Advancements in Regional Weather Modeling for South Asia Through the High Impact Weather Assessment Toolkit (HIWAT) Archive
Abstract
1. Summary
2. Methods
Microphysical parameterization | |||||
Goddard [20] | Purdue Lin [21] | WSM6 [22] | Morrison 2-moment [23] | ||
PBL parameterization | YSU [24] | HKH1: GFS | HKH2: GEFS 03 | HKH3: GEFS 05 | HKH4: GEFS07 |
MYJ [25] | HKH5: GEFS 09 | HKH6: GEFS 11 | HKH7: GEFS 13 | HKH8: GEFS 15 | |
MYNN2 [26] | HKH9: GEFS 17 | HKH10: GEFS 19 | HKH11: GEFS 02 | HKH12: GEFS 04 |
3. Data Description
3.1. Extreme Rainfall
3.2. Lightning Activity
3.3. Composite Radar Reflectivity
3.4. Straight-Line Damaging Winds
3.5. Large Hail Threat
3.6. Supercell Thunderstorms
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barros, A.P.; Chiao, S.; Lang, T.J.; Burbank, D.; Putkonen, J. From weather to climate—Seasonal and interannual variability of storms and implications for erosion processes in the Himalaya. Spec. Pap. Geol. Soc. Am. 2006, 398, 17–38. [Google Scholar]
- Zipser, E.J.; Cecil, D.J.; Liu, C.; Nesbitt, S.W.; Yorty, D.P. Where are the most intense thunderstorms on Earth? Bull. Am. Meteorol. Soc. 2006, 87, 1057–1072. [Google Scholar]
- Choudhury, B.A.; Konwar, M.; Hazra, A.; Mohan, G.M.; Pithani, P.; Ghude, S.D.; Deshamukhya, A.; Barth, M.C. A diagnostic study of cloud physics and lightning flash rates in a severe pre-monsoon thunderstorm over northeast India. Q. J. R. Meteorol. Soc. 2020, 146, 1901–1922. [Google Scholar]
- Case, J.L.; Gatlin, P.N.; Srikishen, J.; Adhikary, B.; Mannan, M.A.; Bell, J.R. Building thunderstorm resilience in the Hindu Kush Himalaya Region through probabilistic forecasts and satellite observations. Bull. Am. Meteorol. Soc. 2023, 104, E1105–E1131. [Google Scholar]
- Bikos, D.; Finch, J.; Case, J.L. The environment associated with significant tornadoes in Bangladesh. Atmos. Res. 2016, 167, 183–195. [Google Scholar] [CrossRef]
- Islam, M.S.; Schmidlin, T.W. Lightning hazard safety measures and awareness in Bangladesh. Nat. Hazards 2020, 101, 103–124. [Google Scholar]
- Dewan, A.; Hossain, M.F.; Rahman, M.M.; Yamane, Y.; Holle, R.L. Recent lightning-related fatalities and injuries in Bangladesh. Weather Clim. Soc. 2017, 9, 575–589. [Google Scholar]
- NIRAPAD. Bangladesh Network for Information, Response And Preparedness Activities on Disaster (NIRAPAD) Monthly Hazard Incidence Report. Available online: https://www.nirapad.org.bd/home/resources/monthlyHazard (accessed on 27 May 2025).
- Rahman, M.; Nabila, I.A.; Sakib, M.S.; Silvia, N.J.; Galib, M.A.; Shobuj, I.A.; Hasan, L.; Chisty, M.A.; Rahman, F.; Alam, E.; et al. Knowledge, attitude, and practices towards lightning in Bangladesh. Sustainability 2022, 14, 448. [Google Scholar] [CrossRef]
- Holle, R.L.; Islam, A.K.M.S. Lightning fatalities in Bangladesh in May 2016. In Proceedings of the 8th Conference on the Meteorological Applications of Lightning Data, 2017 American Meteorological Society Annual Meeting, Seattle, WA, USA, 23–25 January 2017; pp. 22–26. [Google Scholar]
- Chawla, I.; Osuri, K.K.; Mujumdar, P.P.; Niyogi, D. Assessment of the Weather Research and Forecasting (WRF) model for simulation of extreme rainfall events in the upper Ganga Basin. Hydrol. Earth Syst. Sci. 2018, 22, 1095–1117. [Google Scholar]
- Gatlin, P.N.; Case, J.L.; Srikishen, J.; Adhikary, B. The high-impact weather assessment toolkit. In Earth Observation Science and Applications for Risk Reduction and Enhanced Resilience in Hindu Kush Himalaya Region: A Decade of Experience from SERVIR; Springer Nature: Cham, Switzerland, 2021; pp. 231–250. [Google Scholar]
- Frankel-Reed, J. Reflecting on a decade of collaboration between NASA and USAID: Deriving value from space for international development. In Yearbook on Space Policy 2016: Space for Sustainable Development; Springer Nature: Cham, Switzerland, 2018; pp. 163–174. [Google Scholar]
- Thapa, R.B.; Bajracharya, B.; Matin, M.A.; Anderson, E.; Epanchin, P. Service Planning Approach and Its Application. In Earth Observation Science and Applications for Risk Reduction and Enhanced Resilience in Hindu Kush Himalaya Region: A Decade of Experience from SERVIR; Springer Nature: Cham, Switzerland, 2021; p. 23. [Google Scholar]
- Roberts, B.; Gallo, B.T.; Jirak, I.L.; Clark, A.J.; Dowell, D.C.; Wang, X.; Wang, Y. What does a convection-allowing ensemble of opportunity buy us in forecasting thunderstorms? Weather Forecast. 2020, 35, 2293–2316. [Google Scholar]
- Jirak, I.; Weiss, S.; Melick, C. The SPC storm-scale ensemble of opportunity: Overview and results from the 2012 Hazardous Weather Testbed Spring Forecasting Experiment. In Proceedings of the 26th Conference on Severe Local Storms, Nashville, TN, USA, 5–8 November 2012; American Meteorological Society: Nashville, TN, USA, 2012; p. 137. [Google Scholar]
- Roberts, B.; Jirak, I.L.; Clark, A.J.; Weiss, S.J.; Kain, J.S. Postprocessing and visualization techniques for convection-allowing ensembles. Bull. Am. Meteorol. Soc. 2019, 100, 1245–1258. [Google Scholar]
- Kain, J.S.; Dembek, S.R.; Weiss, S.J.; Case, J.L.; Levit, J.J.; Sobash, R.A. Extracting unique information from high-resolution forecast models: Monitoring selected fields and phenomena every time step. Weather Forecast. 2010, 25, 1536–1542. [Google Scholar]
- Clark, A.J. Generation of ensemble mean precipitation forecasts from convection-allowing ensembles. Weather Forecast. 2017, 32, 1569–1583. [Google Scholar]
- Tao, W.K.; Wu, D.; Lang, S.; Chern, J.D.; Peters-Lidard, C.; Fridlind, A.; Matsui, T. High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations. J. Geophys. Res. Atmos. 2016, 121, 1278–1305. [Google Scholar]
- Chen, S.H.; Sun, W.Y. A one-dimensional time dependent cloud model. J. Meteorol. Soc. Jpn. Ser. II 2002, 80, 99–118. [Google Scholar]
- Hong, S.Y.; Lim, J.O.J. The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pac. J. Atmos. Sci. 2006, 42, 129–151. [Google Scholar]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes. Mon. Weather Rev. 2009, 137, 991–1007. [Google Scholar]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar]
- Janjić, Z.I. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar]
- Nakanishi, M.; Niino, H. Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteorol. Soc. Jpn. Ser. II 2009, 87, 895–912. [Google Scholar]
- McCaul, E.W., Jr.; Goodman, S.J.; LaCasse, K.M.; Cecil, D.J. Forecasting lightning threat using cloud-resolving model simulations. Weather Forecast. 2009, 24, 709–729. [Google Scholar]
- McCaul, E.W.; Priftis, G.; Case, J.L.; Chronis, T.; Gatlin, P.N.; Goodman, S.J.; Kong, F. Sensitivities of the WRF lightning forecasting algorithm to parameterized microphysics and boundary layer schemes. Weather Forecast. 2020, 35, 1545–1560. [Google Scholar]
Data Sets | Output Products | Units | Threshold |
---|---|---|---|
Day 1 & | sumprob-precip3h | 3 h accumulated precipitation (mm) | 25 |
Day 2 | 3 h accumulated precipitation (mm) | 50 | |
3 h accumulated precipitation (mm) | 75 | ||
3 h accumulated precipitation (mm) | 100 | ||
sumprob-lfa | (Flash/km2/5 min) | 0.07 | |
(Flash/km2/5 min) | 5 | ||
sumprob-refc | Composite Radar Reflectivity (dBZ) | 40 | |
Composite Radar Reflectivity (dBZ) | 50 | ||
sumprob-spd10m | Interval Max 10 m Wind Speed (kt) | 30 | |
Interval Max 10 m Wind Speed (kt) | 40 | ||
Interval Max 10 m Wind Speed (kt) | 50 | ||
sumprob-tcolg | Max Integ. Graupel (kg/m2) | 30 | |
Max Integ. Graupel (kg/m2) | 40 | ||
sumprob-uphlcy25 | Interval Max 2–5 km Updraft Helicity (m2/s) | 50 | |
Interval Max 2–5 km Updraft Helicity (m2/s) | 100 | ||
Interval Max 2–5 km Updraft Helicity (m2/s) | 200 | ||
Hourly | enspmm-prec1h | 1 h Accumulated Precipitation (PMM) | - |
Ensemble | enspmm-prectot | Total Precipitation (PMM) | - |
enspmm-refc | Composite Reflectivity (PMM) | - | |
ensprob-lfa | Hourly Probability Total Lightning (Flash/km2/5 min) | 0.07 | |
Hourly Probability Total Lightning (Flash/km2/5 min) | 5 | ||
ensprob-refc | Hourly Probability Composite Radar Reflectivity (dBZ) | 40 | |
Hourly Probability Composite Radar Reflectivity (dBZ) | 50 | ||
ensprob-spd10m | Hourly Probability Max 10 m Wind Speed (kt) | 30 | |
Hourly Probability Max 10 m Wind Speed (kt) | 40 | ||
Hourly Probability Max 10 m Wind Speed (kt) | 50 | ||
ensprob-tcolg | Hourly Probability Max Column Graupel (kg/m2) | 30 | |
Hourly Probability Max Column Graupel (kg/m2) | 40 | ||
ensprob-uphlcy25 | Hourly Probability Max Updraft Helicity (m2/s) | 50 | |
Hourly Probability Max Updraft Helicity (m2/s) | 100 | ||
Hourly Probability Max Updraft Helicity (m2/s) | 200 | ||
- | Longitude | −135.33123 to −31.543510000000012 degrees East | - |
Latitude | 26.92475 to 42.90255 degrees North | - | |
Time | seconds since 1970-1-1 00:00:00 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayer, T.; Case, J.L.; Srikishen, J.; Shakya, K.; Shah, D.K.; Delgado Olivares, F.; Gilliland, L.; Gatlin, P.; Bajracharya, B.; Thapa, R.B. Advancements in Regional Weather Modeling for South Asia Through the High Impact Weather Assessment Toolkit (HIWAT) Archive. Data 2025, 10, 112. https://doi.org/10.3390/data10070112
Mayer T, Case JL, Srikishen J, Shakya K, Shah DK, Delgado Olivares F, Gilliland L, Gatlin P, Bajracharya B, Thapa RB. Advancements in Regional Weather Modeling for South Asia Through the High Impact Weather Assessment Toolkit (HIWAT) Archive. Data. 2025; 10(7):112. https://doi.org/10.3390/data10070112
Chicago/Turabian StyleMayer, Timothy, Jonathan L. Case, Jayanthi Srikishen, Kiran Shakya, Deepak Kumar Shah, Francisco Delgado Olivares, Lance Gilliland, Patrick Gatlin, Birendra Bajracharya, and Rajesh Bahadur Thapa. 2025. "Advancements in Regional Weather Modeling for South Asia Through the High Impact Weather Assessment Toolkit (HIWAT) Archive" Data 10, no. 7: 112. https://doi.org/10.3390/data10070112
APA StyleMayer, T., Case, J. L., Srikishen, J., Shakya, K., Shah, D. K., Delgado Olivares, F., Gilliland, L., Gatlin, P., Bajracharya, B., & Thapa, R. B. (2025). Advancements in Regional Weather Modeling for South Asia Through the High Impact Weather Assessment Toolkit (HIWAT) Archive. Data, 10(7), 112. https://doi.org/10.3390/data10070112