ICA-Based Resting-State Networks Obtained on Large Autism fMRI Dataset ABIDE
Abstract
1. Summary
2. Data Description
2.1. Structure of the Dataset
2.2. Loading the Dataset
2.3. Resting-State Networks
2.4. Phenotypic and Demographic Information
3. Methods
3.1. Data Selection
3.2. Preprocessing
3.3. Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A1 | ABIDE-I |
A2 | ABIDE-II |
ABIDE | autism brain imaging data exchange |
ambi | ambidextrous |
ASD | autism spectrum disorder |
BOLD | blood oxygen level dependent |
c | closed |
CMU | Carnegie Melon University |
DOI | digital object identifier |
EMC | Erasmus University Medical Center |
f | female |
FD | framewise displacement |
FIQ | full-scale intelligence quotient |
fMRI | functional magnetic resonance imaging |
FOV | field of view |
FSL | fMRI Brain Software Library |
GSR | global signal regression |
GU | Georgetown University |
GoF | goodness-of-fit |
HC | healthy control |
ICA | independent component analysis |
ICA-AROMA | ICA-based Automatic Removal of Motion Artifacts |
l | left |
m | male |
MCFLIRT | Motion Correction Using FMRIB’s Linear Image Registration Tool |
MELODIC | Multivariate Exploratory Linear Optimized Decomposition into Independent Components |
MNI | Montreal Neurological Institute |
n | number |
NIMH | National Institute of Mental Health |
NMF | Non-negative matrix factorization |
NYU | New York University Langone Medical Center |
o | open |
PCA | principal component analysis |
PI | Principal Investigator |
PIQ | performance intelligence quotient |
r | right |
RSN | resting-state network |
SDSU | San Diego State University |
SID | subject identifier |
SPM | Statistical Parametric Mapping |
SU | Stanford University |
TCD | Trinity Centre for Health Services |
TR | repetition time |
u | unknown |
UCD | University of California Davis |
UM | University of Michigan |
UMia | University of Miami |
USM | University of Utah School of Medicine |
VIQ | verbal intelligence quotient |
WSL | Windows subsystem for Linux |
Yale | Yale Child Study Center |
References
- Santana, C.P.; de Carvalho, E.A.; Rodrigues, I.D.; Bastos, G.S.; de Souza, A.D.; de Brito, L.L. rs-fMRI and machine learning for ASD diagnosis: A systematic review and meta-analysis. Sci. Rep. 2022, 12, 6030. [Google Scholar] [CrossRef]
- Schielen, S.J.; Pilmeyer, J.; Aldenkamp, A.P.; Zinger, S. The diagnosis of ASD with MRI: A systematic review and meta-analysis. Transl. Psychiatry 2024, 14, 318. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, A.; Yan, C.G.; Li, Q.; Denio, E.; Castellanos, F.X.; Alaerts, K.; Anderson, J.S.; Assaf, M.; Bookheimer, S.Y.; Dapretto, M.; et al. The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 2014, 19, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, A.; O’connor, D.; Chen, B.; Alaerts, K.; Anderson, J.S.; Assaf, M.; Balsters, J.H.; Baxter, L.; Beggiato, A.; Bernaerts, S.; et al. Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Sci. Data 2017, 4, 170010. [Google Scholar] [CrossRef] [PubMed]
- Craddock, C.; Benhajali, Y.; Chu, C.; Chouinard, F.; Evans, A.; Jakab, A.; Khundrakpam, B.S.; Lewis, J.D.; Li, Q.; Milham, M.; et al. The neuro bureau preprocessing initiative: Open sharing of preprocessed neuroimaging data and derivatives. Front. Neuroinformatics 2013, 7, 5. [Google Scholar]
- Calhoun, V.D.; Liu, J.; Adalı, T. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 2009, 45, S163–S172. [Google Scholar] [CrossRef]
- Niazy, R.K.; Cole, D.M.; Beckmann, C.F.; Smith, S.M. Resting-state networks. In fMRI: From Nuclear Spins to Brain Functions; Springer: New York City, NY, USA, 2015; pp. 387–425. [Google Scholar]
- Damoiseaux, J.S.; Rombouts, S.A.; Barkhof, F.; Scheltens, P.; Stam, C.J.; Smith, S.M.; Beckmann, C.F. Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. USA 2006, 103, 13848–13853. [Google Scholar] [CrossRef]
- Xie, J.; Douglas, P.K.; Wu, Y.N.; Brody, A.L.; Anderson, A.E. Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms. J. Neurosci. Methods 2017, 282, 81–94. [Google Scholar] [CrossRef]
- Smith, S.M.; Fox, P.T.; Miller, K.L.; Glahn, D.C.; Fox, P.M.; Mackay, C.E.; Filippini, N.; Watkins, K.E.; Toro, R.; Laird, A.R.; et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. USA 2009, 106, 13040–13045. [Google Scholar] [CrossRef]
- Beckmann, C.F.; Mackay, C.E.; Filippini, N.; Smith, S.M. Group comparison of resting-state FMRI data using multi-subject ICA and dual regression. Neuroimage 2009, 47, S148. [Google Scholar] [CrossRef]
- Nickerson, L.D.; Smith, S.M.; Öngür, D.; Beckmann, C.F. Using dual regression to investigate network shape and amplitude in functional connectivity analyses. Front. Neurosci. 2017, 11, 115. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, A.; Mostofsky, S.; Milham, M.P. Autism Brain Imaging Data Exchange (ABIDE). 2017. Available online: http://fcon_1000.projects.nitrc.org/indi/abide/ (accessed on 4 October 2023).
- Fonov, V.S.; Evans, A.C.; McKinstry, R.C.; Almli, C.R.; Collins, D. Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 2009, 47, S102. [Google Scholar] [CrossRef]
- Abou-Elseoud, A.; Starck, T.; Remes, J.; Nikkinen, J.; Tervonen, O.; Kiviniemi, V. The effect of model order selection in group PICA. Hum. Brain Mapp. 2010, 31, 1207–1216. [Google Scholar] [CrossRef]
- Uddin, L.Q.; Yeo, B.; Spreng, R.N. Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topogr. 2019, 32, 926–942. [Google Scholar] [CrossRef]
- Zeidan, J.; Fombonne, E.; Scorah, J.; Ibrahim, A.; Durkin, M.S.; Saxena, S.; Yusuf, A.; Shih, A.; Elsabbagh, M. Global prevalence of autism: A systematic review update. Autism Res. 2022, 15, 778–790. [Google Scholar] [CrossRef]
- Goldstein, J.M.; Jerram, M.; Poldrack, R.; Anagnoson, R.; Breiter, H.C.; Makris, N.; Goodman, J.M.; Tsuang, M.T.; Seidman, L.J. Sex differences in prefrontal cortical brain activity during fMRI of auditory verbal working memory. Neuropsychology 2005, 19, 509. [Google Scholar] [CrossRef]
- Boghi, A.; Rasetti, R.; Avidano, F.; Manzone, C.; Orsi, L.; D’Agata, F.; Caroppo, P.; Bergui, M.; Rocca, P.; Pulvirenti, L.; et al. The effect of gender on planning: An fMRI study using the Tower of London task. Neuroimage 2006, 33, 999–1010. [Google Scholar] [CrossRef]
- Richter, W.; Richter, M. The shape of the fMRI BOLD response in children and adults changes systematically with age. NeuroImage 2003, 20, 1122–1131. [Google Scholar] [CrossRef]
- Patriat, R.; Molloy, E.K.; Meier, T.B.; Kirk, G.R.; Nair, V.A.; Meyerand, M.E.; Prabhakaran, V.; Birn, R.M. The effect of resting condition on resting-state fMRI reliability and consistency: A comparison between resting with eyes open, closed, and fixated. Neuroimage 2013, 78, 463–473. [Google Scholar] [CrossRef]
- Beckmann, C.F.; Smith, S.M. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 2004, 23, 137–152. [Google Scholar] [CrossRef]
- Linke, A.C.; Olson, L.; Gao, Y.; Fishman, I.; Müller, R.A. Psychotropic medication use in autism spectrum disorders may affect functional brain connectivity. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2017, 2, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Bartolotti, J.; Sweeney, J.A.; Mosconi, M.W. Functional brain abnormalities associated with comorbid anxiety in autism spectrum disorder. Dev. Psychopathol. 2020, 32, 1273–1286. [Google Scholar] [CrossRef] [PubMed]
- Antshel, K.M.; Zhang-James, Y.; Wagner, K.E.; Ledesma, A.; Faraone, S.V. An update on the comorbidity of ADHD and ASD: A focus on clinical management. Expert Rev. Neurother. 2016, 16, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.C.; Kassee, C.; Besney, R.; Bonato, S.; Hull, L.; Mandy, W.; Szatmari, P.; Ameis, S.H. Prevalence of co-occurring mental health diagnoses in the autism population: A systematic review and meta-analysis. Lancet Psychiatry 2019, 6, 819–829. [Google Scholar] [CrossRef]
- Power, J.D.; Barnes, K.A.; Snyder, A.Z.; Schlaggar, B.L.; Petersen, S.E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 2012, 59, 2142–2154. [Google Scholar] [CrossRef]
- Evans, A.C.; Collins, D.L.; Mills, S.; Brown, E.D.; Kelly, R.L.; Peters, T.M. 3D statistical neuroanatomical models from 305 MRI volumes. In Proceedings of the 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference, San Francisco, CA, USA, 31 October–6 November 1993; IEEE: Piscataway, NJ, USA, 1993; pp. 1813–1817. [Google Scholar]
- Heunis, S. jsheunis/fMRwhy: Release 0.0.2—for Referencing. 2021. Available online: https://zenodo.org/records/4527533 (accessed on 4 November 2023). [CrossRef]
- Jenkinson, M.; Beckmann, C.F.; Behrens, T.E.; Woolrich, M.W.; Smith, S.M. FSL. NeuroImage 2012, 62, 782–790. [Google Scholar] [CrossRef]
- Penny, W.D.; Friston, K.J.; Ashburner, J.T.; Kiebel, S.J.; Nichols, T.E. Statistical Parametric Mapping: The Analysis of Functional Brain Images; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Ashburner, J.; Barnes, G.; Chen, C.C.; Daunizeau, J.; Flandin, G.; Friston, K.; Gitelman, D.; Glauche, V.; Henson, R.; Hutton, C.; et al. SPM12 Manual; Wellcome Centre for Human Neuroimaging, UCL: London, UK, 2021; Available online: https://www.fil.ion.ucl.ac.uk/spm/doc/spm12_manual.pdf (accessed on 5 November 2023).
- Pruim, R.H.; Mennes, M.; van Rooij, D.; Llera, A.; Buitelaar, J.K.; Beckmann, C.F. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage 2015, 112, 267–277. [Google Scholar] [CrossRef]
- Byrge, L.; Kennedy, D.P. Identifying and characterizing systematic temporally-lagged BOLD artifacts. NeuroImage 2018, 171, 376–392. [Google Scholar] [CrossRef]
- Friston, K.J. Functional and effective connectivity: A review. Brain Connect. 2011, 1, 13–36. [Google Scholar] [CrossRef]
- Friston, K.J.; Harrison, L.; Penny, W. Dynamic causal modelling. Neuroimage 2003, 19, 1273–1302. [Google Scholar] [CrossRef]
- Blazejewska, A.I.; Fischl, B.; Wald, L.L.; Polimeni, J.R. Intracortical smoothing of small-voxel fMRI data can provide increased detection power without spatial resolution losses compared to conventional large-voxel fMRI data. NeuroImage 2019, 189, 601–614. [Google Scholar] [CrossRef] [PubMed]
- Balachandrasekaran, A.; Cohen, A.L.; Afacan, O.; Warfield, S.K.; Gholipour, A. Reducing the effects of motion artifacts in fMRI: A structured matrix completion approach. IEEE Trans. Med. Imaging 2021, 41, 172–185. [Google Scholar] [CrossRef] [PubMed]
- Ciric, R.; Wolf, D.H.; Power, J.D.; Roalf, D.R.; Baum, G.L.; Ruparel, K.; Shinohara, R.T.; Elliott, M.A.; Eickhoff, S.B.; Davatzikos, C.; et al. Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. Neuroimage 2017, 154, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.; Fox, M.D. Towards a consensus regarding global signal regression for resting state functional connectivity MRI. Neuroimage 2017, 154, 169–173. [Google Scholar] [CrossRef]
- Margulies, D.S.; Böttger, J.; Long, X.; Lv, Y.; Kelly, C.; Schäfer, A.; Goldhahn, D.; Abbushi, A.; Milham, M.P.; Lohmann, G.; et al. Resting developments: A review of fMRI post-processing methodologies for spontaneous brain activity. Magn. Reson. Mater. Physics Biol. Med. 2010, 23, 289–307. [Google Scholar] [CrossRef]
- Boubela, R.N.; Kalcher, K.; Huf, W.; Kronnerwetter, C.; Filzmoser, P.; Moser, E. Beyond noise: Using temporal ICA to extract meaningful information from high-frequency fMRI signal fluctuations during rest. Front. Hum. Neurosci. 2013, 7, 168. [Google Scholar] [CrossRef]
- Bernas, A.; Aldenkamp, A.P.; Zinger, S. Wavelet coherence-based classifier: A resting-state functional MRI study on neurodynamics in adolescents with high-functioning autism. Comput. Methods Programs Biomed. 2018, 154, 143–151. [Google Scholar] [CrossRef]
- Filippini, N.; MacIntosh, B.J.; Hough, M.G.; Goodwin, G.M.; Frisoni, G.B.; Smith, S.M.; Matthews, P.M.; Beckmann, C.F.; Mackay, C.E. Distinct patterns of brain activity in young carriers of the APOE-ε4 allele. Proc. Natl. Acad. Sci. USA 2009, 106, 7209–7214. [Google Scholar] [CrossRef]
- Schielen, S.J.; Pilmeyer, J.; Aldenkamp, A.P.; Ruijters, D.; Zinger, S. ICA-based Resting-State Networks Obtained on Large Autism fMRI Dataset ABIDE. arXiv 2024, arXiv:2412.13798. [Google Scholar]
ASD | HC | p-Value | Statistic | |
---|---|---|---|---|
Number | 417 | 483 | - | - |
Sex (m/f) | 361/56 | 377/106 | 0.0117 | 11.00 |
Age (years) | 12.84 ± 5.04 | 13.84 ± 5.20 | 0.0017 | 88519 |
PIQ | 105.78 ± 17.31 | 108.94 ± 14.54 | 0.0040 | −2.89 |
Eye status (o/c/u) | 301/81/35 | 352/97/34 | 0.7412 | 0.5591 |
Handedness (r/l/ambi/u) | 270/32/19/96 | 330/26/11/116 | 0.1201 | 5.832 |
RSN | p-Value |
---|---|
Default Mode Network Anterior | 0.5158 |
Default Mode Network Posterior | 0.1654 |
Primary Visual Network | 0.3296 |
Lateral Visual Network | 0.7056 |
Salience Network | 0.3076 |
Auditory Network | 0.5048 |
Left Frontoparietal Network | 0.7996 |
Right Frontoparietal Network | 0.4128 |
Primary Sensorimotor Network | 0.4156 |
Lateral Sensorimotor Network | 0.6470 |
Cerebellum | 0.8012 |
Dorsal Attention Network | 0.1766 |
Language Network | 0.3550 |
Occipital Visual Network | 0.0782 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schielen, S.J.C.; Pilmeyer, J.; Aldenkamp, A.P.; Ruijters, D.; Zinger, S. ICA-Based Resting-State Networks Obtained on Large Autism fMRI Dataset ABIDE. Data 2025, 10, 109. https://doi.org/10.3390/data10070109
Schielen SJC, Pilmeyer J, Aldenkamp AP, Ruijters D, Zinger S. ICA-Based Resting-State Networks Obtained on Large Autism fMRI Dataset ABIDE. Data. 2025; 10(7):109. https://doi.org/10.3390/data10070109
Chicago/Turabian StyleSchielen, Sjir J. C., Jesper Pilmeyer, Albert P. Aldenkamp, Danny Ruijters, and Svitlana Zinger. 2025. "ICA-Based Resting-State Networks Obtained on Large Autism fMRI Dataset ABIDE" Data 10, no. 7: 109. https://doi.org/10.3390/data10070109
APA StyleSchielen, S. J. C., Pilmeyer, J., Aldenkamp, A. P., Ruijters, D., & Zinger, S. (2025). ICA-Based Resting-State Networks Obtained on Large Autism fMRI Dataset ABIDE. Data, 10(7), 109. https://doi.org/10.3390/data10070109