River Restoration Units: Riverscape Units for European Freshwater Ecosystem Management
Abstract
1. Summary
2. Data Description
3. Methods
3.1. Methodological Procedure
- 1
- 2
- UDA = 1000 km2—defined conservatively to maintain area-wise homogeneous units. This is relevant due to the species–area relationship [22] and its explanatory power for large-scale biodiversity [23,24]. Also, the Water Framework Directive defines large rivers as those with UDAs above 10,000 km2 [25] and riverscape units with areas between 1000 km2 and 10,000 km2, which have been linked to regional biodiversity [26].
- 3
- 1
- Identify the source segment of the main stem watercourse of the basin, and afterward, all the Hack pathways and respective mouth segments for the sea outlet basin. Exclude basins with overall maximum Strahler values below 3 (Figure 4—Step 1).
- 2
- For the mouth segments of Hack n (where n is a discrete number starting at 1 and incremental for every procedure iteration) not abiding by all thresholds, their full UDA and URL are considered part of one single SRU. If this is the first iteration, where Hack = 1, then all segments in the basin are now identified with one SRU, an R2U comprising the entire basin, and the entire procedure ends (Basin B in Figure 4—Step 2). If this step does not apply, head to step 3 (Figure 4—Step 2).
- 3
- For those abiding by the thresholds, an LRU will be established from the mouth segment until the most upstream Hack n segment where Strahler order is 4 inclusively (Basin A in Figure 4—Step 3). Upstream of this segment, hack n and respective UDA and URL segments will become part of an SRU (orange segments in Step 3).
- 4
- Identify the Hack n + 1 mouth segments having a Strahler order lower than 3. These, along with respective UDA and URL, will be included in the large river unit established for the previous hack n segments (red segments and respective UDAs in Figure 4—Step 4).
- 5
- Identify the Hack n + 1 mouth segments having Strahler order ≥ 3 but not abiding by the other thresholds. Each one with its respective upstream segments, UDA, and URL will constitute an individual SRU (green segments in Figure 4—Step 5).
- 6
- Identify the Hack n + 1 mouth segments abiding by all the thresholds established for LRUs; these will be part of a new large river unit to be established in the river basin. Establishing a new LRU starting in a Hack n + 1 mouth segment leads to a confluence between LRUs. To maintain the network’s dendritic and hierarchical nature, the previously established LRU in the Hack n segments will be split at this confluence (red segments in Figure 4—Step 6).
- 7
- The procedure to define the extent of the Hack n + 1 LRU and to continue the process can now be taken back from step 2 onward (since a new iteration will start, n will also increase accordingly) (dark blue and orange segments in Figure 4—Step 7).
3.2. Dataset Validation
4. User Notes (Optional)
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CCM2 | Catchment Characterisation and Modelling—River and Catchment Database v2.1 |
RivTool | River Network Toolkit software |
R2U | River Restoration Units |
DOI | Linear dichroism |
EU MS | Digital Object Identifier |
LRU | Member States of the European Union |
LRU | Large River Units |
SRU | Small River Units |
UDA | Upstream Drainage Area |
URL | Upstream River Length |
Appendix A
References
- Dudgeon, D. Multiple threats imperil freshwater biodiversity in the Anthropocene. Curr. Biol. 2019, 29, R960–R967. [Google Scholar] [CrossRef] [PubMed]
- Tsang, Y.-P.; Wieferich, D.; Fung, K.; Infante, D.M.; Cooper, A.R. An approach for aggregating upstream catchment information to support research and management of fluvial systems across large landscapes. SpringerPlus 2014, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fausch, K.D.; Torgersen, C.E.; Baxter, C.V.; Li, H.W. Landscapes to Riverscapes: Bridging the Gap between Research and Conservation of Stream Fishes: A Continuous View of the River is Needed to Understand How Processes Interacting among Scales Set the Context for Stream Fishes and Their Habitat. Bioscience 2002, 52, 483–498. [Google Scholar] [CrossRef]
- Torgersen, C.E.; Le Pichon, C.; Fullerton, A.H.; Dugdale, S.J.; Duda, J.J.; Giovannini, F.; Tales, É.; Belliard, J.; Branco, P.; Bergeron, N.E.; et al. Riverscape approaches in practice: Perspectives and applications. Biol. Rev. 2022, 97, 481–504. [Google Scholar] [CrossRef] [PubMed]
- Allan, J.D. Landscapes and Riverscapes: The Influence of Land Use on Stream Ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef]
- Grant, E.H.; Lowe, W.H.; Fagan, W.F. Living in the branches: Population dynamics and ecological processes in dendritic networks. Ecol. Lett. 2007, 10, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Duarte, G.; Segurado, P.; Oliveira, T.; Haidvogl, G.; Pont, D.; Ferreira, M.T.; Branco, P. The River Network Toolkit—RivTool. Ecography 2019, 42, 549–557. [Google Scholar] [CrossRef]
- Stanford, J.A.; Alexander, L.C.; Whited, D.C. Chapter 1—Riverscapes. In Methods in Stream Ecology, Volume 1, 3rd ed.; Hauer, F.R., Lamberti, G.A., Eds.; Academic Press: Boston, MA, USA, 2017; pp. 3–19. [Google Scholar]
- Dodds, P.S.; Rothman, D.H. Geometry of river networks. II. Distributions of component size and number. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2001, 63, 016116. [Google Scholar] [CrossRef]
- Duarte, G.; Peponi, A.; Leite, T.; Faro, A.; Moreno, D.; Anjinho, P.; Segurado, P.; Borgwardt, F.; Baattrup-Pedersen, A.; Hering, D.; et al. MERLIN Deliverable D3.1: Screening Maps: Europe-Wide Maps of the Needs and Potentials to Restore Floodplains, Rivers, and Wetlands with a Range of Restoration Measures. EU H2020 Research and Innovation Project MERLIN Deliverable. 2023. 176p. Available online: https://project–merlin.eu/outcomes/deliverables.html (accessed on 18 March 2025).
- Stoffers, T.; Altermatt, F.; Baldan, D.; Bilous, O.; Borgwardt, F.; Buijse, A.D.; Bondar-Kunze, E.; Cid, N.; Erős, T.; Ferreira, M.T.; et al. Reviving Europe’s rivers: Seven challenges in the implementation of the Nature Restoration Law to restore free-flowing rivers. WIREs Water 2024, 11, e1717. [Google Scholar] [CrossRef]
- De Jager, A.; Vogt, J. Rivers and Catchments of Europe—Catchment Characterisation Model (CCM); European Commission and Joint Research Centre: 2007. Available online: http://data.europa.eu/89h/fe1878e8-7541-4c66-8453-afdae7469221 (accessed on 18 March 2025).
- Duarte, G.; Peponi, A.; Segurado, P.; Leite, T.; Borgwardt, F.; Funk, A.; Birk, S.; Ferreira, M.T.; Branco, P. River Restoration Units (R2U) Database. 2024. Available online: https://doi.org/10.5281/zenodo.10753900 (accessed on 18 March 2025).
- Vogt, J.; Soille, P.; Jager, A.d.; Rimavičiūtė, E.; Mehl, W.; Foisneau, S.; Bódis, K.; Dusart, J.; Paracchini, M.L.; Haastrup, P.; et al. A pan-European River and Catchment Database; European Commission—Joint Research Centre—Institute for Environment and Sustainability: Luxembourg, 2007; p. 120. [Google Scholar]
- Duarte, G.; Segurado, P.; Oliveira, T.; Haidvogl, G.; Pont, D.; Ferreira, M.T.; Branco, P. The River Network Toolkit (RivTool). 2019. Available online: http://rivtoolkit.com/ (accessed on 18 March 2025).
- Hack, J.T. Studies of Longitudinal Stream Profiles in Virginia and Maryland; US Government Printing Office: Washington, DC, USA, 1957; Volume 294. [Google Scholar]
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Eos Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef]
- Strahler, A.N. Hypsometric (Area-Altitude) Analysis of Erosional Topography. Geol. Soc. Am. Bull. 1952, 63, 1117. [Google Scholar] [CrossRef]
- Paller, M.H. Relationships between Fish Assemblage Structure and Stream Order in South Carolina Coastal Plain Streams. Trans. Am. Fish. Soc. 1994, 123, 150–161. [Google Scholar] [CrossRef]
- Fu, C.; Wu, J.; Chen, J.; Wu, Q.; Lei, G. Freshwater fish biodiversity in the Yangtze River basin of China: Patterns, threats and conservation. Biodivers. Conserv. 2003, 12, 1649–1685. [Google Scholar] [CrossRef]
- Vander Vorste, R.; McElmurray, P.; Bell, S.; Eliason, K.M.; Brown, B.L. Does Stream Size Really Explain Biodiversity Patterns in Lotic Systems? A Call for Mechanistic Explanations. Diversity 2017, 9, 26. [Google Scholar] [CrossRef]
- MacArthur, R.H.; Wilson, E.O. The Theory of Island Biogeography; Princeton University Press: Princeton, NJ, USA, 1967. [Google Scholar]
- Oberdorff, T.; Guégan, J.-F.; Hugueny, B. Global Scale Patterns of Fish Species Richness in Rivers. Ecography 1995, 18, 345–352. [Google Scholar] [CrossRef]
- Passy, S.I.; Mruzek, J.L.; Budnick, W.R.; Leboucher, T.; Jamoneau, A.; Chase, J.M.; Soininen, J.; Sokol, E.R.; Tison-Rosebery, J.; Vilmi, A.; et al. On the shape and origins of the freshwater species-area relationship. Ecology 2022, 104, e3917. [Google Scholar] [CrossRef]
- European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. OJ L 2000, 327, 2000/60/CE. [Google Scholar]
- Higgins, J.V.; Bryer, M.T.; Khoury, M.L.; Fitzhugh, T.W. A Freshwater Classification Approach for Biodiversity Conservation Planning. Conserv. Biol. 2005, 19, 432–445. [Google Scholar]
- Seliger, C.; Zeiringer, B. River Connectivity, Habitat Fragmentation and Related Restoration Measures. In Riverine Ecosystem Management: Science for Governing Towards a Sustainable Future; Schmutz, S., Sendzimir, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 171–186. [Google Scholar]
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the world’s free-flowing rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Carbonneau, P.; Fonstad, M.A.; Marcus, W.A.; Dugdale, S.J. Making riverscapes real. Geomorphology 2012, 137, 74–86. [Google Scholar] [CrossRef]
Database Element | Attribute | Description |
---|---|---|
Basins_EU/R2U_features | WSO_ID | Basin unique identifier code (number) used in CCM2 |
Basins_EU | Basin_Area_sqkm | Basin area (Km2) |
Basins_EU | Basin_Strahler | Maximum Strahler stream order number of a given basin |
Present in 4 elements | R2U_ID | River restoration unit (R2U) code |
R2U_ID_drainage_areas | R2U_Area_sqkm | Drainage area of an R2U (km2) |
R2U_Watercourses | R2U_river_length_km | River length of an R2U (km) |
R2U_features | Nextdown_R2U_ID | Identifier code of the downstream R2U unit |
R2U_features | R2U_Strahler | Maximum segment Strahler stream order number in the R2U |
R2U_features | R2U_Hack | Minimum Hack stream order number of an R2U |
R2U_features | Drain_dens | Ratio between river length (m) in an R2U and its drainage area (m2) |
R2U_features | Num_segments | Number of river segments included in an R2U |
R2U_features/Unit_typology | Id_Unit_code | Unit typology unique code |
Unit_typology | Unit_Acronym | Unite Typology Acronym |
Unit_typology | Unit_type_descr | Description of River Restoration ‘Units’ typology (LRU—Large River Unit; SRU—Small River Unit) and LRU sub-groups (LRHU—Large River Head Unit; SRSO—Small River Sea Outlet) |
R2U_to_MS | Id_R2U_MS | Unique identifier code for the R2U_to_MS table |
R2U_to_MS/MS_coding | MS_ID | Member States identifier code (using the countries ISO 3166 international standard numeric code) |
MS_coding | Id_ms_coding | Unique identifier code for the MS_coding table |
MS_coding | MS_acronym | Member States identifier code (using the countries ISO 3166 international standard alpha-3 code) |
MS_coding | MS_name | Member States English country name |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte, G.; Peponi, A.; Segurado, P.; Leite, T.; Borgwardt, F.; Funk, A.; Birk, S.; Ferreira, M.T.; Branco, P. River Restoration Units: Riverscape Units for European Freshwater Ecosystem Management. Data 2025, 10, 46. https://doi.org/10.3390/data10040046
Duarte G, Peponi A, Segurado P, Leite T, Borgwardt F, Funk A, Birk S, Ferreira MT, Branco P. River Restoration Units: Riverscape Units for European Freshwater Ecosystem Management. Data. 2025; 10(4):46. https://doi.org/10.3390/data10040046
Chicago/Turabian StyleDuarte, Gonçalo, Angeliki Peponi, Pedro Segurado, Tamara Leite, Florian Borgwardt, Andrea Funk, Sebastian Birk, Maria Teresa Ferreira, and Paulo Branco. 2025. "River Restoration Units: Riverscape Units for European Freshwater Ecosystem Management" Data 10, no. 4: 46. https://doi.org/10.3390/data10040046
APA StyleDuarte, G., Peponi, A., Segurado, P., Leite, T., Borgwardt, F., Funk, A., Birk, S., Ferreira, M. T., & Branco, P. (2025). River Restoration Units: Riverscape Units for European Freshwater Ecosystem Management. Data, 10(4), 46. https://doi.org/10.3390/data10040046