Characterization of an Antioxidant-Enriched Beverage from Grape Musts and Extracts of Winery and Grapevine By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. Samples
2.3. Extraction Procedure
2.4. Analytical Methods
2.4.1. Physicochemical Characterization
2.4.2. Spectrophotometric Assays
2.4.3. Sample Preparation
2.4.4. HPLC-DAD-ESI-MS/MS
2.5. Sensory Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Composition
3.2. Physicochemical Characterization
3.3. Phenolics as Antioxidant Agents
3.4. Sensorial Evaluation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Renaud, S.C.; de Lorgeril, M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 1992, 339, 1523–15261. [Google Scholar] [CrossRef]
- Folts, J.D. Potential health benefits from the flavonoids in grape products on vascular disease. In Flavonoids in Cell Function; Buslig, B., Manthey, J., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2002; pp. 95–111. ISBN 978-1-4757-5235-9. [Google Scholar]
- Booyse, F.M.; Pan, W.; Grenett, H.E.; Parks, D.A.; Darley-Usmar, V.M.; Bradley, K.M.; Tabengwa, E.M. Mechanism by which alcohol and wine polyphenols affect coronary heart disease risk. Ann. Epidemiol. 2007, 17, S24–S31. [Google Scholar] [CrossRef] [PubMed]
- Leifert, W.R.; Abeywardena, M.Y. Cardioprotective actions of grape polyphenols. Nutr. Res. 2008, 28, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Ruxton, C.H.; Gardner, E.J.; Walker, D. Can pure fruit and vegetable juices protect against cancer and cardiovascular disease too? A review of the evidence. Int. J. Food Sci. Nutr. 2006, 57, 249–272. [Google Scholar] [CrossRef] [PubMed]
- Mullen, W.; Marks, S.C.; Crozier, A. Evaluation of phenolic compounds in commercial fruit juices and fruit drinks. J. Agric. Food Chem. 2007, 55, 3148–3157. [Google Scholar] [CrossRef] [PubMed]
- Spanos, G.A.; Wrolstad, R.E. Phenolics of apple, pear, and white grape juices and their changes with processing and storage. A review. J. Agric. Food Chem. 1992, 40, 1478–1487. [Google Scholar] [CrossRef]
- Pereira Natividade, M.M.; Corrêa, L.C.; Carvalho de Souza, S.V.; Pereira, G.E.; de Oliveira Lima, L.C. Simultaneous analysis of 25 phenolic compounds in grape juice for HPLC: Method validation and characterization of São Francisco Valley samples. Microchem. J. 2013, 110, 665–674. [Google Scholar] [CrossRef]
- Moreno-Montoro, M.; Olalla-Herrera, M.; Gimenez-Martinez, R.; Navarro-Alarcon, M.; Rufián-Henares, J.A. Phenolic compounds and antioxidant activity of Spanish commercial grape juices. J. Food Comp. Anal. 2015, 38, 19–26. [Google Scholar] [CrossRef]
- Krikorian, R.; Boespflug, E.L.; Fleck, D.E.; Stein, A.L.; Wightman, J.D.; Shidler, M.D.; Sadat-Hossieny, S. Concord grape juice supplementation and neurocognitive function in human aging. J. Agric. Food Chem. 2012, 60, 5736–5742. [Google Scholar] [CrossRef] [PubMed]
- Toaldo, I.M.; Cruz, F.A.; da Silva, E.L.; Bordignon-Luiz, M.T. Acute consumption of organic and conventional tropical grape juices (V. labrusca L.) increases antioxidants in plasma and erythrocytes, but not glucose and uric acid levels in healthy individuals. Nutr. Res. 2016, 36, 808–817. [Google Scholar] [CrossRef] [PubMed]
- Castilla, P.; Echarri, R.; Dávalos, A.; Cerrato, F.; Ortega, H.; Teruel, J.L.; Fernández-Lucas, M.; Gómez-Coronado, D.; Ortuño, J.; Lasunción, M.A. Concentrated red grape juice exerts antioxidant, hypolipidemic, and antiinflammatory effects in both hemodialysis patients and healthy subjects. Am. J. Clin. Nutr. 2006, 84, 252–262. [Google Scholar] [PubMed]
- Soobratee, M.A.; Neergheena, V.S.; Luximon-Ramma, A.; Aruoma, O.I.; Bahorun, T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mut. Res. 2005, 579, 200–213. [Google Scholar] [CrossRef] [PubMed]
- Freedman, J.E.; Parker, C.; Li, L.; Perlman, J.A.; Frei, B.; Ivanov, V.; Deak, L.R.; Lafrati, M.D.; Folts, J.D. Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation 2001, 103, 2792–2798. [Google Scholar] [CrossRef] [PubMed]
- Corder, R.; Mullen, W.; Khan, N.Q.; Marks, S.C.; Wood, E.G.; Carrier, M.J.; Crozier, A. Red wine procyanidins and vascular health. Nature 2006, 444, 566. [Google Scholar] [CrossRef] [PubMed]
- Faria, A.; Calhau, C.; de Freitas, V.; Mateus, N. Procyanidins as antioxidants and tumor cell growth modulators. J. Agric. Food Chem. 2006, 54, 2392–2397. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.; Fischer, J.; Akoh, C.C. Study of anticancer activities of muscadine grape phenolics in vitro. J. Agric. Food Chem. 2005, 53, 8804–8812. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Serreno, G. Resveratrol, a natural product derived from grape, exhibits antiestrogenic activity and inhibits the growth of human breast cancer cells. J. Cell. Physiol. 1999, 179, 297–304. [Google Scholar] [CrossRef]
- Nishiumi, S.; Mukai, R.; Ichiyanagi, T.; Ashida, H. Suppression of lipopolysaccharide and galactosamine-induced hepatic inflammation by red grape pomace. J. Agric. Food Chem. 2012, 60, 9315–9320. [Google Scholar] [CrossRef] [PubMed]
- Zacharof, M.P. Winery waste as feedstock for bioconversions: Applying the biorefinery concept. Waste Biomass Valorization 2017, 8, 1011–1025. [Google Scholar] [CrossRef]
- Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.A.; García-Viguera, C. Natural bioactive compounds from winery-by-products as health promotors: A review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef] [PubMed]
- Martínez, R.; Vaderrama, N.; Moreno, J.; de Bruijn, J. Aroma characterization of grape juice enriched with grapevine by-products using thermomaceration. Chil. J. Agric. Res. 2017, 77, 234–242. [Google Scholar] [CrossRef]
- Aguilar, T.; Loyola, C.; de Bruijn, J.; Bustamante, L.; Vergara, C.; von Baer, D.; Mardones, C.; Serra, I. Effect of thermomaceration and enzymatic maceration on phenolic compounds of grape must enriched by grape pomace, vine leaves and canes. Eur. Food Res. Technol. 2016, 242, 1149–1158. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine (OIV). Compendium of International Methods of Wine and Must Analysis; International Organisation of Vine and Wine: Paris, France, 2016; ISBN 979-10-91799-47-8. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [PubMed]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Ruiz, A.; Bustamante, L.; Vergara, C.; von Baer, D.; Hermosín-Gutiérrez, I.; Obando, L.; Mardones, C. Hydroxycinnamic acids and flavonols in native edible berries of South Patagonia. Food Chem. 2015, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J. Agric. Food Chem. 2004, 52, 4026–4037. [Google Scholar] [CrossRef] [PubMed]
- López-Alarcón, C.; Lissi, E. A novel and simple ORAC methodology based on the interaction of Pyrogallol Red with peroxyl radicals. Free Radic. Res. 2006, 40, 979–985. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, S.; Mestres, M.; Busto, O.; Guasch, J. Determination of some flavan-3-ols and anthocyanins in red grape seed and skin extracts by HPLC-DAD: Validation study and response comparison of different standards. Anal. Chim. Acta 2008, 628, 104–110. [Google Scholar] [CrossRef]
- Nogales-Bueno, J.; Baca-Bocanegra, B.; Jara-Palacios, M.J.; Hernández-Hierro, J.M.; Heredia, F.J. Evaluation of the influence of White grape seed extracts as copigment sources on the anthocyanin extraction from grape skins previously classified by near infrared hyperspectral tools. Food Chem. 2017, 221, 1685–1690. [Google Scholar] [CrossRef] [PubMed]
- Ghafoor, K.; Choi, Y.H.; Jeon, J.Y.; Jo, I.H. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. J. Agric. Food Chem. 2009, 57, 4988–4994. [Google Scholar] [CrossRef] [PubMed]
- Boulton, R. The copigmentation of anthocyanins and its role in the color of red wine: A critical review. Am. J. Enol. Vitic. 2001, 52, 67–87. [Google Scholar]
- Lutz, M.; Jorquera, K.; Cancino, B.; Ruby, R.; Henriquez, C. Phenolics and antioxidant capacity of table grape (Vitis vinifera L.) cultivars grown in Chile. J. Food Sci. 2011, 76, C1088–C1093. [Google Scholar] [CrossRef] [PubMed]
- Davidov-Pardo, G.; Arozarena, I.; Marín-Arroyo, M.R. Stability of polyphenolic extracts from grape seeds after thermal treatments. Eur. Food Res. Technol. 2011, 232, 211–220. [Google Scholar] [CrossRef]
- Capanoglu, E.; de Vos, R.C.H.; Hall, R.D.; Boyacioglu, D.; Beekwilder, J. Changes in polyphenol content during production of grape juice concentrate. Food Chem. 2013, 139, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Doshi, P.; Adsule, P.; Banerjee, K. Phenolic composition and antioxidant activity in grapevine parts and berries (Vitis vinifera L.) cv. Kismish Chornyi (Sharad Seedless) during maturation. Int. J. Food Sci. Technol. 2006, 41, 1–9. [Google Scholar] [CrossRef]
- Liang, Z.; Owens, C.L.; Zhong, G.Y.; Cheng, L. Polyphenolic profiles detected in the ripe berries of Vitis vinifera germplasm. Food Chem. 2011, 129, 940–950. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.; Gironés-Vilaplana, A.; Teixeira, A.; Collado-González, J.; Moreno, D.A.; Gil-Izquierdo, A.; Rosa, E.; Domínguez-Perles, R. Evaluation of grapes (Vitis vinífera L.) stems from Portuguese varieties as a resource of (poly)phenolic compounds: A comparative study. Food Res. Int. 2014, 65, 375–384. [Google Scholar] [CrossRef]
- Eftekhari, M.; Yadollahi, A.; Ford, C.M.; Shojaeiyan, A.; Ayyari, M.; Hokmabadi, H. Chemodiversity evaluation of grape (Vitis vinifera) vegetative parts during summer and early fall. Ind. Crops Prod. 2017, 108, 267–277. [Google Scholar] [CrossRef]
- Vergara, C.; von Baer, D.; Mardones, C.; Wilkens, A.; Wernekinck, K.; Damm, A.; Macke, S.; Gorena, T.; Winterhalter, P. Stilbene levels in grape cane of different cultivars in Southern Chile: Determination by HPLC-DAD-MS/MS method. J. Agric. Food Chem. 2012, 60, 929–933. [Google Scholar] [CrossRef] [PubMed]
- Gorena, T.; Saez, V.; Mardones, C.; Vergara, C.; Winterhalter, P.; von Baer, D. Influence of post-pruning storage on stilbenoid levels in Vitis vinifera L. canes. Food Chem. 2014, 155, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Balík, J.; Kyseláková, M.; Vrchotová, N.; Tříska, J.; Kumšta, M.; Veverka, J.; Híc, P.; Totušek, J.; Lefnerová, D. Relations between polyphenols content and antioxidant activity in vine grapes and leaves. Czech J. Food Sci. 2008, 26, S25–S32. [Google Scholar]
- Xi, H.F.; Ma, L.; Wang, L.N.; Li, S.H.; Wang, L.J. Differential response of the biosynthesis of resveratrols and flavonoids to UV-C irradiation in grape leaves. N. Z. J. Crop Hort. 2015, 43, 163–172. [Google Scholar] [CrossRef]
- Coombe, B.G.; Dundon, R.J.; Short, A.W.S. Indices of sugar-acidity as ripeness criteria for winegrapes. J. Sci. Food Agric. 1980, 31, 495–502. [Google Scholar] [CrossRef]
- Cheynier, V.F.; Trousdale, E.K.; Singleton, V.L.; Salgues, M.J.; Wylde, R. Characterization of 2-S-glutathionyl caftaric acid and its hydrolysis in relation to grape wines. J. Agric. Food Chem. 1986, 34, 217–221. [Google Scholar] [CrossRef]
- Maggu, M.; Winz, R.; Kilmartin, P.A.; Trought, M.C.T.; Nicolau, L. Effect of skin contact and pressure on the composition of Sauvignon Blanc must. J. Agric. Food Chem. 2007, 55, 10281–10288. [Google Scholar] [CrossRef] [PubMed]
- Lambri, M.; Torchio, F.; Colangelo, D.; Río Segade, S.; Giacosa, S.; De Faveri, D.M.; Gerbi, V.; Rolle, L. Influence of different berry thermal treatment conditions, grape anthocyanin profile, and skin hardness on the extraction of anthocyanin compounds in the colored grape juice production. Food Res. Int. 2015, 77, 584–590. [Google Scholar] [CrossRef]
- Seeram, N.P.; Aviram, M.; Zhang, Y.; Henning, S.M.; Feng, L.; Dreher, M.; Heber, D. Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. J. Agric. Food Chem. 2008, 56, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Villaño, D.; Fernández-Pachón, M.S.; Troncoso, A.M.; García-Parilla, M.C. Comparison of antioxidant activity of wine phenolic compounds and metabolites in vitro. Anal. Chim. Acta. 2005, 538, 391–398. [Google Scholar] [CrossRef]
- Van Acker, S.A.B.E.; de Groot, M.J.; van den Berg, D.J.; Tromp, M.N.J.L.; Donné-Op den Kelder, G.; van der Vijgh, W.J.F.; Bast, A. A quantum chemical explanation of the antioxidant activity of flavonoids. Chem. Res. Toxicol. 1996, 9, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Dávalos, A.; Bartolomé, B.; Gómez-Cordovés, C. Antioxidant properties of commercial grape juices and vinegars. Food Chem. 2005, 93, 325–330. [Google Scholar] [CrossRef]
- López-Alarcón, C.; Ortíz, R.; Benavides, J.; Mura, E.; Lissi, E. Use of the ORAC-Pyrogallol Red/ORAC-Fluorescein ratio to assess the quality of antioxidants in Chilean wines. J. Chil. Chem. Soc. 2011, 56, 764–767. [Google Scholar] [CrossRef]
- Alarcón, E.; Campos, A.M.; Edwards, A.M.; Lissi, E.; López-Alarcón, C. Antioxidant capacity of herbal infusions and tea extracts: A comparison of ORAC-fluorescein and ORAC-pyrogallol red methodologies. Food Chem. 2008, 107, 1114–1119. [Google Scholar] [CrossRef]
- Toaldo, I.M.; Fogolari, O.; Cadore Pimentel, G.; Santos de Gois, J.; Borges, D.L.G.; Caliari, V.; Bordignon-Luiz, M.T. Effect of grape seeds on the polyphenol bioactive content and elemental composition by ICP-MS of grape juices from Vitis labrusca L. LWT Food Sci. Technol. 2013, 53, 1–8. [Google Scholar] [CrossRef]
Name | tR (min) | [M-H] (m/z) | Product Ions (m/z) | λmax (nm) | Detected in 1 |
---|---|---|---|---|---|
Anthocyanins | |||||
Delphinidin-3-glucoside | 16.86 | 465 | 303 | 524, 277, 343 | f |
Petunidin-3-glucoside | 20.23 | 479 | 317, 302 | 525, 277 | f |
Peonidin-3-glucoside | 22.54 | 463 | 301, 286 | 517, 279 | e, f, g, h |
Malvidin-3-glucoside | 23.36 | 493 | 331, 315, 287 | 527, 277, 346 | b, e, f, g, h |
Malvidin-acetyl-glucoside | 34.30 | 535 | 331, 315, 287 | 529, 525 | e,f |
Flavonols | |||||
Myricetin-3-hexoside | 7.04 | 493 | 317, 179, 299, 151, 271 | 556 | c, f, g, h |
Quercetin-3-rutinoside | 8.02 | 609 | 301, 271, 256, 279, 151 | 354 | c, g |
Quercetin-3-hexoside | 8.75 | 463 | 300, 271, 255, 179, 151 | 357 | b, c, f, g, h |
Quercetin-3-glucuronide | 8.93 | 477 | 301, 151, 179, 274, 283 | 354 | c, f, g, h |
Kaempferol-3-hexoside | 10.70 | 447,5 | 284, 205, 227, 183, 135, 197 | 346 | c, g |
Kaempferol-3-glucoside | 11.70 | 447,3 | 284, 255, 227, 153, 179, 241 | 346 | c, g |
Isorhamnetin-3-hexoside | 12.60 | 477 | 315, 285, 271, 299, 243, 151, 179 | 354 | f, g |
Isorhamnetin-3-glucuronide | 13.30 | 491 | 315, 300, 271, 255, 179, 151 | 353 | g |
Phenolic acids | |||||
Gallic acid hexoside | 6.76 | 331 | 271, 211, 169, 151, 125 | 276 | a, c, d, f, g, h |
Protocatechuic acid hexoside | 7.38 | 315 | 153, 123 | 278 | c, d, f, g, h |
Ferulic acid hexoside | 8.09 | 355 | 193, 165 | 275 | c, f, g |
Chlorogenic acid | 8.55 | 353 | 191, 179, 161, 135 | 320 | a, g |
Caftaric acid | 10.17 | 311 | 179, 149, 135 | 328, 300(sh) 2 | a, b, c, d, f, g, h |
p-Coumaric acid | 13.47 | 295 | 163, 149, 119 | 311, 300(sh) 2 | b, c, d, f, g, h |
Flavan-3-ols | |||||
Catechin dimer | 9.01 | 577 | 451, 425, 407, 289 | 280 | a, b, c, d, e, f, g, h |
(+)-Catechin | 11.93 | 289 | 245, 203, 179, 161, 125, 137 | 280 | b, c, d, e, f, g, h |
(−)-Epicatechin | 14.40 | 289 | 245, 203, 203, 179, 151, 137, 123, 109 | 279 | b, c, d, e, f, g, h |
Name | Must | Pomace Extract | Leaf Extract | Cane Extract | ||||
---|---|---|---|---|---|---|---|---|
PA | LC | PA | LC | PA | LC | PA | LC | |
Anthocyanins | ||||||||
Delphinidin-3-glucoside | n.d. | n.d. | n.d. | 232 ± 0 | n.d. | n.d. | n.d. | n.d. |
Petunidin-3-glucoside | n.d. | n.d. | n.d. | 272 ± 1 | n.d. | n.d. | n.d. | n.d. |
Peonidin-3-glucoside | n.d. | 527 ± 1 b | n.d. | 533 ± 2 a | n.d. | 426 ± 1 c | n.d. | 235 ± 1 d |
Malvidin-3-glucoside | n.d. | 1419 ± 1 b | 97.5 ± 0.0 e | 1563 ± 0 a | n.d. | 717 ± 0 c | n.d. | 638 ± 1 d |
Malvidin-acetyl-glucoside | n.d. | 348 ± 1 b | n.d. | 396 ± 0 a | n.d. | n.d. | n.d. | n.d. |
Flavonols | ||||||||
Myricetin-3-hexoside | n.d. | n.d. | n.d. | 34.4 ± 0.2 b | 14.1 ± 0.9 c | 59.0 ± 0.3 a | n.d. | 8.0 ± 0.0 d |
Quercetin-3-rutinoside | n.d. | n.d. | n.d. | n.d. | 9.2 ± 0.4 b | 22.1 ± 0.4 a | n.d. | n.d. |
Quercetin-3-hexoside | n.d. | n.d. | 21.4 ± 0.4 c | 38.4 ± 0.7 c | 834 ± 41 b | 1100 ± 14 a | n.d. | 5.9 ± 0.2 c |
Quercetin-3-glucuronide | n.d. | n.d. | n.d. | 43.6 ± 0.6 c | 204 ± 0 b | 568 ± 3 a | n.d. | 5.3 ± 0.6 d |
Kaempferol-3-hexoside | n.d. | n.d. | n.d. | n.d. | 11.7 ± 0.9 b | 19.4 ± 0.1 a | n.d. | n.d. |
Kaempferol-3-glucoside | n.d. | n.d. | n.d. | n.d. | 69.1 ± 5.7 b | 78.3 ± 0.2 a | n.d. | n.d. |
Isorhamnetin-3-hexoside | n.d. | n.d. | n.d. | 15.8 ± 0.0 b | n.d. | 35.0 ± 0.0 a | n.d. | n.d. |
Isorhamnetin-3-glucuronide | n.d. | n.d. | n.d. | n.d. | n.d. | 5.8 ± 0.0 | n.d. | n.d. |
Phenolic acids | ||||||||
Gallic acid hexoside | 1.7 ± 0.0 d | n.d. | n.d. | 2.1 ± 0.1 c | 4.5 ± 0.0 b | 6.3 ± 0.0 a | 1.5 ± 0.0 e | 1.7 ± 0.0 d |
Protocatechuic acid hexoside | n.d. | n.d. | n.d. | 2.0 ± 0.0 c | 4.6 ± 0.1 b | 6.6 ± 0.0 a | 1.5 ± 0.0 d | 2.0 ± 0.2 c |
Ferulic acid hexoside | n.d. | n.d. | n.d. | 4.2 ± 0.0 a | 3.9 ± 0.0 b | 3.3 ± 0.0 c | n.d. | n.d. |
Chlorogenic acid | 1.7 ± 0.0 b | n.d. | n.d. | n.d. | n.d. | 10.4 ± 0.1 a | n.d. | n.d. |
Caftaric acid | 4.0 ± 1.6 e | n.d. | 36.6 ± 1.0 c | 4.0 ± 0.0 e | 76.8 ± 1.4 b | 125 ± 0 a | 16.2 ± 1.3 d | 5.3 ± 0.7 e |
p-Coumaric acid | n.d. | n.d. | 8.3 ± 0.4 c | 2.6 ± 0.0 e | 17.5 ± 0.1 b | 20.9 ± 0.0 a | 6.2 ± 0.0 d | 2.2 ± 0.2 f |
Flavan-3-ols | ||||||||
Catechin dimer | 7.8 ± 1.0 c | 5.9 ± 0.9 c | 10.9 ± 2.5 c | 26.7 ± 0.3 b | 22.2 ± 0.1 b | 54.1 ± 0.3 a | 2.9 ± 0.2 c | 24.0 ± 1.4 b |
(+)-Catechin | n.d. | 54.2 ± 0.2 c | 42.3 ± 0.1 f | 96.6 ± 0.3 b | 48.5 ± 0.2 d | 110 ± 0 a | 6.8 ± 0.2 g | 45.5 ± 1.2 e |
(−)-Epicatechin | n.d. | 14.4 ± 0.0 e | 25.5 ± 0.0 d | 92.4 ± 0.5 a | 36.1 ± 0.9 c | 82.4 ± 1.0 b | 8.0 ± 0.0 f | 11.6 ± 0.9 e |
PA Must | LC Must | Enriched Juice | |
---|---|---|---|
pH | 3.17 ± 0.01 b | 2.88 ± 0.01 c | 3.43 ± 0.02 a |
Total acidity (g/kg) | 2.46 ± 0.03 c | 4.81 ± 0.05 a | 2.73 ± 0.00 b |
Soluble solids (Brix) | 17.8 ± 0.0 a | 15.9 ± 0.0 c | 17.5 ± 0.1 b |
Free SO2 (mg/kg) | 9.6 ± 0.0 b | 25.6 ± 3.2 a | 1.5 ± 0.0 c |
Total SO2 (mg/kg) | 19.2 ± 0.0 b | 41.6 ± 2.8 a | 1.7 ± 0.3 c |
Color intensity | 1.49 ± 0.01 c | 2.95 ± 0.03 b | 4.64 ± 0.09 a |
Hue—tint | 1.37 ± 0.02 a | 0.40 ± 0.01 c | 0.92 ± 0.02 b |
Total polyphenols (mg/kg) | 763 ± 17 c | 2015 ± 170 a | 1559 ± 59 b |
Total flavonoids (mg/kg) | 711 ± 66 b | 995 ± 351 ab | 1326 ± 32 a |
Monomeric anthocyanins (mg/kg) | 0.70 ± 0.00 c | 218 ± 8 a | 61.0 ± 3.7 b |
ABTS (mmol/kg) | 9.59 ± 0.98 b | 21.5 ± 4.6 b | 77.2 ± 11.1 a |
First Level Target | Second Level Target | Score |
---|---|---|
País | Pomace | 7.5 ± 1.2 a |
Leaf | 4.0 ± 1.0 a | |
Cane | 3.5 ± 0.9 a | |
Lachryma Christi | Pomace | 6.5 ± 1.1 a |
Leaf | 1.0 ± 0.6 b | |
Cane | 7.5 ± 1.3 a | |
País | Pomace/leaf/cane ratio of 25/25/50 | 5.0 ± 0.5 a |
Pomace/leaf/cane ratio of 40/20/40 | 3.0 ± 0.5 a | |
Pomace/leaf/cane ratio of 50/17/33 | 2.0 ± 0.4 a | |
Lachryma Christi | Pomace/leaf/cane ratio of 25/25/50 | 1.0 ± 0.3 b |
Pomace/leaf/cane ratio of 40/20/40 | 7.0 ± 0.5 a | |
Pomace/leaf/cane ratio of 50/17/33 | 2.0 ± 0.4 b | |
Pomace/leaf/cane ratio of 40/20/40 | País/Lachryma Christi ratio of 90/10 | 0.8 ± 0.2 b |
País/Lachryma Christi ratio of 50/50 | 5.4 ± 0.5 a | |
País/Lachryma Christi ratio of 70/30 | 3.9 ± 0.5 ab |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar, T.; De Bruijn, J.; Loyola, C.; Bustamante, L.; Vergara, C.; Von Baer, D.; Mardones, C.; Serra, I. Characterization of an Antioxidant-Enriched Beverage from Grape Musts and Extracts of Winery and Grapevine By-Products. Beverages 2018, 4, 4. https://doi.org/10.3390/beverages4010004
Aguilar T, De Bruijn J, Loyola C, Bustamante L, Vergara C, Von Baer D, Mardones C, Serra I. Characterization of an Antioxidant-Enriched Beverage from Grape Musts and Extracts of Winery and Grapevine By-Products. Beverages. 2018; 4(1):4. https://doi.org/10.3390/beverages4010004
Chicago/Turabian StyleAguilar, Tabita, Johannes De Bruijn, Cristina Loyola, Luis Bustamante, Carola Vergara, Dietrich Von Baer, Claudia Mardones, and Ignacio Serra. 2018. "Characterization of an Antioxidant-Enriched Beverage from Grape Musts and Extracts of Winery and Grapevine By-Products" Beverages 4, no. 1: 4. https://doi.org/10.3390/beverages4010004
APA StyleAguilar, T., De Bruijn, J., Loyola, C., Bustamante, L., Vergara, C., Von Baer, D., Mardones, C., & Serra, I. (2018). Characterization of an Antioxidant-Enriched Beverage from Grape Musts and Extracts of Winery and Grapevine By-Products. Beverages, 4(1), 4. https://doi.org/10.3390/beverages4010004