Sensor-Based Monitoring Data from an Industrial System of Centrifugal Pumps
Abstract
1. Introduction
1.1. Problem Statement
1.2. Related Works
- NASA Bearing Dataset [2]: each of the three datasets made available is composed of individual files, each representing a one-second snapshot of the vibration signal recorded at specific time intervals. Every file contains 20,480 data points, with a sampling rate of 20 kHz. The file name encodes the timestamp indicating when the data was collected. Each row in a data file corresponds to a single data point. Larger gaps between timestamps (as reflected in the file names) indicate that the experiment was resumed on a subsequent working day.
- MFPT Bearing Fault Dataset [3]: the MFPT dataset includes 23 distinct datasets collected from machinery operating under various fault conditions. The first 20 datasets were recorded on a bearing test rig: 3 represent bearings in good condition, 3 feature outer ring defects under constant load, 7 contain outer ring defects under varying loads, and 7 include inner ring defects under different load conditions. The remaining three datasets were collected from real-world machines, specifically an oil pump bearing, an intermediate speed bearing, and a planetary bearing. Each dataset contains an acceleration signal “gs”, the sampling frequency “sr”, the shaft speed “rate”, the weight of the load “load” and four critical frequencies that identify the different locations of a possible failure: the Ball Passing Frequency on the Outer ring (BPFO), the Ball Passing Frequency on the Inner ring (BPFI), the Fundamental Train Frequency (FTF), also known as cage frequency, and the Ball Spin Frequency (BSF).
- UCI Accelerometer Dataset [4]: this dataset contains vibration data from a cooling fan equipped with weighted blades, recorded using accelerometers. It is suitable for tasks such as prediction, classification, and other applications involving vibration analysis, particularly in engine-related systems.
1.3. About This Paper
2. Data Description
Centrifugal Pump Dataset
3. Materials and Methods
3.1. Target Plant and IoT Data Acquisition System
- Two accelerometers: one mounted on the pump and the other on the motor, used to monitor vibration levels, both of which are also equipped with a temperature sensing element for contact temperature measurement.
- One temperature sensor: positioned on the motor casing to track thermal conditions.
- One pressure sensor: used to measure the flow rate of the outgoing fluid.
3.2. Iot Data Monitoring Platform
- Data Acquisition (WirelessHART Gateway): sensors installed on equipment continuously measure parameters and transmit data, via the WirelessHART protocol, to a WirelessHART Gateway that acts as a local data aggregator.
- Data Collection (Telegraf): Telegraf handles the extraction of data from the WirelessHART Gateway and prepares them for storage.
- Data Storage (InfluxDB): the processed data from Telegraf is stored in InfluxDB, which ensures efficient storage, quick retrieval, and enables historical analysis of the data.
- Data Visualization (Grafana): Grafana is connected to InfluxDB to retrieve stored data and present it in the form of interactive dashboards, charts, and graphs. Users can access these visualizations via a standard web browser, allowing real-time monitoring as well as historical trend analysis.
4. Results
5. Discussion
5.1. Operating Condition Benchmarking
5.2. Feature Extraction and Preprocessing
5.3. Integration and Multivariate Signal Analysis
5.4. Unsupervised Pattern Discover
5.5. Vibration Analysis for Bearing Monitoring
5.6. Digital Twin and Soft Sensing
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
API | Application Programming Interface |
CSV | Comma-Separated Values |
DB | DataBase |
HTTP | HyperText Transfer Protocol |
IoT | Internet of Things |
MQTT | Message Queuing Telemetry Transport |
REST | REpresentational State Transfer |
SVM | Support Vector Machine |
TCP | Transmission Control Protocol |
TSDB | Time Series DB |
UoM | Unit of Measure |
UI | User Interface |
UTC | Universal Time Coordinated |
References
- Mobley, R.K. 1—Impact of Maintenance. In Maintenance Fundamentals, 2nd ed.; Mobley, R.K., Ed.; Plant Engineering, Butterworth-Heinemann: Burlington, NJ, USA, 2004; pp. 1–10. [Google Scholar] [CrossRef]
- NASA Bearing Dataset. Available online: https://www.kaggle.com/datasets/vinayak123tyagi/bearing-dataset (accessed on 13 June 2025).
- MFPT Bearing Fault Dataset. Available online: https://www.mfpt.org/fault-data-sets (accessed on 13 June 2025).
- UCI Accelerometer Datase. Available online: https://archive.ics.uci.edu/ml/datasets/accelerometer (accessed on 13 June 2025).
- Iunusova, E.; Gonzalez, M.; Szipka, K.; Archenti, A. Early fault diagnosis in rolling element bearings: Comparative analysis of a knowledge-based and a data-driven approach. J. Intell. Manuf. 2024, 35, 2327–2347. [Google Scholar] [CrossRef]
- Telegraf Website. Available online: https://www.influxdata.com/time-series-platform/telegraf (accessed on 13 June 2025).
- Modbus Website. Available online: https://www.modbus.org/ (accessed on 13 June 2025).
- InfluxDB Website. Available online: http://influxdata.com/ (accessed on 13 June 2025).
- Grafana website. Available online: https://grafana.com/ (accessed on 13 June 2025).
- Bednarek, M.; Luściński, S.; Jabłoński, M.; Schaffeld Graniffo, G.J. Harnessing Industry 4.0 Technologies: A Novel Predictive Maintenance Method for Advanced Production Systems. Manag. Prod. Eng. Rev. 2025, 15, 1–13. [Google Scholar] [CrossRef]
- Rojas, L.; Peña, A.; Garcia, J. AI-Driven Predictive Maintenance in Mining: A Systematic Literature Review on Fault Detection, Digital Twins, and Intelligent Asset Management. Appl. Sci. 2025, 15, 3337. [Google Scholar] [CrossRef]
Filename | Centrifugal Pump Unit | Operational Day | Operating Range | |
---|---|---|---|---|
Startup Timestamp | Shuthown Timestamp | |||
A_2024-04-10.csv | A | 10 April 2024 | 12:28:30 | 12:49:28 |
B_2024-04-10.csv | B | 12:51:42 | 12:56:41 | |
C_2024-04-10.csv | C | 12:58:16 | 13:10:14 | |
A_2024-06-11.csv | A | 11 June 2024 | 10:00:25 | 11:21:24 |
B_2024-06-11.csv | B | 07:08:08 | 13:07:33 | |
C_2024-06-11.csv | C | 10:52:55 | 11:19:54 | |
A_2024-10-30.csv | A | 30 October 2024 * | 10:59:15 | 13:19:13 |
B_2024-10-30.csv | B | 08:28:33 | 11:05:56 |
Column Name | Description | UoM |
---|---|---|
Timestamp | temporal timestamp indicating when the measurement was taken, formatted as YYYY-MM-DD hh:mm:ss | – |
X_ACR_Mot.PV | vibrational velocity measured by the motor accelerometer | m/s |
X_ACR_Mot.SV | peak value measured by the motor accelerometer | m/s2 |
X_ACR_Mot.TV | contact temperature of the motor accelerometer | °C |
X_ACR_Pmp.PV | vibrational velocity measured by the pump accelerometer | m/s |
X_ACR_Pmp.SV | peak value measured by the pump accelerometer | m/s2 |
X_ACR_Pmp.TV | contact temperature of the pump accelerometer | °C |
X_Temp.SV | motor casing temperature | °C |
X_Pres.SV | outlet fluid pressure from the pump | bar |
Barometer | atmospheric pressure | mbar |
Temperature | ambient temperature | °C |
Electric Motor | ||||
---|---|---|---|---|
Power | Shaft Speed | Voltage | Poles | Frame Size (H) |
110 kW | 2980 rpm | 400 V | 2 | 315 mm |
Mechanical Multistage Pump | ||||
Power | Flow Rate | Pump Head | Max Pressure | N° of Impellers |
110 kW | 45 m3/h | 450 m | 40 bar | 7 |
Variable | Mean | SD | Median | Trimmed | Min | Max | Skew | Kurtosis |
---|---|---|---|---|---|---|---|---|
A_ACR_Mot.PV | 0.002 | 0.000 | 0.002 | 0.002 | 0.001 | 0.003 | 1.129 | 1.752 |
A_ACR_Mot.SV | 1.708 | 8.387 | 0.427 | 0.438 | 0.388 | 456.626 | 37.005 | 1843.644 |
A_ACR_Mot.TV | 28.284 | 3.431 | 29.063 | 29.106 | 17.977 | 31.367 | −2.161 | 3.570 |
A_ACR_Pmp.PV | 0.001 | 0.001 | 0.001 | 0.001 | 0.000 | 0.004 | 2.960 | 7.045 |
A_ACR_Pmp.SV | 2.761 | 13.663 | 0.526 | 0.533 | 0.445 | 291.623 | 17.041 | 344.468 |
A_ACR_Pmp.TV | 23.256 | 2.131 | 22.625 | 23.419 | 18.219 | 26.578 | −0.480 | 0.172 |
A_Pres.PV | 3.754 | 11.162 | 0.452 | 0.452 | 0.440 | 41.978 | 3.107 | 7.665 |
A_Temp.PV | 26.998 | 3.078 | 27.241 | 27.537 | 17.929 | 31.083 | −1.615 | 2.550 |
B_ACR_Mot.PV | 0.001 | 0.000 | 0.001 | 0.001 | 0.000 | 0.002 | 1.183 | 1.001 |
B_ACR_Mot.SV | 1.662 | 4.282 | 0.506 | 0.506 | 0.428 | 20.440 | 3.475 | 10.201 |
B_ACR_Mot.TV | 19.166 | 0.327 | 19.305 | 19.224 | 18.203 | 19.422 | −1.314 | 0.668 |
B_ACR_Pmp.PV | 0.001 | 0.001 | 0.001 | 0.001 | 0.000 | 0.004 | 2.876 | 7.799 |
B_ACR_Pmp.SV | 1.970 | 5.582 | 0.484 | 0.495 | 0.000 | 26.223 | 3.545 | 10.670 |
B_ACR_Pmp.TV | 20.966 | 1.264 | 20.961 | 21.030 | 18.313 | 22.852 | −0.557 | −0.503 |
B_Pres.PV | 3.057 | 10.156 | 0.478 | 0.479 | 0.464 | 43.211 | 3.694 | 11.647 |
B_Temp.PV | 19.175 | 0.590 | 19.046 | 19.094 | 18.210 | 21.575 | 2.028 | 5.436 |
C_ACR_Mot.PV | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.003 | 1.606 | 1.716 |
C_ACR_Mot.SV | 2.724 | 5.707 | 0.423 | 1.143 | 0.384 | 31.866 | 2.290 | 3.933 |
C_ACR_Mot.TV | 22.318 | 2.430 | 23.203 | 22.406 | 18.789 | 24.859 | −0.199 | −1.764 |
C_ACR_Pmp.PV | 0.001 | 0.001 | 0.001 | 0.001 | 0.000 | 0.004 | 1.984 | 2.107 |
C_ACR_Pmp.SV | 4.484 | 9.938 | 0.413 | 1.815 | 0.376 | 37.670 | 2.084 | 2.460 |
C_ACR_Pmp.TV | 21.546 | 1.738 | 22.547 | 21.678 | 18.656 | 23.141 | −0.546 | −1.522 |
C_Pres.PV | 6.636 | 15.053 | 0.452 | 2.836 | 0.442 | 43.301 | 2.022 | 2.090 |
C_Temp.PV | 23.605 | 3.178 | 25.448 | 23.616 | 18.822 | 28.557 | −0.331 | −1.470 |
Barometer | 1018.078 | 0.059 | 1018.075 | 1018.076 | 1017.883 | 1018.271 | 0.356 | 0.276 |
Temperature | 19.907 | 0.340 | 19.951 | 19.909 | 19.171 | 20.771 | −0.074 | 0.071 |
Variable | Mean | SD | Median | Trimmed | Min | Max | Skew | Kurtosis |
---|---|---|---|---|---|---|---|---|
A_ACR_Mot.PV | 0.003 | 0.000 | 0.003 | 0.003 | 0.001 | 0.003 | −2.202 | 6.262 |
A_ACR_Mot.SV | 13.160 | 3.177 | 13.734 | 13.719 | 0.543 | 17.497 | −3.203 | 10.215 |
A_ACR_Mot.TV | 35.108 | 5.727 | 36.500 | 35.715 | 23.766 | 41.477 | −0.843 | −0.499 |
A_ACR_Pmp.PV | 0.004 | 0.001 | 0.004 | 0.004 | 0.001 | 0.004 | −2.546 | 4.721 |
A_ACR_Pmp.SV | 31.127 | 10.722 | 34.089 | 33.670 | 0.567 | 60.082 | −2.146 | 3.770 |
A_ACR_Pmp.TV | 36.483 | 3.860 | 37.852 | 37.243 | 27.148 | 39.781 | −1.493 | 0.936 |
A_Pres.PV | 41.597 | 0.659 | 41.534 | 41.571 | 40.406 | 43.129 | 0.315 | −0.573 |
A_Temp.PV | 35.347 | 4.645 | 36.736 | 36.051 | 23.963 | 40.506 | −1.126 | 0.226 |
B_ACR_Mot.PV | 0.001 | 0.001 | 0.001 | 0.000 | 0.001 | 0.002 | 0.469 | 0.192 |
B_ACR_Mot.SV | 28.054 | 29.239 | 29.103 | 3.463 | 0.506 | 55.714 | −1.979 | 5.702 |
B_ACR_Mot.TV | 35.536 | 37.570 | 36.402 | 3.915 | 22.609 | 40.648 | −1.121 | −0.042 |
B_ACR_Pmp.PV | 0.003 | 0.003 | 0.003 | 0.000 | 0.000 | 0.004 | −2.130 | 3.660 |
B_ACR_Pmp.SV | 23.710 | 25.820 | 25.240 | 3.828 | 0.000 | 70.682 | −1.230 | 3.185 |
B_ACR_Pmp.TV | 39.707 | 42.227 | 40.919 | 1.992 | 22.680 | 44.398 | −1.803 | 2.314 |
B_Pres.PV | 42.792 | 42.750 | 42.837 | 1.457 | 5.267 | 46.709 | −2.342 | 51.374 |
B_Temp.PV | 33.992 | 35.565 | 34.644 | 2.912 | 22.673 | 38.539 | −1.038 | −0.157 |
C_ACR_Mot.PV | 0.001 | 0.000 | 0.001 | 0.001 | 0.001 | 0.002 | 3.532 | 10.481 |
C_ACR_Mot.SV | 1.690 | 4.667 | 0.461 | 0.461 | 0.461 | 19.412 | 3.532 | 10.481 |
C_ACR_Mot.TV | 24.907 | 1.397 | 24.539 | 24.539 | 24.539 | 30.211 | 3.532 | 10.481 |
C_ACR_Pmp.PV | 0.001 | 0.000 | 0.001 | 0.001 | 0.001 | 0.003 | 5.812 | 31.803 |
C_ACR_Pmp.SV | 1.979 | 8.805 | 0.526 | 0.526 | 0.526 | 55.285 | 5.885 | 32.658 |
C_ACR_Pmp.TV | 24.795 | 1.931 | 24.477 | 24.477 | 24.477 | 36.484 | 5.885 | 32.658 |
C_Pres.PV | 41.599 | 0.536 | 41.521 | 41.587 | 40.363 | 42.824 | 0.163 | 0.566 |
C_Temp.PV | 29.487 | 2.974 | 30.207 | 29.584 | 24.479 | 33.381 | −0.259 | −1.418 |
Barometer | 1011.880 | 0.213 | 1011.901 | 1011.899 | 1011.346 | 1012.268 | −0.574 | −0.414 |
Temperature | 26.141 | 0.281 | 26.212 | 26.153 | 25.692 | 26.496 | −0.388 | −1.349 |
Variable | Mean | SD | Median | Trimmed | Min | Max | Skew | Kurtosis |
---|---|---|---|---|---|---|---|---|
A_ACR_Mot.PV | 0.003 | 0.000 | 0.003 | 0.003 | 0.001 | 0.004 | −1.584 | 6.057 |
A_ACR_Mot.SV | 16.066 | 3.759 | 16.061 | 16.315 | 0.466 | 24.247 | −1.776 | 6.117 |
A_ACR_Mot.TV | 39.961 | 7.256 | 42.633 | 40.795 | 21.211 | 50.273 | −0.847 | −0.295 |
A_ACR_Pmp.PV | 0.004 | 0.001 | 0.004 | 0.004 | 0.001 | 0.004 | −4.471 | 20.303 |
A_ACR_Pmp.SV | 32.674 | 6.735 | 33.442 | 33.452 | 0.526 | 42.875 | −3.042 | 14.423 |
A_ACR_Pmp.TV | 37.634 | 2.660 | 38.547 | 38.075 | 28.961 | 41.297 | −1.309 | 1.049 |
A_Pres.PV | 38.792 | 6.418 | 39.884 | 39.821 | 0.670 | 42.487 | −5.665 | 30.727 |
A_Temp.PV | 38.973 | 5.536 | 40.633 | 39.611 | 23.660 | 49.677 | −0.830 | −0.032 |
B_ACR_Mot.PV | 0.002 | 0.000 | 0.002 | 0.002 | 0.001 | 0.002 | 0.163 | −0.143 |
B_ACR_Mot.SV | 126.457 | 67.397 | 126.340 | 127.987 | 0.467 | 227.879 | −0.123 | −1.462 |
B_ACR_Mot.TV | 37.318 | 5.353 | 39.258 | 38.213 | 18.992 | 42.805 | −1.258 | 0.698 |
B_ACR_Pmp.PV | 0.004 | 0.000 | 0.004 | 0.004 | 0.001 | 0.007 | 1.860 | 35.530 |
B_ACR_Pmp.SV | 23.894 | 38.672 | 20.454 | 20.541 | 0.524 | 637.108 | 13.570 | 193.602 |
B_ACR_Pmp.TV | 40.014 | 3.518 | 41.023 | 40.628 | 23.234 | 44.234 | −1.500 | 1.775 |
B_Pres.PV | 39.960 | 2.332 | 40.311 | 40.203 | 0.706 | 43.101 | −7.600 | 112.337 |
B_Temp.PV | 35.405 | 4.521 | 36.882 | 36.093 | 21.807 | 40.916 | −1.182 | 0.578 |
Barometer | 1022.019 | 0.323 | 1022.119 | 1022.034 | 1021.407 | 1022.473 | −0.488 | −1.104 |
Temperature | 21.787 | 0.986 | 21.943 | 21.842 | 19.565 | 23.243 | −0.327 | −0.967 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martone, A.; D’Ambrosio, A.; Ferrucci, M.; Cembalo, A.; Romano, G.; Zazzaro, G. Sensor-Based Monitoring Data from an Industrial System of Centrifugal Pumps. Data 2025, 10, 91. https://doi.org/10.3390/data10060091
Martone A, D’Ambrosio A, Ferrucci M, Cembalo A, Romano G, Zazzaro G. Sensor-Based Monitoring Data from an Industrial System of Centrifugal Pumps. Data. 2025; 10(6):91. https://doi.org/10.3390/data10060091
Chicago/Turabian StyleMartone, Angelo, Alessia D’Ambrosio, Michele Ferrucci, Assuntina Cembalo, Gianpaolo Romano, and Gaetano Zazzaro. 2025. "Sensor-Based Monitoring Data from an Industrial System of Centrifugal Pumps" Data 10, no. 6: 91. https://doi.org/10.3390/data10060091
APA StyleMartone, A., D’Ambrosio, A., Ferrucci, M., Cembalo, A., Romano, G., & Zazzaro, G. (2025). Sensor-Based Monitoring Data from an Industrial System of Centrifugal Pumps. Data, 10(6), 91. https://doi.org/10.3390/data10060091