Development of a Data Set of Pesticide Dissipation Rates in/on Various Plant Matrices for the Pesticide Properties Database (PPDB)
Abstract
1. Summary
2. Data Description
3. Methods
4. User Notes
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CAS RN | Chemical Abstract Service Registry Number |
RL50 | Half-life (also known as Residual Lifetime) of the pesticide on the specified plant matrix |
FAO | Food and Agriculture Organisation |
IUPAC | International Union of Pure and Applied Chemistry |
PPDB | Pesticide Properties Database |
US EPA | United States Environmental Protection Agency |
References
- Whitmyre, G.K.; Ross, J.H.; Lunchick, C.; Volger, B.; Singer, S. Biphasic dissipation kinetics for dislodgeable foliar residues in estimating post-application occupational exposures to endosulfan. Arch. Environ. Contam. Toxicol. 2004, 46, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Horst, G.L.; Shea, P.J.; Christians, N.; Miller, D.R.; Stuefer-Powell, C.; Starrett, S.K. Pesticide dissipation under golf course fairway conditions. Crop Sci. 1996, 36, 362–370. [Google Scholar] [CrossRef]
- Gannon, T.W.; Jeffries, M.D. Dislodgeable 2, 4-D from Athletic Field Turfgrass. Eur. J. Hortic. Sci. 2014, 116–122. Available online: http://www.jstor.org/stable/24126908 (accessed on 3 August 2017).
- Fantke, P.; Juraske, R.; Jolliet, O. Considering human exposure to pesticides in food products: Importance of dissipation dynamics. In Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2014), San Francisco, CA, USA, 8–10 October 2014; American Center for Life Cycle Assessment: Tacoma, WA, USA, 2014; pp. 390–394. [Google Scholar]
- Pan, R.; Chen, H.P.; Zhang, M.L.; Wang, Q.H.; Jiang, Y.; Liu, X. Dissipation pattern, processing factors, and safety evaluation for dimethoate and its metabolite (Omethoate) in tea (Camellia Sinensis). PLoS ONE 2015, 10, e0138309. [Google Scholar] [CrossRef] [PubMed]
- Chukwudebe, A.C.; Cox, D.L.; Palmer, S.J.; Morneweck, L.A.; Payne, L.D.; Dunbar, D.M.; Wislocki, P.G. Toxicity of emamectin benzoate foliar dislodgeable residues to two beneficial insects. J. Agric. Food Chem. 1997, 45, 3689–3693. Available online: http://pubs.acs.org/doi/abs/10.1021/jf970375c (accessed on 13 April 2017). [CrossRef]
- Dong, S.; Qiao, K.; Wang, H.; Zhu, Y.; Xia, X.; Wang, K. Dissipation rate of thiacloprid and its control effect against Bemisia tabaci in greenhouse tomato after soil application. Pest Manag. Sci. 2014, 70, 1267–1273. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; He, M.; Zhao, Y.; Ren, Y.; Wei, Y.; Mu, W.; Liu, F. Dissipation dynamics of clothianidin and its control efficacy against Bradysia odoriphaga Yang and Zhang in Chinese chive ecosystems. Pest Manag. Sci. 2016, 72, 1396–1404. [Google Scholar] [CrossRef] [PubMed]
- Fantke, P.; Wieland, P.; Wannaz, C.; Friedrich, R.; Jolliet, O. Dynamics of pesticide uptake into plants: From system functioning to parsimonious modeling. Environ. Model. Softw. 2013, 40, 316–324. Available online: http://doi.org/10.1016/j.envsoft.2012.09.016 (accessed on 13 April 2017). [CrossRef]
- Shirmohammadi, A.; Knisel, W.G. Evaluation of the GLEAMS model for pesticide leaching in Sweden. J. Environ. Sci. Health A 1994, 29, 1167–1182. Available online: http://dx.doi.org/10.1080/10934529409376101 (accessed on 3 August 2017). [CrossRef]
- Brouwer, D.H.; De Haan, M.; Leenheers, L.H.; De Vreede, S.A.F.; Van Hemmen, J.J. Half-lives of pesticides on greenhouse crops. Bull. Environ. Contam. Toxicol. 1997, 58, 976–984. Available online: https://www.ncbi.nlm.nih.gov/pubmed/9136663 (accessed on 3 August 2017). [CrossRef] [PubMed]
- Juraske, R.; Antón, A.; Castells, F. Estimating half-lives of pesticides in/on vegetation for use in multimedia fate and exposure models. Chemosphere 2008, 70, 1748–1755. Available online: http://doi.org/10.1016/j.chemosphere.2007.08.047 (accessed on 14 July 2017).
- Fantke, P.; Gillespie, B.W.; Juraske, R.; Jolliet, O. Estimating half-lives for pesticide dissipation from plants. Environ. Sci. Tech. 2014, 48, 8588–8602. [Google Scholar] [CrossRef] [PubMed]
- Spynu, E.I. Predicting pesticide residues to reduce crop contamination. Rev. Environ. Contam. Toxcol. 1989, 109, 90–107. [Google Scholar]
- Fantke, P.; Juraske, R. Variability of pesticide dissipation half-lives in plants. Environ. Sci. Technol. 2013, 47, 3548–3562. Available online: http://pubs.acs.org/doi/abs/10.1021/es303525x (accessed on 3 August 2017). [CrossRef] [PubMed]
- Farha, W.; El-Aty, A.A.; Rahman, M.M.; Shin, H.C.; Shim, J.H. An overview on common aspects influencing the dissipation pattern of pesticides: A review. Environ. Monit. Assess. 2016, 188, 693. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.A. The Pesticide Manual 17th Edition; British Crop Protection Council: Hampshire, UK, 2015. [Google Scholar]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 2016, 22, 1050–1064. Available online: http://dx.doi.org/10.1080/10807039.2015.1133242 (accessed on 3 August 2017). [CrossRef]
- NPIC—National Pesticide Information Center, Oregon State University and the U.S. Environmental Protection Agency. 2017. Available online: http://npic.orst.edu/ (accessed on 3 August 2017).
- Kegley, S.E.; Hill, B.R.; Orme, S.; Choi, A.H. PAN Pesticide Database. Pesticide Action Network, North America. 2000. Available online: http://www.pesticideinfo.org/ (accessed on 3 August 2017).
- Severinsen, M.; Jager, T. Modelling the influence of terrestrial vegetation on the environmental fate of xenobiotics. Chemosphere 1998, 37, 41–62. Available online: https://doi.org/10.1016/S0045-6535(98)80002-7 (accessed on 3 August 2017). [CrossRef]
- Thomas, P.J.; Mineau, P.; Juraske, R. Determining pesticide foliar half-lives from soil half-life value: Not so “cut-and-dry”. Chemosphere 2011, 84, 1531–1533. Available online: https://www.ncbi.nlm.nih.gov/pubmed/21664644 (accessed on 5 July 2017).
- Willis, G.H.; McDowell, L.L. Pesticide persistence on foliage. In Reviews of Environmental Contamination and Toxicology; Springer: New York, NY, USA, 1987; pp. 23–73. [Google Scholar]
- Katagi, T. Photodegradation of Pesticides on Plant and Soil Surfaces. Rev. Environ. Contam. Toxicol. 2004, 182, 1–195. Available online: https://www.ncbi.nlm.nih.gov/pubmed/15217019 (accessed on 24 July 2017). [PubMed]
- Hoskins, W.M. Mathematical treatment of loss of pesticide residues. Plant Prot. Bull. (FAO) 1961, 9, 163–168. [Google Scholar]
Parameter | Description |
---|---|
Pesticide common name | The name by which the pesticide active substance is commonly known. Data in this column are listed alphabetically. |
Pesticide chemical name | Chemical name of the pesticide using the Chemical Abstract Services (CAS) nomenclature. |
CAS registry number | The Chemical Abstract Services' unique identifying number (RN) assigned to the pesticide. |
Plant | Common name of the plant/crop the data relates to. |
Plant scientific name | Scientific name including cultivar or variety where known |
Matrix | The part of the plant tested. |
On/In | Whether the residue was measured on (O—as a surface residue) on in (I—as total residue in and on) the sample. |
Country | The country (and in some instances region) where the study was undertaken. |
Study conditions | Whether the study was undertaken in the open field (F), undercover (U) or under special conditions (X). In the latter case the data is accompanied by short qualifying text. |
Min DT50 (days) | Minimum experimental value for the plant dissipation rate expressed as the half-life (RL50) in days. |
Max DT50 (days) | Maximum experimental value for the plant dissipation rate expressed as the half-life (RL50) in days. |
Mean DT50 (days) | Arithmetic mean experimental value for the plant dissipation rate expressed as the half-life (RL50) in days. |
Reference | Full bibliographical reference for the publication from which the data was extracted. |
PPDB code | Unique identifier linking the record to the PPDB (see User Notes below). |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewis, K.; Tzilivakis, J. Development of a Data Set of Pesticide Dissipation Rates in/on Various Plant Matrices for the Pesticide Properties Database (PPDB). Data 2017, 2, 28. https://doi.org/10.3390/data2030028
Lewis K, Tzilivakis J. Development of a Data Set of Pesticide Dissipation Rates in/on Various Plant Matrices for the Pesticide Properties Database (PPDB). Data. 2017; 2(3):28. https://doi.org/10.3390/data2030028
Chicago/Turabian StyleLewis, Kathleen, and John Tzilivakis. 2017. "Development of a Data Set of Pesticide Dissipation Rates in/on Various Plant Matrices for the Pesticide Properties Database (PPDB)" Data 2, no. 3: 28. https://doi.org/10.3390/data2030028
APA StyleLewis, K., & Tzilivakis, J. (2017). Development of a Data Set of Pesticide Dissipation Rates in/on Various Plant Matrices for the Pesticide Properties Database (PPDB). Data, 2(3), 28. https://doi.org/10.3390/data2030028