Collecting and Analyzing IBD Clinical Data for Machine-Learning: Insights from an Italian Cohort
Abstract
1. Introduction
2. Materials and Methods
- Clinical and demographic data sourced from clinical care systems, including endoscopic and treatment information
- Digital pathology data, including histopathology images acquired at baseline
- It is worth noticing that data are collected over time to allow the track of the evolution of the clinical situation. Specifically, the dataset comprises clinical and biological information from patients diagnosed with IBD, specifically Crohn’s disease (CD) and ulcerative colitis (UC). Data are organized into two main components: baseline demographic and clinical data, as well as treatment information, with a follow-up recorded one year after baseline (±3 months). Table 1 provides a summary of the data structure. Adult patients (>18 years) with active luminal UC or CD were eligible. Inclusion required treatment with anti-TNF- agents (biosimilars included) or Vedolizumab as first-line therapy, or Ustekinumab/Tofacitinib (UC) or Ustekinumab/Vedolizumab (CD) as second-line therapy. Patients must have undergone baseline endoscopy/biopsies under biologics, regardless of treatment start date. Exclusion criteria included lack of follow-up and prior colectomy for UC.
2.1. Data Source Harmonization
2.2. Software Components and Technical Details
2.3. Technical Details and Privacy
2.4. Ethics, Legal, and Data-Property Issues
3. Results
4. Discussion
4.1. Contribution
4.2. Technological and Infrastructural Challenges
4.3. Data Governance and Quality Control
4.4. Informed Consent Process
4.5. Biological Sample Handling and Digital Pathology
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kozarek, R. Basic research in endoscopy. Ital. J. Gastroenterol. Hepatol. 1999, 31, 743–748. [Google Scholar] [PubMed]
- Tabib, N.S.S.; Madgwick, M.; Sudhakar, P.; Verstockt, B.; Korcsmaros, T.; Vermeire, S. Big data in IBD: Big progress for clinical practice. Gut 2020, 69, 1520–1532. [Google Scholar] [CrossRef] [PubMed]
- Rance, B.; Canuel, V.; Countouris, H.; Laurent-Puig, P.; Burgun, A. Integrating heterogeneous biomedical data for cancer research: The CARPEM infrastructure. Appl. Clin. Inform. 2016, 7, 260–274. [Google Scholar] [PubMed]
- Marzullo, A.; Moccia, S.; Calimeri, F.; De Momi, E. AIM in Endoscopy Procedures. In Artificial Intelligence in Medicine; Lidströmer, N., Ashrafian, H., Eds.; Springer: Cham, Switzerland, 2021; pp. 1–11. [Google Scholar] [CrossRef]
- Gubatan, J.; Levitte, S.; Patel, A.; Balabanis, T.; Wei, M.T.; Sinha, S.R. Artificial intelligence applications in inflammatory bowel disease: Emerging technologies and future directions. World J. Gastroenterol. 2021, 27, 1920. [Google Scholar] [CrossRef] [PubMed]
- Pogorelov, K.; Randel, K.R.; Griwodz, C.; Eskeland, S.L.; de Lange, T.; Johansen, D.; Spampinato, C.; Dang-Nguyen, D.T.; Lux, M.; Schmidt, P.T.; et al. Kvasir: A multi-class image dataset for computer aided gastrointestinal disease detection. In Proceedings of the 8th ACM on Multimedia Systems Conference, Taipei, Taiwan, 20–23 June 2017; pp. 164–169. [Google Scholar]
- Parasa, S.; Berzin, T.; Leggett, C.; Gross, S.; Repici, A.; Ahmad, O.F.; Chiang, A.; Coelho-Prabhu, N.; Cohen, J.; Dekker, E.; et al. Consensus statements on the current landscape of artificial intelligence applications in endoscopy, addressing roadblocks, and advancing artificial intelligence in gastroenterology. Gastrointest. Endosc. 2024, 101, 2–9.e1. [Google Scholar] [CrossRef] [PubMed]
- Regulation, P. Regulation (EU) 2016/679 of the European Parliament and of the Council. Regulation 2016, 679, 2016. [Google Scholar]
- Real-World Data for the Life Sciences and Healthcare | TriNetX—trinetx.com. Available online: https://trinetx.com/ (accessed on 7 January 2025).
- Gut Reaction. Available online: https://bioresource.nihr.ac.uk/centres-programmes/ibd-bioresource/gut-reaction/ (accessed on 7 January 2025).
- Martin-King, C.; Nael, A.; Ehwerhemuepha, L.; Calvo, B.; Gates, Q.; Janchoi, J.; Ornelas, E.; Perez, M.; Venderby, A.; Miklavcic, J.; et al. Histopathology imaging and clinical data including remission status in pediatric inflammatory bowel disease. Sci. Data 2024, 11, 761. [Google Scholar] [CrossRef] [PubMed]
- Klumpp, M.; Hintze, M.; Immonen, M.; Ródenas-Rigla, F.; Pilati, F.; Aparicio-Martínez, F.; Çelebi, D.; Liebig, T.; Jirstrand, M.; Urbann, O.; et al. Artificial intelligence for hospital health care: Application cases and answers to challenges in European hospitals. Healthcare 2021, 9, 961. [Google Scholar] [CrossRef] [PubMed]
- Rajaei, O.; Khayami, S.R.; Rezaei, M.S. Smart hospital definition: Academic and industrial perspective. Int. J. Med. Inform. 2024, 182, 105304. [Google Scholar] [CrossRef] [PubMed]
- Khalid, N.; Qayyum, A.; Bilal, M.; Al-Fuqaha, A.; Qadir, J. Privacy-preserving artificial intelligence in healthcare: Techniques and applications. Comput. Biol. Med. 2023, 158, 106848. [Google Scholar] [CrossRef] [PubMed]
- Williamson, S.M.; Prybutok, V. Balancing privacy and progress: A review of privacy challenges, systemic oversight, and patient perceptions in AI-driven healthcare. Appl. Sci. 2024, 14, 675. [Google Scholar] [CrossRef]
- Bartoletti, I. AI in healthcare: Ethical and privacy challenges. In Proceedings of the Artificial Intelligence in Medicine: 17th Conference on Artificial Intelligence in Medicine, AIME 2019, Poznan, Poland, 26–29 June 2019; Proceedings 17; Springer: Berlin/Heidelberg, Germany, 2019; pp. 7–10. [Google Scholar]
- Misra, R.; Keane, P.A.; Hogg, H.D.J. How should we train clinicians for artificial intelligence in healthcare? Future Healthc. J. 2024, 11, 100162. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.R.; Balu, S.; Pencina, M.J. Translating AI for the Clinician. JAMA 2024, 332, 1701–1702. [Google Scholar] [CrossRef] [PubMed]
- Wiest, I.C.; Ferber, D.; Zhu, J.; van Treeck, M.; Meyer, S.K.; Juglan, R.; Carrero, Z.I.; Paech, D.; Kleesiek, J.; Ebert, M.P.; et al. Privacy-preserving large language models for structured medical information retrieval. NPJ Digit. Med. 2024, 7, 257. [Google Scholar] [CrossRef] [PubMed]
- Compagnucci, M.C.; Wilson, M.L.; Fenwick, M.; Forgó, N.; Bärnighausen, T. AI in EHealth: Human Autonomy, Data Governance and Privacy in Healthcare; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
Data Component | Variable | Description |
---|---|---|
Clinical Data | gender | Patient gender |
patient_weight | Patient weight at baseline (kg) | |
patient_height | Patient height (cm) | |
date_of_birth | Date of birth | |
baseline_diagnosis | Diagnosis (CD or UC) | |
baseline_date_of_diagnosis | Date of initial diagnosis | |
baseline_age_at_diagnosis | Age at initial diagnosis (years) | |
baseline_history_of_autoimmune | History of autoimmune diseases (Yes/No) | |
baseline_family_history | Family history of IBD (Yes/No) | |
smoking_status | Smoking status (Yes/No) | |
number_of_stools_per_day | Number of stools per day | |
abdominal_pain | Presence of abdominal pain (Yes/No) | |
abdominal_mass | Presence of abdominal mass (Yes/No) | |
rectal_bleeding | Presence of rectal bleeding (Yes/No) | |
arthralgia | Presence of joint pain (Yes/No) | |
ocular_involvement | Ocular involvement (Yes/No) | |
pyodema_gangrenosum | Presence of pyoderma gangrenosum (Yes/No) | |
erythema_nodosum | Presence of erythema nodosum (Yes/No) | |
new_fistula | Presence of a new fistula (Yes/No) | |
harvey_bradshaw_index | Harvey–Bradshaw Index for CD patients | |
mayo_score | Mayo score for UC patients | |
Laboratory Data | c_reactive_protein_crp | CRP level (mg/dL) |
fecal_calprotectin_fc | Fecal calprotectin level (µg/g of stool) | |
biology_hemoglobin | Hemoglobin level (g/dL) | |
biology_platelet_count | Platelet count (/L) | |
biology_serum_creatinine_value | Serum creatinine value (mg/dL) | |
biology_ferritin_level_value | Ferritin level (ng/mL) | |
ast_aspartate_amino_value | Aspartate Aminotransferase level (U/L) | |
alt_alanine_trans_value | Alanine Aminotransferase level (U/L) | |
ggt_gamma_glutamyl_transf_value | Gamma-Glutamyl Transferase level (U/L) | |
alp_alkaline_phosphatase_value | Alkaline Phosphatase level (U/L) | |
biology_albumin_value | Albumin level (g/dL) | |
biology_vitamin_b12_value | Vitamin B12 level (pg/mL) | |
biology_vitamin_d_value | Vitamin D level (ng/mL) | |
Endoscopy Data | endoscopy_type | Type of endoscopy performed |
visit_date_endoscopy | Date of endoscopy | |
aphthous | Presence of aphthous ulcers (Yes/No) | |
ulcerations | Presence of ulcerations (Yes/No) | |
stenosis_level | Level of stenosis if present | |
stenosis_class | Classification of stenosis (e.g., inflammatory, fibrotic) | |
uc_extension | Disease extension in UC patients | |
Virology Data | viral_sierology_hbv | Hepatitis B virus serology (Positive/Negative) |
viral_sierology_hcv | Hepatitis C virus serology (Positive/Negative) | |
viral_sierology_ebv | Epstein-Barr virus serology (Positive/Negative) | |
Pathology and Imaging Data | pathology_digitised_he | Digitized H&E stained histopathological images |
biopsy_location | Biopsy location | |
Treatment Data | aminosalicylates_admin | Aminosalicylate administration (Yes/No) |
aminosalicylates_type | Type of aminosalicylate administered | |
aminosalicylates_start_date | Start date of aminosalicylate treatment | |
aminosalicylates_end_date | End date of aminosalicylate treatment | |
aminosalicylates_dose | Dosage of aminosalicylate | |
aminosalicylates_interruption | Treatment interruption (Yes/No) | |
antibiotics_admin | Antibiotic administration (Yes/No) | |
antibiotics_start_date | Start date of antibiotic treatment | |
antibiotics_end_date | End date of antibiotic treatment | |
antibiotics_dose | Dosage of antibiotics | |
steroids_admin | Steroid administration (Yes/No) | |
steroids_type | Type of steroid administered | |
steroids_start_date | Start date of steroid treatment | |
steroids_end_date | End date of steroid treatment | |
steroids_dose | Dosage of steroids | |
steroids_interruption | Steroid treatment interruption (Yes/No) | |
immunomodulator_admin | Immunomodulator administration (Yes/No) | |
immunomodulator_type | Type of immunomodulator used | |
immunomodulator_start_date | Start date of immunomodulator treatment | |
immunomodulator_end_date | End date of immunomodulator treatment | |
anti_tnf_admin | Anti-TNF therapy administration (Yes/No) | |
anti_tnf_type | Type of anti-TNF therapy | |
anti_tnf_secondary_loss | Secondary loss of response (Yes/No) |
Category | Female (F)-Baseline | Male (M)-Baseline | Female (F)-Follow-Up | Male (M)-Follow-Up |
---|---|---|---|---|
Gender Distribution | 35 (36%) | 63 (64%) | ||
Average Age | 35.92 years | 30.83 years | ||
Age Groups | 18–30 (21), 31–50 (42), 51–70 (21), 71+ (14) | |||
Height Groups | <150 cm (2), 150–170 cm (46), >170 cm (50) | |||
Patient Weight (kg) | Mean: 59.37, Range: 43.0–88.0 | Mean: 73.35, Range: 49.0–99.0 | Mean: 59.37, Range: 43.0–88.0 | Mean: 73.60, Range: 49.0–99.0 |
Patient Height (cm) | Mean: 163.47, Range: 148.0–182.0 | Mean: 174.75, Range: 160.0–192.0 | ||
Age at Diagnosis (years) | Median: 35.92, Range: 11–74 | Median: 30.83, Range: 0–77 | ||
Mayo Score | Median: 3.0, Max: 3.0, Min: 2.0 | Median: 3.0, Max: 3.0, Min: 2.0 | Median: 1.0, Max: 3.0, Min: 0.0 | Median: 1.5, Max: 3.0, Min: 0.0 |
Category | Female (F)-Baseline | Male (M)-Baseline | Female (F)-Follow-Up | Male (M)-Follow-Up |
---|---|---|---|---|
Gender Distribution | 41 (36%) | 61 (62%) | ||
Average Age | 32.17 years | 33.38 years | ||
Age Groups | 18–30 (21), 31–50 (42), 51–70 (21), 71+ (14) | |||
Height Groups | <150 cm (2), 150–170 cm (46), >170 cm (50) | |||
Patient Weight (kg) | Mean: 63.61, Range: 41.0–104.0 | Mean: 74.38, Range: 45.0–105.0 | Mean: 59.37, Range: 43.0–88.0 | Mean: 73.60, Range: 49.0–99.0 |
Patient Height (cm) | Mean: 162.78, Range: 150.0–180.0 | Mean: 175.52, Range: 160.0–198.0 | ||
Age at Diagnosis (years) | Median: 32.0, Range: 11–54 | Median: 33.0, Range: 11–64 | ||
Harvey–Bradshaw Index | Median: 5.5, Max: 17.0, Min: 0.0 | Median: 3.0, Max: 13.0, Min: 0.0 | Median: 3.0, Max: 14.0, Min: 0.0 | Median: 2.0, Max: 12.0, Min: 0.0 |
Category | Status at Baseline | Status at Follow-Up |
---|---|---|
Smoking Status | Non-Smoker (46), Former Smoker (34), Active Smoker (16), Unknown (3) | Non-Smoker (43), Former Smoker (1), Active Smoker (14), Unknown (4) |
Number of Stools per Day (Median) | 3.0 | 2.0 |
Number of Stools per Day (Min–Max) | 2–7 | 1–10 |
Family History | 13 | |
History of Autoimmune Disease | 19 | |
Pyodema Gangrenosum | 0 | 0 |
Erythema Nodosum | 0 | 0 |
New Fistula | 0 | 0 |
Patients Suffering Aphthous | 2 | 0 |
Patients Suffering Ulcerations | 1 | 99 |
Patients Suffering Abdominal Pain | 66 | 37 |
Patients Suffering Rectal Bleeding | 64 | 26 |
Patients Suffering Arthralgia | 57 | 47 |
Patients Suffering Ocular Involvement | 0 | 0 |
Patients Suffering Pyodema Gangrenosum | 0 | 0 |
Patients Suffering Erythema Nodosum | 0 | 0 |
Patients Suffering New Fistula | 99 | 0 |
Category | Status at Baseline | Status at Follow-Up |
---|---|---|
Smoking Status | Non-Smoker (38), Former Smoker (34), Active Smoker (31), Unknown (3) | Non-Smoker (38), Former Smoker (30), Active Smoker (34), Unknown (3) |
Number of Stools per Day (Median) | 2.0 | 2.0 |
Number of Stools per Day (Min–Max) | 1–20 | 1–10 |
Family History | 15 | |
History of Autoimmune Disease | 11 | |
Pyodema Gangrenosum | 0 | 0 |
Erythema Nodosum | 0 | 0 |
New Fistula | 0 | 0 |
Patients Suffering Aphthous | 0 | 0 |
Patients Suffering Ulcerations | 0 | 0 |
Patients Suffering Abdominal Pain | 66 | 37 |
Patients Suffering Rectal Bleeding | 64 | 26 |
Patients Suffering Arthralgia | 57 | 47 |
Patients Suffering Ocular Involvement | 0 | 0 |
Patients Suffering Pyodema Gangrenosum | 0 | 0 |
Patients Suffering Erythema Nodosum | 0 | 0 |
Patients Suffering New Fistula | 0 | 0 |
Category | Patients | Mean (Std) | Range |
---|---|---|---|
TREATMENT INFO | |||
Aminosalicylates | 19 | 3331.0 (2799.21) | 59.0–8135.0 |
Antibiotics | 1 | 304.0 (0) | 304.0–304.0 |
Steroids | 72 | 500.75 (1220.79) | 2.0–6962.0 |
Immunomodulator | 49 | 837.14 (1352.2) | 1.0–6848.0 |
Anti-TNF | 30 | 259.97 (304.8) | 18.0–1569.0 |
Anti-IL | 1 | 166.0 (0) | 166.0–166.0 |
Anti-Integrin | 8 | 321.88 (212.34) | 80.0–762.0 |
JAK Inhibitor | 0 | ||
BIOLOGICAL STATUS | |||
CRP Level at Baseline | 65 | 2.17 (4.1) | 0.02–21.79 |
CRP Level at Follow-up | 90 | 0.7 (1.4) | 0.006–7.67 |
Fecal Calprotectin at Baseline | 51 | 700.4 (1106.44) | 5.0–5583.0 |
Fecal Calprotectin at Follow-up | 87 | 422.02 (776.86) | 5.0–6000.0 |
Hemoglobin at Baseline | 84 | 13.62 (2.12) | 7.6–18.1 |
Hemoglobin at Follow-up | 96 | 14.24 (1.43) | 10.1–17.0 |
Platelet Count at Baseline | 79 | 307.57 (96.89) | 150.0–651.0 |
Platelet Count at Follow-up | 94 | 267.6 (71.5) | 141.0–490.0 |
Serum Creatinine at Baseline | 46 | 1.0 (0.43) | 0.2–2.58 |
Serum Creatinine at Follow-up | 69 | 0.98 (0.25) | 0.54–2.38 |
Ferritin Level at Baseline | 43 | 111.19 (166.65) | 2.61–1027.0 |
Ferritin Level at Follow-up | 77 | 97.88 (80.0) | 4.1–430.0 |
Aspartate Aminotransferase (AST) Baseline | 31 | 22.84 (9.22) | 12.0–44.0 |
Aspartate Aminotransferase (AST) Follow-up | 37 | 24.41 (13.43) | 11.0–76.0 |
Alanine Transaminase (ALT) Baseline | 32 | 33.91 (19.87) | 12.0–92.0 |
Alanine Transaminase (ALT) Follow-up | 42 | 31.1 (19.81) | 6.0–110.0 |
Gamma-Glutamyl Transferase (GGT) Baseline | 29 | 43.81 (48.47) | 10.0–208.0 |
Gamma-Glutamyl Transferase (GGT) Follow-up | 45 | 31.04 (32.5) | 6.0–183.0 |
Alkaline Phosphatase (ALP) Baseline | 25 | 88.94 (33.64) | 52.0–183.0 |
Alkaline Phosphatase (ALP) Follow-up | 38 | 85.6 (29.63) | 38.0–209.0 |
Albumin Level at Baseline | 12 | 23.05 (18.27) | 0.599–44.5 |
Albumin Level at Follow-up | 5 | 3.58 (1.73) | 0.509–4.56 |
Vitamin B12 Level at Baseline | 24 | 455.24 (165.51) | 168.0–771.0 |
Vitamin B12 Level at Follow-up | 48 | 492.88 (128.48) | 113.0–694.0 |
Vitamin D Level at Baseline | 17 | 30.54 (16.72) | 13.0–65.0 |
Vitamin D Level at Follow-up | 53 | 33.95 (17.99) | 8.8–65.9 |
Category | Patients | Mean (Std) | Range |
---|---|---|---|
TREATMENT INFO | |||
Aminosalicylates | 51 | 2073.61 (2597.28) | 4.0–8716.0 |
Antibiotics | 6 | 35.17 (28.96) | 6.0–89.0 |
Steroids | 64 | 526.77 (1611.94) | 1.0–8491.0 |
Immunomodulator | 27 | 2558.7 (7858.55) | 29.0–41,086.0 |
Anti-TNF | 42 | 1024.57 (955.05) | 79.0–3956.0 |
Anti-IL | 11 | 323.91 (230.16) | 45.0–936.0 |
Anti-Integrin | 5 | 768.0 (1085.09) | 54.0–2588.0 |
JAK Inhibitor | 1 | 220.0 | 220.0–220.0 |
BIOLOGICAL STATUS | |||
CRP Level at Baseline | 76 | 2.35 (3.81) | 0.0–19.7 |
CRP Level at Follow-up | 103 | 1.43 (3.11) | 0.0–21.4 |
Fecal Calprotectin at Baseline | 67 | 494.33 (902.57) | 12.5–5893.0 |
Fecal Calprotectin at Follow-up | 89 | 198.73 (343.96) | 1.9–2000.0 |
Hemoglobin at Baseline | 81 | 15.22 (14.69) | 10.2–145.2 |
Hemoglobin at Follow-up | 100 | 13.99 (1.38) | 8.9–16.7 |
Platelet Count at Baseline | 75 | 2176.65 (16,246.77) | 188.0–141,000.0 |
Platelet Count at Follow-up | 98 | 292.56 (292.16) | 135.0–3058.0 |
Serum Creatinine at Baseline | 46 | 0.89 (0.22) | 0.063–1.54 |
Serum Creatinine at Follow-up | 72 | 0.96 (0.14) | 0.68–1.31 |
Ferritin Level at Baseline | 49 | 84.57 (81.69) | 7.0–414.0 |
Ferritin Level at Follow-up | 68 | 90.22 (72.95) | 9.0–424.0 |
Aspartate Aminotransferase (AST) Baseline | 20 | 22.1 (8.97) | 11.0–52.0 |
Aspartate Aminotransferase (AST) Follow-up | 41 | 25.45 (19.75) | 14.0–135.0 |
Alanine Transaminase (ALT) Baseline | 23 | 29.3 (13.77) | 12.0–65.0 |
Alanine Transaminase (ALT) Follow-up | 44 | 34.26 (21.04) | 13.0–105.0 |
Gamma-Glutamyl Transferase (GGT) Baseline | 30 | 34.52 (46.73) | 9.0–247.0 |
Gamma-Glutamyl Transferase (GGT) Follow-up | 45 | 37.94 (77.59) | 12.0–531.0 |
Alkaline Phosphatase (ALP) Baseline | 18 | 85.06 (29.35) | 41.0–184.0 |
Alkaline Phosphatase (ALP) Follow-up | 40 | 77.92 (10.02) | 54.0–108.0 |
Albumin Level at Baseline | 8 | 26.14 (23.25) | 0.584–58.0 |
Albumin Level at Follow-up | 6 | 81.91 (153.03) | 4.0–354.0 |
Vitamin B12 Level at Baseline | 24 | 381.25 (190.03) | 125.0–781.0 |
Vitamin B12 Level at Follow-up | 55 | 410.27 (167.8) | 86.0–550.0 |
Vitamin D Level at Baseline | 19 | 35.11 (20.66) | 8.0–65.0 |
Vitamin D Level at Follow-up | 56 | 30.92 (18.3) | 8.0–65.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marzullo, A.; Savevski, V.; Menini, M.; Schilirò, A.; Franchellucci, G.; Dal Buono, A.; Bezzio, C.; Gabbiadini, R.; Hassan, C.; Repici, A.; et al. Collecting and Analyzing IBD Clinical Data for Machine-Learning: Insights from an Italian Cohort. Data 2025, 10, 100. https://doi.org/10.3390/data10070100
Marzullo A, Savevski V, Menini M, Schilirò A, Franchellucci G, Dal Buono A, Bezzio C, Gabbiadini R, Hassan C, Repici A, et al. Collecting and Analyzing IBD Clinical Data for Machine-Learning: Insights from an Italian Cohort. Data. 2025; 10(7):100. https://doi.org/10.3390/data10070100
Chicago/Turabian StyleMarzullo, Aldo, Victor Savevski, Maddalena Menini, Alessandro Schilirò, Gianluca Franchellucci, Arianna Dal Buono, Cristina Bezzio, Roberto Gabbiadini, Cesare Hassan, Alessandro Repici, and et al. 2025. "Collecting and Analyzing IBD Clinical Data for Machine-Learning: Insights from an Italian Cohort" Data 10, no. 7: 100. https://doi.org/10.3390/data10070100
APA StyleMarzullo, A., Savevski, V., Menini, M., Schilirò, A., Franchellucci, G., Dal Buono, A., Bezzio, C., Gabbiadini, R., Hassan, C., Repici, A., & Armuzzi, A. (2025). Collecting and Analyzing IBD Clinical Data for Machine-Learning: Insights from an Italian Cohort. Data, 10(7), 100. https://doi.org/10.3390/data10070100