A Data-Driven Approach to Tourism Demand Forecasting: Integrating Web Search Data into a SARIMAX Model
Abstract
1. Introduction
1.1. The Literature on Tourism Demand Forecasting
1.2. Research Gaps and Objectives
2. Data Analysis
3. SARIMA and SARIMAX Models
4. Methodology
4.1. SARIMA Fitting
4.2. Exogenous Variable Selection for SARIMAX
5. Computational Experiments
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ngoc, B.H.; Hoang, C.C.; Tram, N.H.M. A Time-Varying Analysis between Economic Uncertainty and Tourism Development in Singapore. PLoS ONE 2024, 19, e0302980. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.W.H.; Tai, A.C.L.; Chan, D.Y.T.; Lee, H.F. Can Tourism Development and Economic Growth Mutually Reinforce in Small Countries? Evidence from Singapore. Curr. Issues Tour. 2024, 27, 1316–1331. [Google Scholar] [CrossRef]
- Frechtling, D. Forecasting Tourism Demand; Routledge: London, UK, 2012. [Google Scholar] [CrossRef]
- Chan, Y.-M. Forecasting Tourism: A Sine Wave Time Series Regression Approach. J. Travel Res. 1993, 32, 58–60. [Google Scholar] [CrossRef]
- Chu, F.-L. Forecasting Tourist Arrivals: Nonlinear Sine Wave or ARIMA? J. Travel Res. 1998, 36, 79–84. [Google Scholar] [CrossRef]
- Chan, Y.-M.; Hui, T.-K.; Yuen, E. Modeling the Impact of Sudden Environmental Changes on Visitor Arrival Forecasts: The Case of the Gulf War. J. Travel Res. 1999, 37, 391–394. [Google Scholar] [CrossRef]
- Chu, F.-L. Forecasting Tourism Demand with ARMA-Based Methods. Tour. Manag. 2009, 30, 740–751. [Google Scholar] [CrossRef]
- Kumar, M.; Sharma, S. Forecasting Tourist In-Flow in South East Asia: A Case of Singapore. Tour. Manag. Stud. 2016, 12, 107–119. [Google Scholar] [CrossRef]
- Agiomirgianakis, G.; Serenis, D.; Tsounis, N. Effective Timing of Tourism Policy: The Case of Singapore. Econ. Model. 2017, 60, 29–38. [Google Scholar] [CrossRef]
- Danbatta, S.J.; Varol, A. Forecasting Foreign Visitors Arrivals Using Hybrid Model and Monte Carlo Simulation. International J. Inf. Technol. Decis. Mak. 2022, 21, 1859–1878. [Google Scholar] [CrossRef]
- Qiu, R.T.R.; Wu, D.C.; Dropsy, V.; Petit, S.; Pratt, S.; Ohe, Y. Visitor Arrivals Forecasts amid COVID-19: A Perspective from the Asia and Pacific Team. Ann. Tour. Res. 2021, 88, 103155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Song, H.; Wen, L.; Liu, C. Forecasting Tourism Recovery amid COVID-19. Ann. Tour. Res. 2021, 87, 103149. [Google Scholar] [CrossRef] [PubMed]
- Khaidi, S.M.; Abu, N.; Muhammad, N. Tourism Demand Forecasting—A Review on the Variables and Models. J. Phys. Conf. Ser. 2019, 1366, 012111. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis Forecasting and Control, 4th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Brockwell, P.J.; Davis, R.A. Introduction to Time Series and Forecasting; Springer Texts in Statistics; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Holt, C.C. Forecasting Seasonals and Trends by Exponentially Weighted Averages. Carnegie Inst. Technol. 1957, 52, 1–52. [Google Scholar]
- Winters, P.R. Forecasting Sales by Exponentially Weighted Moving Averages. Manag. Sci. 1960, 6, 324–342. [Google Scholar] [CrossRef]
- Taylor, S.J.; Letham, B. Forecasting at Scale. Am. Stat. 2018, 72, 37–45. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Representations by Back-Propagating Errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Bouteska, A.; Sharif, T.; Abedin, M.Z. COVID-19 and Stock Returns: Evidence from the Markov Switching Dependence Approach. Res. Int. Bus. Financ. 2023, 64, 101882. [Google Scholar] [CrossRef] [PubMed]
Variables | Correlation Coefficient | p-Value |
---|---|---|
Number of Changi Airport Passengers | 0.9851 | <0.0001 |
Singapore Weather | 0.9400 | <0.0001 |
Changi | 0.9377 | <0.0001 |
Best Singapore | 0.9314 | <0.0001 |
Singapore Visa | 0.9023 | <0.0001 |
Singapore Airport | 0.9003 | <0.0001 |
Singapore | 0.8680 | <0.0001 |
Marina Bay Sands Singapore | 0.8219 | <0.0001 |
Singapore Hotel | 0.8205 | <0.0001 |
Singapore Flight | 0.7195 | <0.0001 |
Singapore Dollar | 0.7037 | <0.0001 |
Series | ADF Statistic | p-Value |
---|---|---|
Original Series | −1.52 | 0.524 |
First-Differenced Series | 2.72 | 0.071 |
Double-Differenced Series | −6.16 | <0.001 |
(p, d, q)(P, D, Q) | AIC | BIC |
---|---|---|
(1, 1, 2)(1, 1, 2) | 2128.55 | 2145.22 |
(2, 1, 2)(1, 1, 2) | 2129.15 | 2148.20 |
(1, 1, 2)(2, 1, 2) | 2129.67 | 2148.73 |
(0, 1, 2)(0, 1, 2) | 2130.83 | 2152.27 |
(0, 1, 2)(1, 1, 2) | 2133.13 | 2145.04 |
(1, 1, 2)(0, 1, 2) | 2133.58 | 2150.26 |
Models | AIC | BIC |
---|---|---|
SARIMAX with all the introduced exogenous variables | 1975.70 | 2018.58 |
SARIMAX with the selected variables | 1964.33 | 1995.30 |
Tested Methods | MAPE (%) | MAE | RMSE |
---|---|---|---|
SARIMAX with the selected variables | 7.32 | 99,635 | 135,903 |
SARIMA | 20.88 | 266,257 | 302,408 |
SARIMAX with all the variables | 7.36 | 99,178 | 130,917 |
SARIMAX with the one variable | 9.90 | 131,330 | 161,147 |
Prophet | 84.10 | 1,064,223 | 1,088,519 |
Holt Method | 24.99 | 332,416 | 376,055 |
Winters Method | 34.98 | 453,002 | 486,392 |
LSTM | 31.76 | 414,207 | 446,316 |
RNN | 8.33 | 103,836 | 126,660 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, G.-C. A Data-Driven Approach to Tourism Demand Forecasting: Integrating Web Search Data into a SARIMAX Model. Data 2025, 10, 73. https://doi.org/10.3390/data10050073
Lee G-C. A Data-Driven Approach to Tourism Demand Forecasting: Integrating Web Search Data into a SARIMAX Model. Data. 2025; 10(5):73. https://doi.org/10.3390/data10050073
Chicago/Turabian StyleLee, Geun-Cheol. 2025. "A Data-Driven Approach to Tourism Demand Forecasting: Integrating Web Search Data into a SARIMAX Model" Data 10, no. 5: 73. https://doi.org/10.3390/data10050073
APA StyleLee, G.-C. (2025). A Data-Driven Approach to Tourism Demand Forecasting: Integrating Web Search Data into a SARIMAX Model. Data, 10(5), 73. https://doi.org/10.3390/data10050073