Effects of the Irrigation of Chelva Grapevines on the Aroma Composition of Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grapes
2.2. Winemaking Process
2.3. Enological Parameters of Musts and Wines
2.4. Analysis of Minor Volatile Compounds in Wine Aroma
2.5. Analysis of Major Volatile Compounds in Wine Aroma
2.6. Determination of Impact Aroma Compounds
2.7. Sensory Evaluation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Influence of Irrigation on the Enological Parameters of Musts and Wines
3.2. Influence of Irrigation on the Volatile Composition of Wines
3.3. Influence of the Irrigation on the Sensory Profiles of La Mancha Chelva Wines
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Flanzy, C. Enología: Fundamentos Científicos y Tecnológicos; AMV-Mundi Prensa: Madrid, Spain, 2003; pp. 137–168. [Google Scholar]
- Poni, S.; Gatti, M.; Palliotti, A.; Dai, Z.; Duchêne, E.; Truong, T.-T.; Ferrara, G.; Matarrese, A.M.S.; Gallotta, A.; Bellincontro, A.; et al. Grapevine quality: A multiple choice issue. Rev. Sci. Hort. 2018, 234, 445–462. [Google Scholar] [CrossRef] [Green Version]
- Van Leeuwen, C.; Darriet, P. The impact of climate change on viticulture and wine quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef] [Green Version]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Future scenarios for Viticultural Zoning in Europe: Ensemble Projections and Uncertainties. Int. J. Biometeorol. 2013, 57, 909–925. [Google Scholar] [CrossRef]
- Brunet, M.; Jones, P.D.; Sigró, J.; Saladié, O.; Aguilar, E.; Moberg, A.; Della-Marta, P.M.; Lister, D.; Walther, A.; López, D. Temporal and Spatial Temperature Variability and Change over Spain during 1850–2005. J. Geophys. Res. 2007, 112, D12117. [Google Scholar] [CrossRef] [Green Version]
- Flexas, J.; Escalona, M.; Evain, S.; Gulías, J.; Moya, I.; Osmond, C.B.; Medrano, H. Steady-State Chlorophyll Fluorescence (Fs) Measurements as a Tool to Follow Variations of Net CO2 Assimilation and Stomatal Conductance during Water-Stress in C3 Plants. Phys. Plant. 2002, 114, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Cancela, J.J.; Trigo-Córdoba, E.; Martínez, E.M.; Rey, B.J.; Bouzas-Cid, Y.; Fandiño, M.; Mirás-Avalos, J.M. Effects of Climate Variability on Irrigation Scheduling in White Varieties of Vitis vinifera (L.) of NW Spain. Agr. Water Manag. 2016, 170, 99–109. [Google Scholar] [CrossRef]
- Ruiz-Sánchez, M.C.; Domingo, R.; Castel, J.R. Deficit Irrigation in Fruit Trees and Vines in Spain. Span. J. Agric. Res. 2010, 8, S5–S20. [Google Scholar] [CrossRef] [Green Version]
- Girona, J.; Mata, M.; del Campo, J.; Arbonés, A.; Bartra, E.; Marsal, J. The Use of Midday Leaf Water Potential for Scheduling Deficit Irrigation in Vineyards. Irrig. Sci. 2006, 24, 115–127. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Pérez, D.; Risco, D.; Yeves, A.; Castel, J.R. Yield Components and Grape Composition Responses to Seasonal Water Deficits in Tempranillo Grapevines. Irrig. Sci. 2012, 30, 339–349. [Google Scholar] [CrossRef]
- Romero, P.; García García, J.; Fernández-Fernández, J.I.; Muñoz, R.G.; del Amor Saavedra, F.; Martínez-Cutillas, A. Improving Berry and Wine Quality Attributes and Vineyard Economic Efficiency by Long-Term Deficit Irrigation Practices under Semiarid Conditions. Sci. Hort. 2016, 203, 69–85. [Google Scholar] [CrossRef]
- Matthews, M.A.; Ishii, R.; Anderson, M.M.; O’Mahony, M. Dependence of wine sensory attributes on vine water status. J. Sci. Food Agric. 1990, 51, 321–335. [Google Scholar] [CrossRef]
- Qian, M.C.; Fang, Y.; Shellie, K. Volatile composition of Merlot wine from different vine water status. J. Agric. Food Chem. 2009, 57, 7459–7463. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.G.; Parchomchuk, P.; Berard, R.; Naylor, A.P.; Hogue, E. Gewurztraminer vines respond to length of water stress duration. Int. J. Fruit Sci. 2006, 5, 75–94. [Google Scholar] [CrossRef]
- Mendez-Costabel, M.P.; Wilkinson, K.L.; Bastian, S.E.P.; Jordans, C.; Mccarthy, M.; Ford, C.M.; Dokoozlian, N.K. Effect of Increased Irrigation and Additional Nitrogen Fertilisation on the Concentration of Green Aroma Compounds in Vitis Vinifera L. Merlot Fruit and Wine. Aust. J. Grape Wine Res. 2014, 20, 80–90. [Google Scholar] [CrossRef]
- Robinson, A.L.; Boss, P.K.; Solomon, P.S.; Trengove, R.D.; Heymann, H.; Ebeler, S.E. Origins of Grape and Wine Aroma. Part 1. Chemical Components and Viticultural Impacts. Am. J. Enol. Viticult. 2014, 65, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Jackson, D.I.; Lombard, P.B. Environmental and Management Practices Affecting Grape Composition and Wine Quality—A Review. Am. J. Enol. Viticult. 1993, 44, 409–430. [Google Scholar]
- Sánchez-Palomo, E.; Delgado, J.A.; Ferrer, M.A.; Viñas, M.A.G. The Aroma of La Mancha Chelva Wines: Chemical and Sensory Characterization. Food Res. Int. 2019, 119, 135–142. [Google Scholar] [CrossRef]
- OIV International Oenological Codex. Recueil Des Methods Internationals D’analyse Des Vins et Des Moûts; Office International de la Vigne et du Vin: Paris, France, 2010. [Google Scholar]
- Sánchez Palomo, E.; Pérez-Coello, M.S.; Díaz-Maroto, M.C.; González Viñas, M.A.; Cabezudo, M.D. Contribution of Free and Glycosidically-Bound Volatile Compounds to the Aroma of Muscat “a Petit Grains” Wines and Effect of Skin Contact. Food Chem. 2006, 95, 279–289. [Google Scholar] [CrossRef]
- Franco, M.; Peinado, R.A.; Medina, M.; Moreno, J. Off-Vine Grape Drying Effect on Volatile Compounds and Aromatic Series in Must from Pedro Ximénez Grape Variety. J. Agric. Food Chem. 2004, 52, 3905–3910. [Google Scholar] [CrossRef]
- Moyano, L.; Zea, L.; Moreno, J.; Medina, M. Analytical Study of Aromatic Series in Sherry Wines Subjected to Biological Aging. J. Agric. Food Chem. 2002, 50, 7356–7361. [Google Scholar] [CrossRef]
- Sánchez-Palomo, E.; Gómez García-Carpintero, E.; Alonso-Villegas, R.; González-Viñas, M.A. Characterization of Aroma Compounds of Verdejo White Wines from the La Mancha Region by Odour Activity Values. Flavour Fragr. J. 2010, 25, 456–462. [Google Scholar] [CrossRef]
- UNE-EN ISO 8589; Análisis Sensorial. Guía General Para El Diseño de Salas de Cata. AENOR (Asociación Española de Normalización y Certificación): Madrid, Spain, 2010; pp. 53–74.
- UNE 87022; Análisis Sensorial. Utensilios. Copa Para la Degustación de Vino. AENOR (Asociación Española de Normalización y Certificación): Madrid, Spain, 1992; pp. 77–88.
- Talaverano, I.; Valdés, E.; Moreno, D.; Gamero, E.; Mancha, L.; Vilanova, M. The Combined Effect of Water Status and Crop Level on Tempranillo Wine Volatiles. J. Sci. Food Agric. 2017, 97, 533–1542. [Google Scholar] [CrossRef]
- Balint, G.; Reynolds, A.G. Irrigation Level and Time of Imposition Impact Vine Physiology, Yield Components, Fruit Composition and Wine Quality of Ontario Chardonnay. Sci. Hort. 2017, 214, 252–272. [Google Scholar] [CrossRef]
- Bouzas-Cid, Y.; Trigo-Córdoba, E.; Falqué, E.; Orriols, I.; Mirás-Avalos, J.M. Influence of Supplementary Irrigation on the Amino Acid and Volatile Composition of Godello Wines from the Ribeiro Designation of Origin. Food Res. Int. 2018, 111, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Guth, H. Quantitation and Sensory Studies of Character Impact Odorants of Different White Wine Varieties. J. Agric. Food Chem. 1997, 8, 3027–3032. [Google Scholar] [CrossRef]
- Bouzas-Cid, Y.; Falqué, E.; Orriols, I.; Mirás-Avalos, J.M. Effects of Irrigation over Three Years on the Amino Acid Composition of Treixadura (Vitis vinifera L.) Musts and Wines, and on the Aromatic Composition and Sensory Profiles of Its Wines. Food Chem. 2018, 240, 707–716. [Google Scholar] [CrossRef]
- Etiévant, P.X. Volatile Compounds in Foods and Beverages; Maarse, H., Ed.; Marcel Dekker: New York, NY, USA, 1991. [Google Scholar]
- Ferreira, V.; Fernández, P.; Peña, C.; Escudero, A.; Cacho, J.F. Investigation on the Role Played by Fermentation Esters in the Aroma of Young Spanish Wines by Multivariate Analysis. J. Sci. Food Agric. 1995, 67, 381–392. [Google Scholar] [CrossRef]
- Marchetii, R.; Guerzoni, M.E. Effets de l’interaction souche de levure/composition du mout sur la production, au cours de la fermentation, de quelques metabolites volatils. Conn. Vigne Vin. 1987, 21, 113–125. [Google Scholar] [CrossRef]
- Briones, A.I.; Ubeda, J.F.; Cabezudo, M.D.; Martín-Alvarez, P. Selection of Spontaneous Strains of Saccharomyces Cerevisiae as Starters in Their Viticultural Area. Dev. Food Sci. 1995, 37, 1597–1622. [Google Scholar]
- Herraiz, T.; Martin-Alvarez, P.J.; Reglero, G.; Herraiz, M.; Cabezudo, M.D. Differences between Wines Fermented with and without Sulphur Dioxide Using Various Selected Yeasts. J. Sci. Food Agric. 1989, 49, 249–258. [Google Scholar] [CrossRef]
- Swiegers, J.H.; Pretorius, I.S. Yeast Modulation of Wine Flavor. Adv. Appl. Microbiol. 2005, 57, 131–175. [Google Scholar] [PubMed]
- Larnbrechts, M.G.; Pretorius, I.S. Yeast and Its Importance to Wine Aroma—A Review. S. Afr. J. Enol. Vitic. 2000, 21, 97–129. [Google Scholar]
- López, R.; Ferreira, V.; Hernández, P.; Cacho, J.F. Identification of Impact Odorants of Young Red Wines Made with Merlot, Cabernet Sauvignon and Grenache Grape Varieties: A Comparative Study. J. Sci. Food Agric. 1999, 79, 1461–1467. [Google Scholar] [CrossRef]
Non-Irrigated | Irrigated | |
---|---|---|
Must composition | ||
ºBrix | 19.51 (0.58) | 19.03 (0.76) |
Total acidity (g/L) * | 7.50 b (0.50) | 6.75 a (0.01) |
pH | 3.27 (0.02) | 3.20 (0.02) |
Wine composition | ||
pH | 3.16 (0.02) | 3.12 (0.01) |
Ethanol (%v/v) | 13.21 b (0.59) | 12.01 a (0.54) |
Total acidity (g/L) * | 5.89 (0.84) | 5.89 (2.76) |
Residual sugars (g/L) *** | 0.53 (0.27) | 0.49 (0.21) |
Volatile acidity (g/L) ** | 0.33 (8.24) | 0.31 (8.16) |
Free SO2 (mg/L) | 9.00 b (0.32) | 12.00 a (2.15) |
Total SO2 (mg/L) | 68.00 b (1.03) | 61.00 a (1.17) |
RI A | Source | Compound | Non-Irrigated | Irrigated |
---|---|---|---|---|
1282 | Fluka | 1-Hexanol | 346 b (0.44) | 435 a (0.31) |
1286 | Sigma-Aldrich | (E)-3-Hexen-1-ol | 5.42 b (0.85) | 12.7 a (3.38) |
1296 | Sigma-Aldrich | (Z)-3-Hexen-1-ol | 323 b (0.69) | 369 a (0.70) |
1300 | Sigma-Aldrich | (E)-2-Hexen-1-ol | 1.33 b (0.90) | 2.50 a (0.68) |
1394 | Sigma-Aldrich | 2-ethyl-1-hexanol | 2.41 b (1.23) | 3.18 a (0.45) |
Total C6 compounds | 678.16 | 822.38 | ||
1529 | Fluka | Linalool | 0.86 b (0.15) | 0.47 a (0.43) |
1650 | Tentatively identified | Ho-trienol | 2.31 b (0.23) | 1.23 a (0.34) |
1755 | Fluka | β-citronellol | Tr | n.d. |
1777 | Fluka | Nerol | Tr | n.d. |
1801 | Firmenich | β –damascenone | 1.87 b (0.10) | 0.82 a (0.27) |
1831 | Fluka | Geraniol | 1.04 (0.46) | 1.06 (0.34) |
1902 | Tentatively identified | 2,6-dimethyl-3,7-octadiene-2,6-diol | 8.43 (0.230 | 8.56 (0.23) |
2200 | Tentatively identified | (E)-8 hydroxy-linalool | 12.0 (0.23) | 11.6 (0.34) |
2582 | Tentatively identified | 3-oxo-α-ionol | n.d. | 0.89 a (0.26) |
2722 | Tentatively identified | 3-Hydroxy-7,8-dihydro-β-ionol | 0.20 (0.03) | 0.20 (0.10) |
3170 | Tentatively identified | Vomifoliol | 53.4 (10.78) | 55.1 (11.23) |
Total terpene and C13-norisoprenoids compounds | 80.11 | 79.93 | ||
1503 | Sigma-Aldrich | Benzaldehyde | 4.80 (1.03) | 4.87 (1.96) |
1505 | Tentatively identified | 3(2H)-2-methyldihydro-thiophenone | 5.49 b (0.19) | 5.52 a (1.02) |
1882 | Sigma-Aldrich | Guaiacol | 0.26 (0.15) | 0.27 (0.12) |
1895 | Sigma-Aldrich | Benzyl alcohol | 19.0 b (0.61) | 10.3 a (0.46) |
1899 | Tentatively identified | 1,2-Benzothiazole | 0.61 (1.33) | 0.61 (5.83) |
1971 | Sigma-Aldrich | Phenol | 0.79 b (0.01) | 0.80 a (0.14) |
2193 | Sigma-Aldrich | Eugenol | 0.20 (0.13) | 0.21 (0.12) |
2193 | Sigma-Aldrich | Acetophenone | 76.0 (3.24) | 75.4 (2.54) |
2219 | Sigma-Aldrich | 4-vinylguaiacol | 15.0 (0.38) | 13.0 (2.68) |
2302 | Lancaster | Isoeugenol | 0.37 b (0.55) | 0.39 a (2.59) |
2345 | Tentatively identified | 2,3-dihydro benzofuran | 36.4 b (1.53) | 32.8 a (1.15) |
2378 | Sigma-Aldrich | Benzoic acid | 4.39 b (0.34) | 2.46 a (0.10) |
2511 | Panreac | Vanillin | 0.20 (0.73) | 0.20 (0.60) |
2936 | Sigma-Aldrich | Zingerone | n.d. | 0.70 a (4.37) |
Total Bencenic compounds | 163.51 | 147.53 |
RI A | Source | Compound | Non-Irrigated | Irrigated |
---|---|---|---|---|
Aldehydes | ||||
800 | Sigma-Aldrich | Acetaldehyde * | 72.3 (1.01) | 74.9 (3.02) |
Esters | ||||
834 | Sigma-Aldrich | Ethyl acetate * | 30.3 (2.98) | 33.4 (4.96) |
1080 | Fluka | Ethyl butyrate | 16.6 b (7.40) | 22.7 a (4.51) |
1145 | Sigma-Aldrich | Isoamyl acetate | 208 a (1.02) | 239 a,b (3.55) |
1294 | Sigma-Aldrich | Hexyl acetate | 9.80 (4.98) | 9.92 (3.49) |
1326 | Sigma-Aldrich | Ethyl lactate | 260 (7.61) | 327 (7.78) |
1185 | Fluka | Ethyl hexanoate | 134 (11.6) | 145 (10.7) |
1436 | Sigma-Aldrich | Ethyl octanoate | 366 (7.91) | 382 (2.40) |
1655 | Fluka | Ethyl decanoate | 179 (3.00) | 198 (7.86) |
1499 | Tentatively identified | 3-hydroxy, ethyl butyrate | 31.7 b (2.90) | 44.2 a (2.24) |
1522 | Tentatively identified | Ethyl-dl-2-hydroxycaproate | 1.02 b (0.70) | 1.09 a (0.65) |
1605 | Sigma-Aldrich | Diethyl malonate | 0.27 b (0.52) | 0.28 a (0.25) |
1702 | Fluka | Diethyl succinate | 47.8 b (2.78) | 60.2 a (1.27) |
1787 | Fluka | Methyl salicylate | Tr | 1.03 a (0.69) |
1827 | Tentatively identified | 4-hydroxy, ethyl butyrate | 350 a,b (14.7) | 467 a (2.57) |
1936 | Fluka | 2-phenylethyl acetate | 46.2 a,b (5.05) | 55.1 a (3.97) |
2070 | Sigma-Aldrich | Diethyl malate | 38.8 (2.00) | 40.5 (10.3) |
2286 | Fluka | Ethyl cinnamate | Tr | Tr |
2331 | Tentatively identified | Monoethyl succinate | 277 b (5.27) | 325 a (0.48) |
Acids | ||||
1426 | Sigma-Aldrich | Acetic acid | 4.82 b (1.62) | 3.67 a (3.47) |
1546 | Sigma-Aldrich | Propanoic acid | 2.37 b (2.09) | 1.44 a (2.46) |
1583 | Fluka | Isobutyric acid | 294 (14.4) | 258 (1.10) |
1600 | Fluka | Butyric acid | 16.9 b (7.53) | 10.2 a (7.33) |
1642 | Sigma-Aldrich | Isovaleric acid | 170 (4.16) | 154 (11.2) |
1703 | Fluka | Valeric acid | 2.24 b (4.42) | 1.07 a (0.46) |
1816 | Fluka | Hexanoic acid | 441 (2.08) | 360 (1.96) |
1929 | Sigma-Aldrich | (E)-2-hexenoic acid | 0.95 b (0.45) | 0.80 a (0.89) |
2024 | Fluka | Octanoic acid | 474 b (2.69) | 381 a (2.23) |
2289 | Sigma-Aldrich | Decanoic acid | 350 b (6.25) | 253 a (14.2) |
2439 | Sigma-Aldrich | Dodecanoic acid | 22.0 (9.97) | 21.3 (2.49) |
Alcohols | ||||
879 | Sigma-Aldrich | Metanol * | 21.1 a,b (5.97) | 23.4 a (0.72) |
1060 | Sigma-Aldrich | 1-propanol * | 25.1 b (4.51) | 35.7 a (2.56) |
1214 | Merck | Isobutanol * | 24.1 b (5.08) | 35.3 a (0.26) |
1221 | Sigma-Aldrich | 2-methyl-1-butanol * | 41.5 b (4.26) | 48.0 a (7.21) |
1221 | Sigma-Aldrich | 3-methyl-1-butanol * | 124 b (1.14) | 138 a (14.29) |
1155 | Sigma-Aldrich | 1-butanol | 1.67 b (0.85) | 2.72 a (0.52) |
1260 | Sigma-Aldrich | 1-pentanol | 1.46 b (0.89) | 1.93 a (0.67) |
1328 | Fluka | 4-methyl-1-pentanol | 3.01 b (1.41) | 3.84 a (0.55) |
1341 | Fluka | 3-methyl-1-pentanol | 8.72 (0.73) | 8.94 (5.79) |
1472 | Fluka | 1-heptanol | 0.34 b (0.21) | 0.66 a (0.53) |
1545 | Fluka | 2,3-butanediol (levo) | 40.0 b (1.65) | 42.3 a (0.32) |
1585 | Fluka | 2,3-butanediol (meso) | 5.49 b (4.25) | 6.19 a (0.68) |
1725 | Sigma-Aldrich | 3-(methylthio)-1-propanol | 165 b (8.41) | 178 a (10.7) |
1892 | Fluka | 2-phenylethanol * | 18.1 b (5.23) | 15.4 a (0.87) |
Lactones | ||||
1650 | Sigma-Aldrich | γ-butyrolactone | 1.74 b (0.41) | 1.90 a (0.37) |
Compounds | Odor Descriptor | Odor Threshold (µg/L) | Aromatic Series * | ∑OAVs | |
---|---|---|---|---|---|
Non-Irrigated | Irrigated | ||||
Acetaldehyde | Pungent, ripe, apple | 500 | 1, 6 | 151 | 150 |
Ethyl octanoate | Caramel, fruity | 5 | 1, 4 | 73.3 | 76.5 |
beta-damascenone | Sweet, fruity | 0.05 | 1, 4 | 16.4 | 37.4 |
Ethyl hexanoate | Green apple | 14 | 1 | 9.57 | 10.4 |
Isovaleric acid | Acid, rancid | 33 | 4, 6 | 5.15 | 4.67 |
Isoamyl acetate | Banana | 30 | 1 | 6.95 | 7.97 |
3-methyl-1-butanol | Burnt, alcohol | 30,000 | 4, 6 | 4.13 | 4.60 |
Ethyl acetate | Fruity, solvent | 7500 | 1, 6 | 4.05 | 4.45 |
2-phenylethanol | Floral, rose | 10,000 | 2 | 1.82 | 1.54 |
Hexanoic acid | Sweat | 420 | 6 | 1.05 | 0.86 |
Octanoic acid | Sweat, cheese | 500 | 6 | 0.95 | 0.76 |
(Z)-3-Hexen-1-ol | Green, cut grass | 400 | 3 | 0.92 | 0.81 |
Ethyl decanoate | Caramel, fruity | 200 | 1, 4 | 0.90 | 0.99 |
Ethyl butyrate | Fruity | 20 | 1 | 0.83 | 1.14 |
Isobutanol | Bitter, green | 40,000 | 3, 6 | 0.60 | 0.88 |
Decanoic acid | Rancid fat | 1000 | 6 | 0.35 | 0.25 |
4-Vinylguaiacol | Spicy, curry | 40 | 5 | 0.33 | 0.38 |
2-phenylethyl acetate | Floral | 250 | 2 | 0.22 | 0.19 |
3-methylthio-1-propanol | Cooked vegetable | 1000 | 6 | 0.18 | 0.18 |
Isobutytiric acid | Rancid, butter, cheese | 2300 | 6 | 0.11 | 0.13 |
Butyric acid | Rancid, cheese, sweat | 173 | 6 | 0.10 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado, J.A.; Osorio Alises, M.; Alonso-Villegas, R.; Sánchez-Palomo, E.; González-Viñas, M.A. Effects of the Irrigation of Chelva Grapevines on the Aroma Composition of Wine. Beverages 2022, 8, 38. https://doi.org/10.3390/beverages8030038
Delgado JA, Osorio Alises M, Alonso-Villegas R, Sánchez-Palomo E, González-Viñas MA. Effects of the Irrigation of Chelva Grapevines on the Aroma Composition of Wine. Beverages. 2022; 8(3):38. https://doi.org/10.3390/beverages8030038
Chicago/Turabian StyleDelgado, Juan A., María Osorio Alises, Rodrigo Alonso-Villegas, Eva Sánchez-Palomo, and Miguel A. González-Viñas. 2022. "Effects of the Irrigation of Chelva Grapevines on the Aroma Composition of Wine" Beverages 8, no. 3: 38. https://doi.org/10.3390/beverages8030038
APA StyleDelgado, J. A., Osorio Alises, M., Alonso-Villegas, R., Sánchez-Palomo, E., & González-Viñas, M. A. (2022). Effects of the Irrigation of Chelva Grapevines on the Aroma Composition of Wine. Beverages, 8(3), 38. https://doi.org/10.3390/beverages8030038