min | Mean | Median | Max | S.D. |
---|---|---|---|---|---|
CO | 0 | 0.74 | 0.5 | 64.13 | 1.68 |
NO | 0 | 28.43 | 13 | 916.2 | 44.12 |
NO2 | 0 | 15.88 | 12 | 474.5 | 16.04 |
NOX | 0 | 43.33 | 27.44 | 978.75 | 51.87 |
O3 | 0 | 24.19 | 24.5 | 237.5 | 11.63 |
PM10 | 0 | 12.15 | 10 | 291 | 9.02 |
PM2.5 | 0 | 15.08 | 12.73 | 731 | 12.87 |
PM1 | 0 | 46.45 | 25.5 | 2640 | 97.36 |
SO2 | 0 | 8.53 | 4.1 | 283 | 10.92 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adams, M.D.; Corr, D. A Mobile Air Pollution Monitoring Data Set. Data 2019, 4, 2. https://doi.org/10.3390/data4010002
Adams MD, Corr D. A Mobile Air Pollution Monitoring Data Set. Data. 2019; 4(1):2. https://doi.org/10.3390/data4010002
Chicago/Turabian StyleAdams, Matthew D., and Denis Corr. 2019. "A Mobile Air Pollution Monitoring Data Set" Data 4, no. 1: 2. https://doi.org/10.3390/data4010002
APA StyleAdams, M. D., & Corr, D. (2019). A Mobile Air Pollution Monitoring Data Set. Data, 4(1), 2. https://doi.org/10.3390/data4010002