LADOS: Aerial Imagery Dataset for Oil Spill Detection, Classification, and Localization Using Semantic Segmentation
Abstract
1. Introduction
- We introduce LADOS4, the first publicly available aerial imagery dataset for oil spill detection, including six classes with pixel-level annotations for liquids: “Oil”, “Emulsion”, “Sheen”, solid objects: “Ship”, “Oil-platform”, and the “Background” class.
- We are the first to adopt the newly proposed systematic methodology for creating domain-specific datasets [34], resulting in 3388 diverse images with 6462 pixel-level annotations, providing a more comprehensive approach to the topic.
- We demonstrate the applicability of the newly generated dataset for developing cutting-edge instances and semantic segmentation deep learning models for providing insightful conclusions and enabling further research in the domain.
2. Related Datasets
2.1. Satellite Datasets
2.2. Aerial Imagery Datasets
3. Methodology
3.1. Data Acquisition
3.2. Data Filtering
3.3. Data Annotation
3.4. Data Generation Challenges
3.5. LADOS Dataset
4. Experimental Setup
4.1. Benchmark Models
4.2. Implementation and Training
4.3. Data Augmentation
4.4. Evaluation Metrics
4.5. Hardware and Software Configurations
5. Performance Evaluation
5.1. Experimental Results
5.2. Limitations and Future Steps
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SAR | Synthetic Aperture Radar |
SLAR | Side-Looking Airborne Radar |
NIR | Near Infra-Red |
SWIR | Short-Wave Infra-Red |
SotA | State-of-the-Art |
VHR | Very High Resolution |
CA | Coastal Aerosol |
GUI | Graphical User Interface |
CNN | Convolutional Neural Network |
BCE | Binary Cross-Entropy |
CCE | Categorical Cross-Entropy |
References
- Drake, M.J.; Righter, K. Determining the composition of the Earth. Nature 2002, 416, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Gkountakos, K.; Ioannidis, K.; Demestichas, K.; Vrochidis, S.; Kompatsiaris, I. A Comprehensive Review of Deep Learning-Based Anomaly Detection Methods for Precision Agriculture. IEEE Access 2024, 12, 197715–197733. [Google Scholar] [CrossRef]
- Selamoglu, M. The Effects of the Ports and Water Transportation on the Aquatic Ecosystem. Open Access J. Biog. Sci. Res. 2021, 10, 1–8. [Google Scholar] [CrossRef]
- Lega, M.; Ceglie, D.; Persechino, G.; Ferrara, C.; Napoli, R. Illegal dumping investigation: A new challenge for forensic environmental engineering. WIT Trans. Ecol. Environ. 2012, 163, 3–11. [Google Scholar]
- Naz, S.; Iqbal, M.F.; Mahmood, I.; Allam, M. Marine oil spill detection using synthetic aperture radar over indian ocean. Mar. Pollut. Bull. 2021, 162, 111921. [Google Scholar] [CrossRef]
- Bence, A.; Kvenvolden, K.A.; Kennicutt Ii, M. Organic geochemistry applied to environmental assessments of Prince William Sound, Alaska, after the Exxon Valdez oil spill—A review. Org. Geochem. 1996, 24, 7–42. [Google Scholar] [CrossRef]
- Leifer, I.; Lehr, W.J.; Simecek-Beatty, D.; Bradley, E.; Clark, R.; Dennison, P.; Hu, Y.; Matheson, S.; Jones, C.E.; Holt, B.; et al. State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill. Remote Sens. Environ. 2012, 124, 185–209. [Google Scholar] [CrossRef]
- Chen, J.; Di, Z.; Shi, J.; Shu, Y.; Wan, Z.; Song, L.; Zhang, W. Marine oil spill pollution causes and governance: A case study of Sanchi tanker collision and explosion. J. Clean. Prod. 2020, 273, 122978. [Google Scholar] [CrossRef]
- Rajendran, S.; Sadooni, F.N.; Al-Kuwari, H.A.S.; Oleg, A.; Govil, H.; Nasir, S.; Vethamony, P. Monitoring oil spill in Norilsk, Russia using satellite data. Sci. Rep. 2021, 11, 3817. [Google Scholar] [CrossRef]
- Llenque, J.C.E.; Valiente, M.M.; Fababa, J.C.C.; Quiroz, L.E.; Del Castillo, M.C.; Gonzales, J.J.P.; Sanchez, M.R.; Lynes, G.M.; Ortiz, J.M.Q. Identification of the Marine Coast Area Affected by Oil Spill Using Multispectral Satellite and UAV Images in Ventanilla-Callao, Perú. In Proceedings of the 2024 IEEE Biennial Congress of Argentina (ARGENCON), San Nicolás de los Arroyos, Argentina, 18–20 September 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–7. [Google Scholar]
- Al-Ruzouq, R.; Gibril, M.B.A.; Shanableh, A.; Kais, A.; Hamed, O.; Al-Mansoori, S.; Khalil, M.A. Sensors, features, and machine learning for oil spill detection and monitoring: A review. Remote Sens. 2020, 12, 3338. [Google Scholar] [CrossRef]
- Majidi; Nezhad, M.; Groppi, D.; Laneve, G.; Marzialetti, P.A.; Piras, G. Oil Spill Detection Analyzing “Sentinel 2 “Satellite Images: A Persian Gulf Case Study. In Proceedings of the 3rdWorld Congress on Civil, Structural, and Environmental Engineering (CSEE’18), Budapest, Hungary, 8–10 April 2018; International ASET Inc.: Orléans, ON, Canada, 2018; pp. 1–8. [Google Scholar]
- Orfanidis, G.; Ioannidis, K.; Avgerinakis, K.; Vrochidis, S.; Kompatsiaris, I. A deep neural network for oil spill semantic segmentation in Sar images. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 3773–3777. [Google Scholar]
- Krestenitis, M.; Orfanidis, G.; Ioannidis, K.; Avgerinakis, K.; Vrochidis, S.; Kompatsiaris, I. Early identification of oil spills in satellite images using deep CNNs. In Proceedings of the MultiMedia Modeling: 25th International Conference, MMM 2019; Thessaloniki, Greece, 8–11 January 2019, Proceedings, Part I 25; Springer: Berlin/Heidelberg, Germany, 2019; pp. 424–435. [Google Scholar]
- Alpers, W.; Holt, B.; Zeng, K. Oil spill detection by imaging radars: Challenges and pitfalls. Remote Sens. Environ. 2017, 201, 133–147. [Google Scholar] [CrossRef]
- Mancini, A.; Frontoni, E.; Zingaretti, P. Satellite and uav data for precision agriculture applications. In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11–14 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 491–497. [Google Scholar]
- Jiao, Z.; Jia, G.; Cai, Y. A new approach to oil spill detection that combines deep learning with unmanned aerial vehicles. Comput. Ind. Eng. 2019, 135, 1300–1311. [Google Scholar] [CrossRef]
- Rahnemoonfar, M.; Dhakal, S. Automatic oil spill detection on quad polarimetric UAVSAR imagery. In Proceedings of the Polarization: Measurement, analysis, and remote sensing XII, Baltimore, ML, USA, 18–19 April 2016; SPIE: Bellingham, WA, USA, 2016; Volume 9853, pp. 279–285. [Google Scholar]
- Liu, P.; Li, X.; Qu, J.J.; Wang, W.; Zhao, C.; Pichel, W. Oil spill detection with fully polarimetric UAVSAR data. Mar. Pollut. Bull. 2011, 62, 2611–2618. [Google Scholar] [CrossRef]
- Hassani, B.; Sahebi, M.R.; Asiyabi, R.M. Oil spill four-class classification using UAVSAR polarimetric data. Ocean. Sci. J. 2020, 55, 433–443. [Google Scholar] [CrossRef]
- Gallego, A.J.; Gil, P.; Pertusa, A.; Fisher, R.B. Segmentation of oil spills on side-looking airborne radar imagery with autoencoders. Sensors 2018, 18, 797. [Google Scholar] [CrossRef]
- Gallego, A.J.; Gil, P.; Pertusa, A.; Fisher, R.B. Semantic segmentation of SLAR imagery with convolutional LSTM selectional autoencoders. Remote Sens. 2019, 11, 1402. [Google Scholar] [CrossRef]
- Nieto-Hidalgo, M.; Gallego, A.J.; Gil, P.; Pertusa, A. Two-stage convolutional neural network for ship and spill detection using SLAR images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5217–5230. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Q.; Xie, M.; Zhang, Z.; Ma, Z.; Cao, K. Identifying oil spill types based on remotely sensed reflectance spectra and multiple machine learning algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9071–9078. [Google Scholar] [CrossRef]
- Yang, J.; Hu, Y.; Zhang, J.; Ma, Y.; Li, Z.; Jiang, Z. Identification of marine oil spill pollution using hyperspectral combined with thermal infrared remote sensing. Front. Mar. Sci. 2023, 10, 1135356. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, J.; Ma, Y.; Mao, X. Hyperspectral remote sensing detection of marine oil spills using an adaptive long-term moment estimation optimizer. Remote Sens. 2021, 14, 157. [Google Scholar] [CrossRef]
- Kerf, T.D.; Sels, S.; Samsonova, S.; Vanlanduit, S. Oil Spill Drone: A Dataset of Drone-Captured, Segmented RGB Images for Oil Spill Detection in Port Environments. arXiv 2024, arXiv:2402.18202. [Google Scholar] [CrossRef]
- Gkountakos, K. LADOS Dataset. 2025. Available online: https://universe.roboflow.com/konstantinos-gkountakos/lados (accessed on 5 May 2025).
- Fingas, M.; Brown, C.E. A review of oil spill remote sensing. Sensors 2017, 18, 91. [Google Scholar] [CrossRef] [PubMed]
- Drons. OIL Dataset. 2023. Available online: https://universe.roboflow.com/drons-kogn4/oil-8sfgp (accessed on 5 May 2025).
- chris. yhyth Dataset. 2025. Available online: https://universe.roboflow.com/chris-mxxpq/yhyth (accessed on 5 May 2025).
- kriti. Oil Spillage Dataset. 2024. Available online: https://universe.roboflow.com/kriti-bcb8w/oil-spillage-4aupb (accessed on 5 May 2025).
- Toast, B. Oil Spill Two Dataset. 2024. Available online: https://universe.roboflow.com/baka-toast/oil-spill-two (accessed on 5 May 2025).
- Stavrothanasopoulos, K.; Gkountakos, K.; Ioannidis, K.; Tsikrika, T.; Vrochidis, S.; Kompatsiaris, I. CylinDeRS: A Benchmark Visual Dataset for Robust Gas Cylinder Detection and Attribute Classification in Real-World Scenes. Sensors 2025, 25, 1016. [Google Scholar] [CrossRef] [PubMed]
- Krestenitis, M.; Orfanidis, G.; Ioannidis, K.; Avgerinakis, K.; Vrochidis, S.; Kompatsiaris, I. Oil Spill Identification from Satellite Images Using Deep Neural Networks. Remote Sens. 2019, 11, 1762. [Google Scholar] [CrossRef]
- Cantorna, D.; Dafonte, C.; Iglesias, A.; Arcay, B. Oil spill segmentation in SAR images using convolutional neural networks. A comparative analysis with clustering and logistic regression algorithms. Appl. Soft Comput. 2019, 84, 105716. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, Y.; Li, Z.; Yan, X.; Guan, Q.; Zhong, Y.; Zhang, L.; Li, D. Oil Spill Contextual and Boundary-Supervised Detection Network Based on Marine SAR Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–10. [Google Scholar] [CrossRef]
- Trujillo-Acatitla, R.; Tuxpan-Vargas, J.; Ovando-Vázquez, C.; Monterrubio-Martínez, E. Marine oil spill detection and segmentation in SAR data with two steps deep learning framework. Mar. Pollut. Bull. 2024, 204, 116549. [Google Scholar] [CrossRef]
- Shaban, M.; Salim, R.; Abu Khalifeh, H.; Khelifi, A.; Shalaby, A.; El-Mashad, S.; Mahmoud, A.; Ghazal, M.; El-Baz, A. A deep-learning framework for the detection of oil spills from SAR data. Sensors 2021, 21, 2351. [Google Scholar] [CrossRef]
- Bianchi, F.M.; Espeseth, M.M.; Borch, N. Large-scale detection and categorization of oil spills from SAR images with deep learning. Remote Sens. 2020, 12, 2260. [Google Scholar] [CrossRef]
- Ahmed, S.; ElGharbawi, T.; Salah, M.; El-Mewafi, M. Deep neural network for oil spill detection using Sentinel-1 data: Application to Egyptian coastal regions. Geomat. Nat. Hazards Risk 2023, 14, 76–94. [Google Scholar] [CrossRef]
- Ma, X.; Xu, J.; Pan, J.; Yang, J.; Wu, P.; Meng, X. Detection of marine oil spills from radar satellite images for the coastal ecological risk assessment. J. Environ. Manag. 2023, 325, 116637. [Google Scholar] [CrossRef] [PubMed]
- Blondeau-Patissier, D.; Schroeder, T.; Diakogiannis, F.; Li, Z. CSIRO Sentinel-1 SAR image dataset of oil- and non-oil features for machine learning (Deep Learning). Data Collect. 2022. [CrossRef]
- Yekeen, S.T.; Balogun, A.L.; Yusof, K.B.W. A novel deep learning instance segmentation model for automated marine oil spill detection. ISPRS J. Photogramm. Remote Sens. 2020, 167, 190–200. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Ye, Y.; Cui, L.; Jia, B.; Jiang, Z.; Wang, S. Detection of oil spill through fully convolutional network. In Proceedings of the Geo-Spatial Knowledge and Intelligence: 5th International Conference, GSKI 2017, Chiang Mai, Thailand, 8–10 December 2017; Springer: Singapore, 2018; pp. 353–362. [Google Scholar]
- Kolokoussis, P.; Karathanassi, V. Oil spill detection and mapping using sentinel 2 imagery. J. Mar. Sci. Eng. 2018, 6, 4. [Google Scholar] [CrossRef]
- Kikaki, K.; Kakogeorgiou, I.; Hoteit, I.; Karantzalos, K. Detecting Marine pollutants and Sea Surface features with Deep learning in Sentinel-2 imagery. ISPRS J. Photogramm. Remote Sens. 2024, 210, 39–54. [Google Scholar] [CrossRef]
- Nurseitov, D.B.; Abdimanap, G.; Abdallah, A.; Sagatdinova, G.; Balakay, L.; Dedova, T.; Rametov, N.; Alimova, A. ROSID: Remote Sensing Satellite Data for Oil Spill Detection on Land. Eng. Sci. 2024, 32, 1348. [Google Scholar] [CrossRef]
- Duan, P.; Kang, X.; Ghamisi, P.; Li, S. Hyperspectral remote sensing benchmark database for oil spill detection with an isolation forest-guided unsupervised detector. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–11. [Google Scholar] [CrossRef]
- Garcia-Pineda, O.; Staples, G.; Jones, C.E.; Hu, C.; Holt, B.; Kourafalou, V.; Graettinger, G.; DiPinto, L.; Ramirez, E.; Streett, D.; et al. Classification of oil spill by thicknesses using multiple remote sensors. Remote Sens. Environ. 2020, 236, 111421. [Google Scholar] [CrossRef]
- Ghorbani, Z.; Behzadan, A.H. Monitoring offshore oil pollution using multi-class convolutional neural networks. Environ. Pollut. 2021, 289, 117884. [Google Scholar] [CrossRef]
- Odonkor, P.; Ball, Z.; Chowdhury, S. Distributed operation of collaborating unmanned aerial vehicles for time-sensitive oil spill mapping. Swarm Evol. Comput. 2019, 46, 52–68. [Google Scholar] [CrossRef]
- De Kerf, T.; Gladines, J.; Sels, S.; Vanlanduit, S. Oil spill detection using machine learning and infrared images. Remote Sens. 2020, 12, 4090. [Google Scholar] [CrossRef]
- CIBER Lab. NAFTA. Available online: https://github.com/ciber-lab/nafta (accessed on 18 April 2025).
- PPE. Oil Spillage Dataset. 2024. Available online: https://universe.roboflow.com/ppe-syzfj/oil-spillage-4aupb-yytkd-1wdix-sksmd (accessed on 5 May 2025).
- kafabillariskolarngbayanpupeduph. Thesis Dataset. 2023. Available online: https://universe.roboflow.com/kafabillariskolarngbayanpupeduph/thesis-7ot3a (accessed on 5 May 2025).
- ACES. Oil Spills Dataset. 2023. Available online: https://universe.roboflow.com/aces/oil-spills-ubmlx (accessed on 5 May 2025).
- Oil Spill. Oil Stain Detection DATASET. 2024. Available online: https://universe.roboflow.com/oil-spill-a0l20/oil-stain-detection (accessed on 5 May 2025).
- ObjectdetectionFruits. Oil_spill Dataset. 2024. Available online: https://universe.roboflow.com/objectdetectionfruits-moegm/oilspill-qbagr (accessed on 5 May 2025).
- Pollution, O. Test Dataset. 2023. Available online: https://universe.roboflow.com/oil-pollution/test-ka7p4 (accessed on 5 May 2025).
- Karanov, D. Oil Spill Classification Dataset. 2023. Available online: https://universe.roboflow.com/dmitry-karanov-xnath/oil-spill-classification (accessed on 5 May 2025).
- Detection. Offshore Oil Spills3 Dataset. 2024. Available online: https://universe.roboflow.com/detection-tvlmd/offshore-oil-spills3 (accessed on 5 May 2025).
- Dataset, O. Oilspill_v2 Dataset. 2023. Available online: https://universe.roboflow.com/oilspill-dataset/oilspillv2 (accessed on 5 May 2025).
- Group, O. Sea Report Oil Dataset. 2024. Available online: https://universe.roboflow.com/open-group/sea-report-oil (accessed on 5 May 2025).
- Karanov, D. Oil Spill One Class Classification Dataset. 2023. Available online: https://universe.roboflow.com/dmitry-karanov-xnath/oil-spill-one-class-classification (accessed on 5 May 2025).
- Punthon. Oil-Spill-Segmentation Dataset. 2024. Available online: https://universe.roboflow.com/punthon-i5rmx/oil-spill-segmentation-tysge (accessed on 5 May 2025).
- Karanov, D. Oil Spots Segmentation Dataset. 2023. Available online: https://universe.roboflow.com/dmitry-karanov-xnath/oil-spots-segmentation (accessed on 5 May 2025).
- Detection. Offshore Oil Spills2 Dataset. 2024. Available online: https://universe.roboflow.com/detection-tvlmd/offshore-oil-spills2 (accessed on 5 May 2025).
- Computervision. Oil_Spill_Seg Dataset. 2024. Available online: https://universe.roboflow.com/computervision-naujm/oilspillseg (accessed on 5 May 2025).
- hamdi ali. Oil Pollution Dataset. 2022. Available online: https://universe.roboflow.com/hamdi-ali/oil-pollution (accessed on 5 May 2025).
- Drons. Oil Spills v1 Dataset. 2022. Available online: https://universe.roboflow.com/drons-kogn4/oil-spills-v1 (accessed on 5 May 2025).
- idkman. Oil Spill Dataset. 2023. Available online: https://universe.roboflow.com/idkman/oil-spill-rcnm4 (accessed on 5 May 2025).
- amjad. Oil Spli New v Dataset. 2024. Available online: https://universe.roboflow.com/amjad-myr3z/oil-spli-new-v (accessed on 5 May 2025).
- kafabillariskolarngbayanpupeduph. Custom_Data Dataset. 2023. Available online: https://universe.roboflow.com/kafabillariskolarngbayanpupeduph/customdata-5nmls (accessed on 5 May 2025).
- Johnson, J.; Douze, M.; Jégou, H. Billion-scale similarity search with GPUs. IEEE Trans. Big Data 2019, 7, 535–547. [Google Scholar] [CrossRef]
- Fingas, M.; Fieldhouse, B. Studies of the formation process of water-in-oil emulsions. Mar. Pollut. Bull. 2003, 47, 369–396. [Google Scholar] [CrossRef] [PubMed]
- Fingas, M. Visual appearance of oil on the sea. J. Mar. Sci. Eng. 2021, 9, 97. [Google Scholar] [CrossRef]
- Lewis, A. The development and use of the Bonn Agreement oil appearance code (BAOAC). In Proceedings of the Interspill Conference, Marseilles, France, 12–14 May 2009; pp. 12–14. [Google Scholar]
- Khanam, R.; Hussain, M. Yolov11: An overview of the key architectural enhancements. arXiv 2024, arXiv:2410.17725. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation with transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090. [Google Scholar]
- Zheng, S.; Lu, J.; Zhao, H.; Zhu, X.; Luo, Z.; Wang, Y.; Fu, Y.; Feng, J.; Xiang, T.; Torr, P.H.; et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 6881–6890. [Google Scholar]
- Cheng, B.; Misra, I.; Schwing, A.G.; Kirillov, A.; Girdhar, R. Masked-attention mask transformer for universal image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 1290–1299. [Google Scholar]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference; Zurich, Switzerland, 6–12 September 2014, Proceedings, Part V 13; Springer: Cham, Switzerland, 2014; pp. 740–755. [Google Scholar]
- Cordts, M.; Omran, M.; Ramos, S.; Scharwächter, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The cityscapes dataset. In Proceedings of the CVPR Workshop on the Future of Datasets in Vision, Boston, MA, USA, 7–12 June 2015; Volume 2, p. 1. [Google Scholar]
- Hussein, B.M.; Shareef, S.M. An empirical study on the correlation between early stopping patience and epochs in deep learning. In Proceedings of the ITM Web of Conferences, Dehradun, India, 11–12 October 2024; EDP Sciences: Les Ulis, France, 2024; Volume 64, p. 01003. [Google Scholar]
- Maharana, K.; Mondal, S.; Nemade, B. A review: Data pre-processing and data augmentation techniques. Glob. Transitions Proc. 2022, 3, 91–99. [Google Scholar] [CrossRef]
Type of Imagery | Band Description | # of Images | # of Incidents or (f) Flight Sequences | # of Classes | Pixel-Level Annotation | Pub. |
---|---|---|---|---|---|---|
Satellite | C-Band | 1112 | 5 | Yes | [35] | |
C-Band | 130 | 2 | Yes | [36] | ||
C-Band | 2093 | 2 | Yes | [40] | ||
C-Band, L-Band | 6456 | 2 | 2 | Yes | [37] | |
C-Band | 310 | 5 | Yes | [39] | ||
C-Band | 5630 | 2 | No | [43] | ||
C-Band | 2882 | 4 | Yes | [44] | ||
C-Band | 50 | 2 | Yes | [41] | ||
C-Band | 17 | 2 | Yes | [42] | ||
C-Band | 2850 | 2 | Yes | [38] | ||
Blue, Green, Panchromatic, SWIR | 2 | 2 | Yes | [45] | ||
CA, NIR, RGB, SWIR, Water-vapor-2 | 2 | 4 | No | [46] | ||
13 Sentinel-2 bands | 174 | 15 | Yes | [47] | ||
NIR, Red, SWIR | 1 | 9 | Yes | [48] | ||
Hyperspectral | 1 | 2 | Yes | [49] | ||
Satellite and Aerial | C-Band, CA, L-Band, NIR, Panchromatic, RGB, Red-edge, Yellow | 2 | 5 | No | [50] | |
RGB | 1292 | 3 | Yes | [51] | ||
Aerial | L-Band | 1 | 4 | No | [20] | |
SLAR | 38 (f) | 2 | Yes | [21] | ||
SLAR | 51 (f) | 7 | Yes | [22] | ||
RGB | 1241 | 2 | No | [17] | ||
RGB | 10 | 2 | Yes | [52] | ||
IR, RGB | 1 | 2 | Yes | [53] | ||
RGB | 1268 | 3 | Yes | [27] |
Number of Images | Number of Instances | |||||||
---|---|---|---|---|---|---|---|---|
Class Name | Train | Val | Test | Total | Train | Val | Test | Total |
Oil | 1098 | 320 | 166 | 1584 (47%) | 1555 | 471 | 201 | 2227 (34%) |
Emulsion | 855 | 237 | 128 | 1220 (36%) | 1238 | 344 | 177 | 1759 (27%) |
Sheen | 579 | 163 | 70 | 812(24%) | 823 | 214 | 106 | 1143 (20%) |
Ship | 565 | 149 | 84 | 798 (24%) | 869 | 281 | 121 | 1271 (18%) |
Oil-platform | 41 | 12 | 8 | 61 (2%) | 41 | 13 | 8 | 62 (1%) |
Total (unique) | 2370 | 675 | 343 | 3388 | 4526 | 1323 | 613 | 6462 |
Model Name | Oil | Emulsion | IoU% Sheen | Ship | Oil-Platform | mAcc% | mIoU% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Val | Test | Val | Test | Val | Test | Val | Test | Val | Test | Val | Test | Val | Test | |
YOLOv11 [79] | 59.51 | 43.66 | 64.42 | 63.68 | 42.72 | 35.66 | 78.40 | 62.82 | 62.14 | 30.81 | 71.75 | 57.33 | 61.44 | 47.33 |
DeepLabv3+ [80] | 67.24 | 66.75 | 71.56 | 69.14 | 55.18 | 56.07 | 55.30 | 50.20 | 0.00 | 0.00 | 66.85 | 63.78 | 49.86 | 48.43 |
SegFormer [81] | 72.95 | 71.76 | 76.36 | 75.05 | 67.21 | 65.02 | 71.46 | 63.49 | 68.20 | 12.50 | 82.39 | 67.90 | 71.24 | 57.56 |
SETR [82] | 70.66 | 70.47 | 73.97 | 72.12 | 64.44 | 59.45 | 50.67 | 44.76 | 0.00 | 0.00 | 60.05 | 56.96 | 51.95 | 49.36 |
Mask2Former [83] | 70.49 | 68.27 | 71.76 | 68.64 | 65.95 | 59.95 | 76.23 | 68.28 | 46.23 | 48.16 | 76.45 | 73.20 | 66.13 | 62.66 |
Model Name | Oil | Emulsion | IoU% Sheen | Ship | Oil-Platform | mAcc% | mIoU% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Val | Test | Val | Test | Val | Test | Val | Test | Val | Test | Val | Test | Val | Test | |
YOLOv11-W [79] | 56.27 | 43.04 | 53.64 | 48.80 | 41.31 | 39.27 | 74.96 | 58.03 | 65.74 | 29.59 | 71.15 | 58.68 | 58.38 | 43.75 |
DeepLabv3+-W [80] | 56.23 | 54.53 | 59.51 | 58.63 | 42.80 | 40.23 | 31.80 | 19.04 | 21.05 | 8.93 | 67.83 | 59.21 | 42.28 | 36.27 |
SegFormer-W [81] | 72.31 | 72.57 | 77.61 | 75.87 | 67.84 | 61.88 | 71.28 | 65.22 | 69.06 | 28.58 | 87.85 | 80.45 | 71.62 | 60.82 |
SETR-W [82] | 73.12 | 74.35 | 73.70 | 74.45 | 67.91 | 63.19 | 56.59 | 44.36 | 63.82 | 22.02 | 79.52 | 67.80 | 67.03 | 55.67 |
Mask2Former-W [83] | 70.72 | 67.58 | 73.10 | 74.01 | 61.43 | 58.43 | 78.50 | 69.02 | 64.76 | 61.90 | 79.64 | 77.95 | 69.70 | 66.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkountakos, K.; Melitou, M.; Ioannidis, K.; Demestichas, K.; Vrochidis, S.; Kompatsiaris, I. LADOS: Aerial Imagery Dataset for Oil Spill Detection, Classification, and Localization Using Semantic Segmentation. Data 2025, 10, 117. https://doi.org/10.3390/data10070117
Gkountakos K, Melitou M, Ioannidis K, Demestichas K, Vrochidis S, Kompatsiaris I. LADOS: Aerial Imagery Dataset for Oil Spill Detection, Classification, and Localization Using Semantic Segmentation. Data. 2025; 10(7):117. https://doi.org/10.3390/data10070117
Chicago/Turabian StyleGkountakos, Konstantinos, Maria Melitou, Konstantinos Ioannidis, Konstantinos Demestichas, Stefanos Vrochidis, and Ioannis Kompatsiaris. 2025. "LADOS: Aerial Imagery Dataset for Oil Spill Detection, Classification, and Localization Using Semantic Segmentation" Data 10, no. 7: 117. https://doi.org/10.3390/data10070117
APA StyleGkountakos, K., Melitou, M., Ioannidis, K., Demestichas, K., Vrochidis, S., & Kompatsiaris, I. (2025). LADOS: Aerial Imagery Dataset for Oil Spill Detection, Classification, and Localization Using Semantic Segmentation. Data, 10(7), 117. https://doi.org/10.3390/data10070117