The Discussions of Monkeypox Misinformation on Social Media
Abstract
1. Introduction
- How do the temporal patterns of monkeypox misinformation and not-misinformation tweets evolve over time? [RQ1]
- How do the readability and grammatical accuracy of monkeypox misinformation tweets compare to those of not-misinformation tweets? [RQ2]
- What is the impact of tweet readability on user engagement with monkeypox misinformation and not-misinformation tweets? [RQ3]
2. Literature Review
2.1. Misinformation
2.2. User Engagement
2.3. Readability
2.4. Synthesis
3. Methodology
3.1. Dataset
3.2. Natural Language Processing
3.3. Classification
3.4. Readability and Grammar Features
3.5. Estimation Approach
4. Results
5. Discussion
Theoretical and Practical Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BERT | Bidirectional Encoder Representations from Transformers |
CoLA | Corpus of Linguistic Acceptability |
FKGL | Flesch–Kincaid Grade Level |
FRE | Flesch Reading Ease |
GCI | Grammar Correctness Index |
GLUE | General Language Understanding Evaluation |
kNN | k-Nearest-Neighbors |
NLP | Natural Language Processing |
OLS | Ordinary Least Squares |
RoBERTa | Robustly Optimized BERT Approach |
SSL | Semi-Supervised Learning |
URL | Uniform Resource Locator |
WHO | World Health Organization |
References
- World Health Organization. Questions and Answers: Monkeypox. Available online: https://www.who.int/news-room/questions-and-answers/item/monkeypox (accessed on 2 February 2023).
- Lazer, D.M.J.; Baum, M.A.; Benkler, Y.; Berinsky, A.J.; Greenhill, K.M.; Menczer, F.; Metzger, M.J.; Nyhan, B.; Pennycook, G.; Rothschild, D.; et al. The science of fake news. Science 2018, 359, 1094–1096. [Google Scholar] [CrossRef] [PubMed]
- Kwanda, F.A.; Lin, T.T. Fake news practices in Indonesian newsrooms during and after the Palu earthquake: A hierarchy-of-influences approach. Inf. Commun. Soc. 2020, 23, 849–866. [Google Scholar] [CrossRef]
- Peary, B.D.; Shaw, R.; Takeuchi, Y. Utilization of social media in the east Japan earthquake and tsunami and its effectiveness. J. Nat. Disaster Sci. 2012, 34, 3–18. [Google Scholar] [CrossRef]
- Peng, Z. Earthquakes and coronavirus: How to survive an infodemic. Seismol. Res. Lett. 2020, 91, 2441–2443. [Google Scholar] [CrossRef]
- Zhou, C.; Xiu, H.; Wang, Y.; Yu, X. Characterizing the dissemination of misinformation on social media in health emergencies: An empirical study based on COVID-19. Inf. Process. Manag. 2021, 58, 102554. [Google Scholar] [CrossRef]
- Elroy, O.; Komendantova, N.; Yosipof, A. Cyber-echoes of climate crisis: Unraveling anthropogenic climate change narratives on social media. Curr. Res. Environ. Sustain. 2024, 7, 100256. [Google Scholar] [CrossRef]
- King, K.K.; Wang, B. Diffusion of real versus misinformation during a crisis event: A big data-driven approach. Int. J. Inf. Manag. 2023, 71, 102390. [Google Scholar] [CrossRef]
- Gkikas, D.C.; Tzafilkou, K.; Theodoridis, P.K.; Garmpis, A.; Gkikas, M.C. How do text characteristics impact user engagement in social media posts: Modeling content readability, length, and hashtags number in Facebook. Int. J. Inf. Manag. Data Insights 2022, 2, 100067. [Google Scholar] [CrossRef]
- Ibrahim, N.F.; Wang, X.; Bourne, H. Exploring the effect of user engagement in online brand communities: Evidence from Twitter. Comput. Hum. Behav. 2017, 72, 321–338. [Google Scholar] [CrossRef]
- Elroy, O.; Yosipof, A. Analysis of COVID-19 5G Conspiracy Theory Tweets Using SentenceBERT Embedding. In International Conference on Artificial Neural Networks; Springer Nature: Cham, Switzerland, 2022; pp. 186–196. [Google Scholar]
- Epstein, Z.; Lin, H.; Pennycook, G.; Rand, D. How many others have shared this? Experimentally investigating the effects of social cues on engagement, misinformation, and unpredictability on social media. arXiv 2022, arXiv:2207.07562. [Google Scholar] [CrossRef]
- Withall, A.; Sagi, E. The impact of readability on trust in information. In Proceedings of the Annual Meeting of the Cognitive Science Society, Virtual, 26–29 July 2021. [Google Scholar]
- Rogers, E. Diffusion of Innovations Simon and Schuster; Science and Education Publishing: Newark, NJ, USA, 2010. [Google Scholar]
- Joy, A.; Pathak, R.; Shrestha, A.; Spezzano, F.; Winiecki, D. Modeling the diffusion of fake and real news through the lens of the diffusion of innovations theory. ACM Trans. Soc. Comput. 2024, 7, 1–24. [Google Scholar] [CrossRef]
- Elroy, O.; Woo, G.; Komendantova, N.; Yosipof, A. A dual-focus analysis of wikipedia traffic and linguistic patterns in public risk awareness Post-Charlie Hebdo. Comput. Hum. Behav. Rep. 2024, 100580. [Google Scholar] [CrossRef]
- Wang, Y.; McKee, M.; Torbica, A.; Stuckler, D. Systematic Literature Review on the Spread of Health-related Misinformation on Social Media. Soc. Sci. Med. 2019, 240, 112552. [Google Scholar] [CrossRef] [PubMed]
- Erokhin, D.; Yosipof, A.; Komendantova, N. COVID-19 Conspiracy Theories Discussion on Twitter. Soc. Media + Soc. 2022, 8, 20563051221126051. [Google Scholar] [CrossRef] [PubMed]
- Elroy, O.; Erokhin, D.; Komendantova, N.; Yosipof, A. Mining the Discussion of Monkeypox Misinformation on Twitter Using RoBERTa. In Proceedings of the IFIP International Conference on Artificial Intelligence Applications and Innovations, León, Spain, 14–17 June 2023; pp. 429–438. [Google Scholar]
- Gerts, D.; Shelley, C.D.; Parikh, N.; Pitts, T.; Watson Ross, C.; Fairchild, G.; Vaquera Chavez, N.Y.; Daughton, A.R. “Thought I’d share first” and other conspiracy theory tweets from the COVID-19 infodemic: Exploratory study. JMIR Public Health Surveill. 2021, 7, e26527. [Google Scholar] [CrossRef] [PubMed]
- Vicari, R.; Elroy, O.; Komendantova, N.; Yosipof, A. Persistence of misinformation and hate speech over the years: The Manchester Arena bombing. Int. J. Disaster Risk Reduct. 2024, 110, 104635. [Google Scholar] [CrossRef]
- Kim, M.G.; Kim, M.; Kim, J.H.; Kim, K. Fine-tuning BERT models to classify misinformation on garlic and COVID-19 on Twitter. Int. J. Environ. Res. Public Health 2022, 19, 5126. [Google Scholar] [CrossRef]
- Rajdev, M.; Lee, K. Fake and spam messages: Detecting misinformation during natural disasters on social media. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), Singapore, 6–9 December 2015; Volume 1, pp. 17–20. [Google Scholar]
- Batzdorfer, V.; Steinmetz, H.; Biella, M.; Alizadeh, M. Conspiracy theories on Twitter: Emerging motifs and temporal dynamics during the COVID-19 pandemic. Int. J. Data Sci. Anal. 2022, 13, 315–333. [Google Scholar] [CrossRef]
- Beskow, D.M.; Carley, K.M. Bot-hunter: A tiered approach to detecting & characterizing automated activity on twitter. In Proceedings of the SBP-BRiMS: International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation, Washington, DC, USA, July 10–13 2018; Volume 3, p. 3. [Google Scholar]
- ODonovan, J.; Kang, B.; Meyer, G.; Höllerer, T.; Adalii, S. Credibility in context: An analysis of feature distributions in twitter. In Proceedings of the 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing, Amsterdam, The Netherlands, 3–5 September 2012; pp. 293–301. [Google Scholar]
- Gupta, A.; Kumaraguru, P.; Castillo, C.; Meier, P. Tweetcred: Real-time credibility assessment of content on twitter. In Proceedings of the International Conference on Social Informatics, Barcelona, Spain, 10–13 November 2014; pp. 228–243. [Google Scholar]
- Jacques, R.D. The Nature of Engagement and Its Role in Hypermedia Evaluation and Design; South Bank University: London, UK, 1996. [Google Scholar]
- O’Brien, H. Theoretical perspectives on user engagement. In Why Engagement Matters: Cross-Disciplinary Perspectives of User Engagement in Digital Media; Springer Nature: Berlin/Heidelberg, Germany, 2016; pp. 1–26. [Google Scholar]
- Attfield, S.; Kazai, G.; Lalmas, M.; Piwowarski, B. Towards a science of user engagement (position paper). In Proceedings of the WSDM Workshop on User Modelling for Web Applications, Hong Kong, China, 9–12 February 2011. [Google Scholar]
- Fang, Z.; Costas, R.; Wouters, P. User engagement with scholarly tweets of scientific papers: A large-scale and cross-disciplinary analysis. Scientometrics 2022, 127, 4523–4546. [Google Scholar] [CrossRef]
- Papakyriakopoulos, O.; Goodman, E. The impact of Twitter labels on misinformation spread and user engagement: Lessons from Trump’s election tweets. In Proceedings of the ACM Web Conference 2022, Lyon, France, 25–29 April 2022; pp. 2541–2551. [Google Scholar]
- Segev, E. Sharing Feelings and User Engagement on Twitter: It’s All About Me and You. Soc. Media + Soc. 2023, 9, 20563051231183430. [Google Scholar] [CrossRef]
- Zhao, M.; Buro, K. Comparisons between text-only and multimedia tweets on user engagement. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; pp. 3825–3831. [Google Scholar]
- DuBay, W.H. Smart Language: Readers, Readability, and the Grading of Text; ERIC: Washington, DC, USA, 2007.
- Tavakoli, M.; Alani, H.; Burel, G. On the Readability of Misinformation in Comparison to the Truth. CEUR Workshop Proc. 2023, 3370, 63–72. [Google Scholar]
- Pérez-Rosas, V.; Kleinberg, B.; Lefevre, A.; Mihalcea, R. Automatic detection of fake news. arXiv 2017, arXiv:1708.07104. [Google Scholar] [CrossRef]
- Shrestha, A.; Spezzano, F. Characterizing and predicting fake news spreaders in social networks. Int. J. Data Sci. Anal. 2021, 13, 385–398. [Google Scholar] [CrossRef]
- Warstadt, A.; Singh, A.; Bowman, S.R. Cola: The Corpus of Linguistic Acceptability (with Added Annotations); FDA: Silver Spring, MD, USA, 2019.
- Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S.R. GLUE: A multi-task benchmark and analysis platform for natural language understanding. arXiv 2018, arXiv:1804.07461. [Google Scholar]
- Sultana, R.; Nishino, T. Fake News Detection System: An implementation of BERT and Boosting Algorithm. In Proceedings of the 38th International Conference on Computers and Their Applications, Tokyo, Japan, 20–22 March 2023; Volume 91, pp. 124–137. [Google Scholar]
- Kuo, H.-Y.; Chen, S.-Y. Predicting user engagement in health misinformation correction on social media platforms in taiwan: Content analysis and text mining study. J. Med. Internet Res. 2025, 27, e65631. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Chen, G.; Zhang, L.; Xie, R.; Chen, R. An analysis of the factors influencing engagement metrics within the dissemination of health science misinformation. Front. Public Health 2025, 13, 1571210. [Google Scholar] [CrossRef] [PubMed]
- Dallo, I.; Elroy, O.; Fallou, L.; Komendantova, N.; Yosipof, A. Dynamics and characteristics of misinformation related to earthquake predictions on Twitter. Sci. Rep. 2023, 13, 13391. [Google Scholar] [CrossRef]
- Daniulaityte, R.; Chen, L.; Lamy, F.R.; Carlson, R.G.; Thirunarayan, K.; Sheth, A. “When ‘bad’is ‘good’”: Identifying personal communication and sentiment in drug-related tweets. JMIR Public Health Surveill. 2016, 2, e6327. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- González-Carvajal, S.; Garrido-Merchán, E.C. Comparing BERT against traditional machine learning text classification. arXiv 2020, arXiv:2005.13012. [Google Scholar]
- Piskorski, J.; Haneczok, J.; Jacquet, G. New Benchmark Corpus and Models for Fine-grained Event Classification: To BERT or not to BERT? In Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Spain, 8–13 December 2020; pp. 6663–6678. [Google Scholar]
- Baruah, A.; Das, K.A.; Barbhuiya, F.A.; Dey, K. Automatic Detection of Fake News Spreaders Using BERT. CLEF (Work. Notes) 2020. Available online: https://ceur-ws.org/Vol-2696/paper_237.pdf (accessed on 21 August 2025).
- Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692. [Google Scholar]
- Adoma, A.F.; Henry, N.-M.; Chen, W. Comparative analyses of bert, roberta, distilbert, and xlnet for text-based emotion recognition. In Proceedings of the 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 18–20 December 2020; pp. 117–121. [Google Scholar]
- Naseer, M.; Asvial, M.; Sari, R.F. An empirical comparison of bert, roberta, and electra for fact verification. In Proceedings of the 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Jeju Island, Republic of Korea, 20–23 April 2021; pp. 241–246. [Google Scholar]
- Tarunesh, I.; Aditya, S.; Choudhury, M. Trusting roberta over bert: Insights from checklisting the natural language inference task. arXiv 2021, arXiv:2107.07229. [Google Scholar]
- Müller, M.; Salathé, M.; Kummervold, P.E. COVID-twitter-bert: A natural language processing model to analyse COVID-19 content on twitter. arXiv 2020, arXiv:2005.07503. [Google Scholar] [CrossRef] [PubMed]
- Reimers, N.; Gurevych, I. Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv 2019, arXiv:1908.10084. [Google Scholar] [CrossRef]
- Karande, H.; Walambe, R.; Benjamin, V.; Kotecha, K.; Raghu, T. Stance detection with BERT embeddings for credibility analysis of information on social media. PeerJ Comput. Sci. 2021, 7, e467. [Google Scholar] [CrossRef]
- Elroy, O.; Yosipof, A. Semi-Supervised Learning Classifier for Misinformation Related to Earthquakes Prediction on Social Media. In Proceedings of the International Conference on Artificial Neural Networks, Heraklion, Greece, 26–29 September 2023; pp. 256–267. [Google Scholar]
- Eltorai, A.E.M.; Sharma, P.; Wang, J.; Daniels, A.H. Most American Academy of Orthopaedic Surgeons’ Online Patient Education Material Exceeds Average Patient Reading Level. Clin. Orthop. Relat. Res.® 2015, 473, 1181–1186. [Google Scholar] [CrossRef]
- Krishna, K.; Wieting, J.; Iyyer, M. Reformulating unsupervised style transfer as paraphrase generation. arXiv 2020, arXiv:2010.05700. [Google Scholar] [CrossRef]
- Cameron, A.C.; Trivedi, P.K. Regression Analysis of Count Data; Cambridge University Press: Cambridge, UK, 2013; Volume 53. [Google Scholar]
- World Health Organization. Monkeypox—United Kingdom of Great Britain and Northern Ireland. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON381 (accessed on 2 February 2023).
- Williams, H.T.; McMurray, J.R.; Kurz, T.; Lambert, F.H. Network analysis reveals open forums and echo chambers in social media discussions of climate change. Glob. Environ. Change 2015, 32, 126–138. [Google Scholar] [CrossRef]
- Agarwal, S.; Sureka, A. Using knn and svm based one-class classifier for detecting online radicalization on twitter. In Proceedings of the Distributed Computing and Internet Technology: 11th International Conference, ICDCIT 2015, Bhubaneswar, India, 5–8 February 2015; pp. 431–442. [Google Scholar]
- Neelakandan, S.; Paulraj, D. A gradient boosted decision tree-based sentiment classification of twitter data. Int. J. Wavelets Multiresolution Inf. Process. 2020, 18, 2050027. [Google Scholar] [CrossRef]
- Costantini, H.; Fuse, R. Health Information on COVID-19 Vaccination: Readability of online sources and newspapers in Singapore, Hong Kong, and the Philippines. J. Media 2022, 3, 228–237. [Google Scholar] [CrossRef]
- Jackson, M.O.; Yariv, L. Diffusion on social networks. Econ. Publique/Public Econ. 2006, 16. Available online: https://ideas.repec.org/p/clt/sswopa/1251.html (accessed on 21 August 2025). [CrossRef]
Category | Number of Tweets | Example Tweet |
---|---|---|
Misinformation | 1128 | “Monkeypox release is PSYCHOLOGICAL TERRORISM to keep humanity paralyzed with FEAR” |
Not-misinformation | 737 | “WHO clarifies monkeypox not a sexually transmitted disease” |
Neutral | 1521 | “New York City investigating possible monkeypox case” |
Category | Number of Tweets | # Users | Tweets/User |
---|---|---|---|
Misinformation | 425,656 | 235,655 | 1.806 |
Not-misinformation | 524,602 | 249,417 | 2.103 |
Neutral | 487,466 | 168,473 | 2.893 |
Model 1 Misinformationt | Model 2 Not-Misinformationt | |
---|---|---|
Constant | 93.22 | 172.54 |
Misinformationt | 1.01 *** | |
Misinformationt−1 | 0.37 *** | |
Misinformationt−7 | −0.07 * | |
Misinformationt−14 | 0 | |
Not-misinformationt | 0.93 *** | |
Not-misinformationt−1 | −0.26 *** | |
Not-misinformationt−7 | −0.07 ** | |
Not-misinformationt−14 | −0.02 | |
N | 88 | 88 |
R2 | 0.945 | 0.95 |
Not-Misinformation (Mean ± SD) | Misinformation (Mean ± SD) | t-Test | DF | |
---|---|---|---|---|
FRE | 66.338 ± 1.112 | 61.644 ± 2.344 | 21.616 *** | 101 |
FKGL | 7.543 ± 0.219 | 7.25 ± 0.339 | 8.883 *** | 101 |
GCI | 0.839 ± 0.011 | 0.77 ± 0.021 | 35.566 *** | 101 |
Not-Misinformation | |||
---|---|---|---|
Variable | Retweets | Replies | Likes |
Constant | −5.814 *** (0.025) | −3.616 *** (0.028) | −3.24 *** (0.02) |
Followers | 0.773 *** (0.001) | 0.465 *** (0.001) | 0.621 *** (0.001) |
Following | −0.104 *** (0.001) | −0.086 *** (0.002) | −0.093 *** (0.001) |
Has URL | −0.953 *** (0.005) | −0.961 *** (0.005) | −1.451 *** (0.004) |
Has Media | 1.216 *** (0.007) | 0.789 *** (0.007) | 1.242 *** (0.006) |
GCI | 0.432 *** (0.01) | 0.297 *** (0.011) | 0.437 *** (0.008) |
FRE | 0.011 *** (0) | 0.009 *** (0) | 0.016 *** (0) |
FKGL | 0.085 *** (0.001) | 0.04 *** (0.001) | 0.097 *** (0.001) |
Pseudo R2 | 0.8924 | 0.5965 | 0.916 |
Constant | −5.814 *** (0.025) | −3.616 *** (0.028) | −3.24 *** (0.02) |
Misinformation | |||
Variable | Retweets | Replies | Likes |
Constant | −6.572 *** (0.025) | −5.406 *** (0.031) | −2.917 *** (0.019) |
Followers | 0.724 *** (0.001) | 0.57 *** (0.001) | 0.712 *** (0.001) |
Following | −0.19 *** (0.002) | −0.069 *** (0.002) | −0.235 *** (0.001) |
Has URL | −0.873 *** (0.006) | −1.002 *** (0.007) | −1.543 *** (0.004) |
Has Media | 1.794 *** (0.006) | 1.014 *** (0.008) | 2.103 *** (0.005) |
GCI | 0.01 (0.009) | 0.372 *** (0.011) | −0.405 *** (0.007) |
FRE | 0.03 *** (0) | 0.013 *** (0) | 0.02 *** (0) |
FKGL | 0.183 *** (0.001) | 0.07 *** (0.002) | 0.121 *** (0.001) |
Pseudo R2 | 0.8271 | 0.6292 | 0.9177 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elroy, O.; Yosipof, A. The Discussions of Monkeypox Misinformation on Social Media. Data 2025, 10, 137. https://doi.org/10.3390/data10090137
Elroy O, Yosipof A. The Discussions of Monkeypox Misinformation on Social Media. Data. 2025; 10(9):137. https://doi.org/10.3390/data10090137
Chicago/Turabian StyleElroy, Or, and Abraham Yosipof. 2025. "The Discussions of Monkeypox Misinformation on Social Media" Data 10, no. 9: 137. https://doi.org/10.3390/data10090137
APA StyleElroy, O., & Yosipof, A. (2025). The Discussions of Monkeypox Misinformation on Social Media. Data, 10(9), 137. https://doi.org/10.3390/data10090137