Role of Proteins and of Some Bioactive Peptides on the Nutritional Quality of Donkey Milk and Their Impact on Human Health
Abstract
:1. Introduction
1.1. An Overview on Milk Composition
1.2. Cow’s Milk Protein Allergy
2. Donkey Milk and Its Hypoallergenic Properties
2.1. Historia Docet
2.2. Donkey Milk and Its Affinity with Human Milk
3. Bioactive Proteins and Peptides in Donkey Milk
3.1. Casein Fraction
3.2. Whey Protein Fraction and Its Impact on Human Health
3.2.1. β-Lactoglobulin
3.2.2. α-Lactalbumin
3.2.3. Lysozyme
3.2.4. Lactoferrin
3.2.5. Lactoperoxidase
3.2.6. β-Casein Fragments
4. Conclusions
Conflicts of Interest
References
- Claeys, W.L.; Verraes, C.; Cardoen, S.; De Block, J.; Huyghebaert, A.; Raes, K.; Dewettinck, K.; Herman, L. Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control 2014, 42, 188–201. [Google Scholar] [CrossRef]
- Thompson, A.; Boland, M.; Singh, A. Milk proteins from expression to food. In Food Sciences and Technology; Thompson, A., Boland, M., Singh, A., Eds.; Elsevier: Burlington, MA, USA, 2009; pp. 8–56. [Google Scholar]
- Ragona, G.; Corrias, F.; Benedetti, M.; Paladini, M.; Salari, F.; Altomonte, L.; Martini, M. Amiata Donkey Milk Chain: Animal Health Evaluation and Milk Quality. Ital. J. Food Saf. 2016, 5, 5951. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.F.; McSweeney, P.L.H. Dairy Chemistry and Biochemistry; Blackie Academic and Professional: London, UK, 1998; pp. 67–71. [Google Scholar]
- Donovan, S.M.; Monaco, M.H.; Bleck, G.T.; Cook, J.B.; Noble, M.S.; Hurley, W.L.; Wheeler, M.B. Transgenic Over-Expression of Bovine α-Lactalbumin and Human Insulin-Like Growth Factor-I in Porcine Mammary Gland. J. Dairy Sci. 2001, 84, E216–E222. [Google Scholar] [CrossRef]
- Haug, A.; Høstmark, A.T.; Harstad, O.M. Bovine milk in human nutrition—A review. Lipids Health Dis. 2007, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, S.; Huma, N.; Pasha, I.; Sameen, A.; Mukhtar, O.; Khan, M.I. Chemical Composition, Nitrogen Fractions and Amino Acids Profile of Milk from Different Animal Species. Asian Australas. J. Anim. Sci. 2016, 29, 1022–1028. [Google Scholar] [CrossRef] [PubMed]
- Holt, C.; Jenness, R. Interrelationships of constituents and partition of salts in milk samples from eight species. Comp. Biochem. Physiol. A Comp. Physiol. 1984, 77, 275–282. [Google Scholar] [CrossRef]
- Anderson, R.R. Comparison of trace elements in milk of four species. J. Dairy Sci. 1992, 75, 3050–3055. [Google Scholar] [CrossRef]
- Uniacke-Lowe, T.; Fox, P.F. Equid Milk: Chemistry, Biochemistry and Processing. In Food Biochemistry and Food Processing, 2nd ed.; Simpson, B.K., Ed.; John Wiley & Sons, Inc.: Oxford, UK, 2012; pp. 491–528. [Google Scholar]
- Buttriss, J. Adverse Reaction to Food. The Report of a British Nutrition Foundation Task Force; Buttriss, J., Ed.; Blackwell Science: Oxford, UK, 2002. [Google Scholar]
- Hochwallner, H.; Schulmeister, U.; Swoboda, I.; Spitzauer, S.; Valenta, R. Cow’s milk allergy: From allergens to new forms of diagnosis, therapy and prevention. Methods 2014, 66, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Pessler, F.; Nejat, M. Anaphylactic reaction to goat’s milk in a cow’s milk—Allergic infant. Pediatr. Allergy Immunol. 2004, 15, 183–185. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, J.; Malhotra, G.S.; Mathur, B.N. Hypersensitivity of human subjects to bovine milk proteins: A review. Indian J. Dairy Sci. 1989, 42, 744–749. [Google Scholar]
- Giner, M.T.; Vasquez, M.; Dominiguez, O. Specific oral desensitization in children with IgE-mediated cow’s milk allergy. Evolution in one year. Eur. J. Pediatr. 2012, 171, 1389–1395. [Google Scholar] [CrossRef]
- Sánchez-García, S.; del Río, P.R.; Escudero, C.; García-Fernández, C. Efficacy of Oral Immunotherapy Protocol for Specific Oral Tolerance Induction in Children with Cow’s Milk Allergy. IMAJ 2012, 14, 43–47. [Google Scholar] [PubMed]
- Venter, C. Cow’s milk protein allergy and other food hypersensitivities in infants. J. Fam. Health Care 2009, 19, 128–134. [Google Scholar] [PubMed]
- Wang, J. Management of the Patient with Multiple Food Allergies. Curr. Allergy Asthma Rep. 2010, 10, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Cunsolo, V.; Muccilli, V.; Fasoli, E.; Saletti, R.; Righetti, R.G.; Foti, S. Poppea’s bath liquor: The secret proteome of she-donkey’s milk. J. Proteom. 2011, 74, 2083–2099. [Google Scholar] [CrossRef] [PubMed]
- Jirillo, F.; Jirillo, E.; Magrone, T. Donkey’s and goat’s milk consumption and benefits to human health with special reference to the inflammatory status. Curr. Pharm. Des. 2010, 16, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Polidori, P.; Ariani, A.; Vincenzetti, S. Use of Donkey Milk in Cases of Cow’s Milk Protein Allergies. Int. J. Child Health Nutr. 2015, 4, 174–179. [Google Scholar] [CrossRef]
- Iacono, G.; Carroccio, A.; Cavataio, F.; Montalto, G.; Soresi, M.; Balsamo, V. Use of ass’s milk in multiple food allergy. J. Pediatr. Gastroenterol. Nutr. 1992, 14, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Polidori, P.; Beghelli, D.; Mariani, P.; Vincenzetti, S. Donkey milk production: State of the art. Ital. J. Anim. Sci. 2009, 8, 677–683. [Google Scholar] [CrossRef]
- Salimei, E.; Fantuz, F.; Coppola, R.; Chiofalo, B.; Polidori, P.; Varisco, G. Composition and characteristics of ass’s milk. Anim. Res. 2004, 53, 67–78. [Google Scholar] [CrossRef]
- Malacarne, M.; Martuzzi, F.; Summer, A.; Mariani, P. Protein and fat composition of mare’s milk: Some nutritional remarks with reference to human and cow’s milk. Int. Dairy J. 2002, 12, 869–877. [Google Scholar] [CrossRef]
- Carroccio, A.; Cavataio, F.; Montalto, G.; D’Amico, D.; Alabrese, L.; Iacono, G. Intolerance to hydrolised cow’s milk proteins in infants: Clinical characteristics and dietary treatment. Clin. Exp. Allergy 2000, 30, 1597–1603. [Google Scholar] [CrossRef] [PubMed]
- Monti, G.; Viola, S.; Baro, C.; Cresi, F.; Tovo, P.A.; Moro, G.; Ferrero, M.P.; Conti, A.; Bertino, E. Tolerability of donkey’s milk in 92 highly-problematic cow’s milk allergic children. J. Biol. Regul. Homeost. Agents 2012, 26, 75–82. [Google Scholar] [PubMed]
- Chiofalo, B.; Salimei, E.; Chiofalo, L. Acidi grassi nel latte d’asina: Proprietà bio-nutrizionali ed extranutrizionali. Large Anim. Rev. 2003, 6, 21–26. [Google Scholar]
- Martemucci, G.; D’Alessandro, A.G. Fat content, energy value and fatty acid profile of donkey milk during lactation and implications for human nutrition. Lipids Health Dis. 2012, 11, 113. [Google Scholar] [CrossRef] [PubMed]
- Vincenzetti, S.; Pucciarelli, S.; Nucci, C.; Polzonetti, V.; Cammertoni, N.; Polidori, P. Profile of nucleosides and nucleotides in donkey’s milk. Nucleosides Nucleotides Nucleic Acids 2014, 33, 656–667. [Google Scholar] [CrossRef] [PubMed]
- Birlouez-Aragon, I. Effect of lactose hydrolysis on calcium absorption during duodenal milk perfusion. Reprod. Nutr. Dev. 1988, 28, 1465–1472. [Google Scholar] [CrossRef] [PubMed]
- Griessen, M.; Cochet, B.; Infante, F.; Jung, A.; Bartholdi, P.; Donath, A.; Loizeau, E.; Courvoisier, B. Calcium absorption from milk in lactase-deficient subjects. Am. J. Clin. Nutr. 1989, 49, 377–384. [Google Scholar] [PubMed]
- Chiavari, C.; Coloretti, F.; Nanni, M.; Sorrentino, E.; Grazia, L. Use of donkey’s milk for a fermented beverage with lactobacilli. Lait 2005, 85, 481–490. [Google Scholar] [CrossRef]
- Vincenzetti, S.; Polidori, P.; Vita, A. Nutritional characteristics of donkey’s milk protein fraction. In Dietary Protein Research Trends; Ling, J.R., Ed.; Nova Science Publisher Inc.: New York, NY, USA, 2007; pp. 207–225. [Google Scholar]
- Vita, D.; Passalacqua, G.; Di Pasquale, G.; Caminiti, L.; Crisafulli, G.; Rulli, I.; Pajno, G.B. Ass’s milk in children with atopic dermatitis and cow’s milk allergy: Crossover comparison with goat’s milk. Pediatr. Allergy Immunol. 2007, 18, 594–598. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.; Grosclaude, F. Improvement of milk protein-quality by gene technology. Livest. Prod. Sci. 1993, 35, 95–115. [Google Scholar] [CrossRef]
- Vincenzetti, S.; Polidori, P.; Mariani, P.; Cammertoni, N.; Fantuz, F.; Vita, A. Donkey milk protein fractions characterization. Food Chem. 2008, 10, 640–649. [Google Scholar] [CrossRef]
- Vincenzetti, S.; Amici, A.; Pucciarelli, S.; Vita, A.; Micozzi, D.; Carpi, F.M.; Polzonetti, V.; Natalini, P.; Polidori, P. A Proteomic Study on Donkey Milk. Biochem. Anal. Biochem. 2012, 1, 109. [Google Scholar] [CrossRef]
- Greppi, G.F.; Roncada, P. La componente proteica del latte caprino. In L’alimentazione della Capra da Latte; Pulina, G., Ed.; Avenue Media Publisher: Bologna, Italy, 2005; pp. 71–99. [Google Scholar]
- Bertino, E.; Gastaldi, D.; Monti, G.; Baro, C.; Fortunato, D.; Perono Garoffo, L.; Coscia, A.; Fabris, C.; Mussap, M.; Conti, A. Detailed proteomic analysis on DM: Insight into its hypoallergenicity. Front. Biosci. 2010, 2, 526–536. [Google Scholar] [CrossRef]
- Chianese, L.; Calabrese, M.G.; Ferranti, P.; Mauriello, R.; Garro, G.; De Simone, C.; Quarto, M.; Addeo, F.; Cosenza, G.; Ramunno, L. Proteomic characterization of donkey milk “caseome”. J. Chromatogr. A 2010, 1217, 4834–4840. [Google Scholar] [CrossRef] [PubMed]
- Godovac-Zimmermann, J.; Conti, A.; James, L.; Napolitano, L. Microanalysis of the amino-acid sequence of monomeric beta-lactoglobulin I from donkey (Equus asinus) milk. The primary structure and its homology with a superfamily of hydrophobic molecule transporters. Biol. Chem. Hoppe-Seyler 1988, 369, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Godovac-Zimmermann, J.; Conti, A.; Sheil, M.; Napolitano, L. Covalent structure of the minor monomeric beta-lactoglobulin II component from donkey milk. Biol. Chem. Hoppe-Seyler 1990, 371, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Herrouin, M.; Molle, D.; Fauquant, J.; Ballestra, F.; Maubois, J.L.; Leonil, J. New Genetic Variants Identified in Donkey’s Milk Whey Proteins. J. Protein Chem. 2000, 19, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Cunsolo, V.; Saletti, R.; Muccilli, V.; Foti, S. Characterization of the protein profile of donkey’s milk whey fraction. J. Mass Spectrom. 2007, 42, 1162–1174. [Google Scholar] [CrossRef] [PubMed]
- Kontopidis, G.; Holt, C.; Sawyer, L. Invited review: Beta-lactoglobulin: Binding properties, structure, and function. J. Dairy Sci. 2004, 87, 785–796. [Google Scholar] [CrossRef]
- Liang, L.; Tajmir-Riahi, H.A.; Subirade, M. Interaction of beta-lactoglobulin with resveratrol and its biological implications. Biomacromolecules 2008, 9, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Subirade, M. Beta-Lactoglobulin/Folic Acid Complexes: Formation, Characterization, and Biological Implication. J. Phys. Chem. B 2010, 114, 6707–6712. [Google Scholar] [CrossRef] [PubMed]
- Permyakova, E.A.; Berliner, L.J. α-Lactalbumin: Structure and function. FEBS Lett. 2000, 473, 269–274. [Google Scholar] [CrossRef]
- Pelligrini, A.; Thomas, U.; Bramaz, N.; Hunziker, P.; von Fellenberg, R. Isolation and identification of three bactericidal domains in the bovine alpha-lactalbumin molecule. Biochim. Biophys. Acta 1999, 1426, 439–448. [Google Scholar] [CrossRef]
- Hakansson, A.; Svensson, M.; Mossberg, A.K.; Sabharwal, H.; Linse, S.; Lazou, I.; Lonnerdal, B.; Svanborg, C. A folding variant of alpha-lactalbumin with bactericidal activity against Streptococcus pneumoniae. Mol. Microbiol. 2000, 35, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Cawthern, K.M.; Narayan, M.; Chaudhuri, D.; Permyakov, E.A.; Berliner, L.J. Interactions of α-Lactalbumin with Fatty Acids and Spin Label Analogs. J. Biol. Chem. 1997, 272, 30812–30816. [Google Scholar] [CrossRef] [PubMed]
- Hakansson, A.; Zhivotovsky, B.; Orrenius, S.; Sabharwal, H.; Svanborg, C. Apoptosis induced by a human milk protein. Proc. Natl. Acad. Sci. USA 1995, 92, 8064–8068. [Google Scholar] [CrossRef] [PubMed]
- Svensson, M.; Sabharwal, H.; Hakansson, A.; Mossberg, A.K.; Lipniunas, P.; Leffler, H.; Svanborg, C.; Linse, S. Molecular Characterization of α–Lactalbumin Folding Variants That Induce Apoptosis in Tumor Cells. J. Biol. Chem. 1999, 274, 6388–6396. [Google Scholar] [CrossRef] [PubMed]
- Köhler, C.; Hakansson, A.; Svanborg, C.; Orrenius, S.; Zhivotovsky, B. Protease activation in apoptosis induced by MAL. Exp. Cell Res. 1999, 249, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Mossberg, A.K.; Hun Mok, K.; Morozova-Roche, L.A.; Svanborg, C. Structure and function of human α-lactalbumin made lethal to tumor cells (HAMLET)-type complexes. FEBS J. 2010, 277, 4614–4625. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Zhao, L.; Jiang, L.; Dong, M.L.; Ren, F.Z. The antimicrobial activity of donkey milk and its microflora changes during storage. Food Control 2008, 19, 1191–1195. [Google Scholar] [CrossRef]
- Šarić, L.C.; Šarić, B.M.; Kravić, S.T.; Plavšić, D.V.; Milovanović, I.L.; Gubić, J.M.; Nedeljković, N.M. Antibacterial activity of domestic Balkan donkey milk toward Listeria monocytogenes and Staphylococcus aureus. Food Feed Res. 2014, 41, 47–54. [Google Scholar] [CrossRef]
- Mao, X.; Gu, J.; Sun, Y.; Xu, S.; Zhang, X.; Yang, H.; Ren, F. Anti-proliferative and anti-tumour effect of active components in donkey milk on A549 human lung cancer cells. Int. Dairy J. 2009, 19, 703–708. [Google Scholar] [CrossRef]
- Clementi, E.A.; Wilhelm, K.R.; Schleicher, J.; Morozova-Roche, L.A.; Hakansson, A.P. A complex of equine lysozyme and oleic acid with bactericidal activity against Streptococcus pneumoniae. PLoS ONE 2013, 8, e80649. [Google Scholar] [CrossRef] [PubMed]
- Ward, P.P.; Paz, E.; Conneely, O.M. Multifunctional roles of lactoferrin: A critical overview. Cell. Mol. Life Sci. 2005, 62, 2540–2548. [Google Scholar] [CrossRef] [PubMed]
- Dial, E.J.; Lichtenberger, L.M. Effect of lactoferrin on Helicobacter felis induced gastritis. Biochem. Cell Biol. 2002, 80, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Cornish, J.; Palmano, K.; Callon, K.E.; Watson, M.; Lin, J.M.; Valenti, P.; Naot, D.; Grey, A.B.; Reid, I.R. Lactoferrin and bone; structure-activity relationships. Biochem. Cell. Biol. 2006, 84, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Sinha, M.; Kaushik, S.; Kaur, P.; Sharma, S.; Singh, T.P. Antimicrobial Lactoferrin Peptides: The Hidden Players in the Protective Function of a Multifunctional Protein. Int. J. Pept. 2013, 2013, 390230. [Google Scholar] [CrossRef] [PubMed]
- Jenssen, H. Antimicrobial activity of lactoferrin and lactoferrin derived peptides. In Dietary Protein Research Trends; Ling, J.R., Ed.; Nova Science Publisher Inc.: New York, NY, USA, 2007; pp. 1–62. [Google Scholar]
- Tenovuo, J.O. The peroxidase system in human secretions. In The Lactoperoxidase System: Chemistry and Biological Significance; Pruitt, K.M., Tenovuo, J.O., Eds.; Marcel Dekker: New York, NY, USA, 1985; pp. 101–122. [Google Scholar]
- Tanaka, T. Antimicrobial activity of lactoferrin and lactoperoxidase in milk. In Dietary Protein Research Trends; Ling, J.R., Ed.; Nova Science Publisher Inc.: New York, NY, USA, 2007; pp. 101–115. [Google Scholar]
- Shin, K.; Wakabayashi, H.; Yamauchi, K.; Teraguchi, S.; Tamura, Y.; Kurokawa, M.; Shiraki, K. Effects of orally administered bovine lactoferrin and lactoperoxidase on influenza virus infection in mice. J. Med. Microbiol. 2005, 54, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.; Hayasawa, H.; Lönnerdal, B. Purification and quantification of lactoperoxidase in human milk with use of immunoadsorbent with antibodies against recombinant human lactoperoxidase. Am. J. Clin. Nutr. 2001, 73, 984–989. [Google Scholar] [PubMed]
- Tenovuo, J.; Moldoveanu, Z.; Mestecky, J.; Pruitt, K.M.; Rahemtulla, B.M. Interaction of specific and innate factors of immunity: IgA enhances the antimicrobial effect of the lactoperoxidase system against Streptococcus mutans. J. Immunol. 1982, 128, 726–731. [Google Scholar] [PubMed]
- Arnold, R.; Russell, J.E.; Devine, S.M.; Adamson, M.; Pruitt, K.M. Antimicrobial activity of the secretory innate defence factors lactoferrin, lactoperoxidase and lysozyme. In Cardiology Today; Guggenheim, B., Ed.; S. Karger: Basel, Switzerland, 1984; pp. 75–88. [Google Scholar]
- Silva, S.V.; Malcata, F.X. Caseins as a source of bioactive peptides. Int. Dairy J. 2005, 15, 1–15. [Google Scholar] [CrossRef]
- Minervini, F.; Algaron, F.; Rizzello, C.G.; Fox, P.F.; Monnet, V.; Gobbetti, M. Angiotensin I-converting-enzyme-inhibitory and antibacterial peptides from Lactobacillus helveticus PR4 proteinase-hydrolyzed caseins of milk from six species. Appl. Environ. Microbiol. 2003, 69, 5297–5305. [Google Scholar] [CrossRef] [PubMed]
- Notredame, C.; Higgins, D.G.; Heringa, J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000, 302, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, S.; Suzuki, H. A peptide inhibitor of angiotensin I-converting enzyme in the tryptic hydrolysate of casein. Agric. Biol. Chem. 1982, 46, 1393–1394. [Google Scholar] [CrossRef]
- Pihlanto-Leppala, A.; Rokka, T.; Korhonen, H. Angiotensin I converting enzyme inhibitory peptides from bovine milk proteins. Int. Dairy J. 1998, 8, 325–331. [Google Scholar] [CrossRef]
- Parker, F.; Migliore-Samour, D.; Floch, F.; Zerial, A.; Werner, G.H.; Jollès, J.; Casaretto, M.; Zahn, H.; Jollès, P. Immunostimulating hexapeptide from human casein: Amino acid sequence, synthesis and biological properties. Eur. J. Biochem. 1984, 145, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Tesse, R.; Paglialunga, C.; Braccio, S.; Armenio, L. Adequacy and tolerance to ass’s milk in an Italian cohort of children with cow’s milk allergy. Ital. J. Pediatr. 2009, 35, 19. [Google Scholar] [CrossRef] [PubMed]
- Giovannini, M.; D’Auria, E.; Caffarelli, C.; Verduci, E.; Barberi, S.; Indinnimeo, L.; Iacono, I.D.; Martelli, A.; Riva, E.; Bernardini, R. Nutritional management and follow up of infants and children with food allergy: Italian Society of Pediatric Nutrition/Italian Society of Pediatric Allergy and Immunology Task Force Position Statement. Ital. J. Pediatr. 2014, 40, 1. [Google Scholar] [CrossRef] [PubMed]
Human | Bovine | Caprine | Mare | Swine | Ovine | |
---|---|---|---|---|---|---|
Calcium | 7.8 | 29.4 | 23.1 | 16.5 | 104.1 | 56.8 |
Sodium | 5.0 | 24.2 | 20.5 | 5.7 | 14.4 | 20.5 |
Potassium | 16.5 | 34.7 | 46.6 | 11.9 | 31.4 | 31.7 |
Magnesium | 1.1 | 5.1 | 5.0 | 1.6 | 9.6 | 9.0 |
Phosphorus | 2.5 | 20.9 | 15.6 | 6.7 | 51.2 | 39.7 |
Chloride | 6.2 | 30.2 | 34.2 | 6.6 | 28.7 | 17.0 |
Bovine | Mare | Human | |
---|---|---|---|
Zinc | 3960 | 1835 | 2150 |
Iron | 194 | 224 | 260 |
Copper | 52 | 155 | 314 |
Manganese | 21 | 14 | 7 |
Barium | 188 | 76 | 149 |
Aluminium | 98 | 123 | 125 |
Fat-Soluble Vitamins | Bovine | Caprine | Mare | Human | Ovine |
---|---|---|---|---|---|
A and β-carotene | 0.32–0.50 | 0.50 | 0.12 | 2.0 | 0.50 |
D3, Cholecalciferol | 0.003 | - | 0.003 | 0.001 | - |
E, α-tocopherol | 0.98–1.28 | - | 1.13 | 6.60 | - |
K | 0.011 | - | 0.020 | 0.002 | - |
Water-soluble vitamins | |||||
B1, thiamine | 0.37 | 0.49 | 0.30 | 0.15 | 0.48 |
B2, riboflavin | 1.80 | 1.50 | 0.30 | 0.38 | 2.30 |
B3, niacin | 0.90 | 3.20 | 1.40 | 1.70 | 4.50 |
B5, pantothenic acid | 3.50 | 3.10 | 3.0 | 2.70 | 3.50 |
B6, pyridoxine | 0.64 | 0.27 | 0.3 | 0.14 | 0.27 |
B7, biotin | 0.035 | 0.039 | - | 0.006 | 0.09 |
B9, folic acid | 0.18 | n.d | n.d | 0.16 | n.d |
B12, cobalamin | 0.004 | 0.70 | 0.003 | 0.5 | 0.007 |
C, ascorbic acid | 21.0 | 9.0 | 17.2 | 43.0 | 4.25 |
Milk | Water | Dry Matter | Fat | Proteins | Lactose | Ashes | Energy Value (kJ/kg) |
---|---|---|---|---|---|---|---|
Human | 87.57 | 12.43 | 3.38 | 1.64 | 6.69 | 0.22 | 2855.6 |
Donkey | 90.39 | 9.61 | 1.21 | 1.74 | 6.23 | 0.43 | 1939.4 |
Mare | 90.48 | 9.52 | 0.85 | 2.06 | 6.26 | 0.35 | 1877.8 |
Bovine | 87.62 | 12.38 | 3.46 | 3.43 | 4.71 | 0.78 | 2983.0 |
Caprine | 86.77 | 13.23 | 4.62 | 3.41 | 4.47 | 0.73 | 3399.5 |
Ovine | 80.48 | 19.52 | 7.54 | 6.17 | 4.89 | 0.92 | 5289.4 |
a Bovine (g/L) | b Donkey (g/L) | c Caprine (g/L) | a Human (g/L) | |
---|---|---|---|---|
Total protein content | 32.0 | 13–28 | 28–32 | 9–15 |
Total caseins | 27.2 | 6.6 | 25.0 | 5.6 |
Total whey proteins | 4.5 | 7.5 | 6.0 | 8.0 |
αs1-casein | 10.0 | n.d. | 10.0 | 0.8 |
αs2-casein | 3.7 | n.d. | 3.0 | - |
β-casein | 10.0 | n.d. | 11.0 | 4.0 |
κ-casein | 3.5 | trace | 4.0 | 1.0 |
α-lactalbumin | 1.2 | 1.80 | 6.0 | 1.9–2.6 |
β-lactoglobulin | 3.3 | 3.7 | 1.2 | - |
Lysozyme | trace | 1.0 | trace | 0.04–0.2 |
Lactoferrin | 0.1 | 0.08 | 0.02–0.2 | 1.7–2.0 |
Immunoglobulins | 1.0 | n.d. | 1.0 | 1.1 |
Albumin | 0.4 | n.d. | 0.5 | 0.4 |
Lactation Period | β-LG | α-La | Lysozyme |
---|---|---|---|
60 | n.d. | 0.81 | 1.34 |
90 | 4.13 | 1.97 | 0.94 |
120 | 3.60 | 1.87 | 1.03 |
160 | 3.69 | 1.74 | 0.82 |
190 | 3.60 | 1.63 | 0.76 |
Casein | Mr (kDa) | pI |
---|---|---|
β-casein (full-length) | 33.74 | 4.63 |
β-casein (full-length) | 33.54 | 4.72 |
β-casein (full-length) | 33.10 | 4.82 |
β-casein (full-length) | 33.54 | 4.92 |
β-casein (spliced) | 31.66 | 4.68 |
β-casein (spliced) | 31.48 | 4.80 |
β-casein (spliced) | 32.15 | 4.88 |
β-casein (spliced) | 31.15 | 4.95 |
αs1-casein (full-length) | 31.20 | 5.15 |
αs1-casein (full-length) | 31.14 | 5.23 |
αs1-casein (full-length) | 31.14 | 5.36 |
αs1-casein (spliced) | 28.26 | 5.08 |
αs1-casein (spliced) | 27.24 | 4.92 |
αs2-casein | 26.83 | n.d. |
αs2-casein | 26.91 | n.d. |
αs2-casein | 26.99 | n.d. |
Eleven κ-caseins | n.d. | n.d. |
Milk | Lysozyme (g/L) | Lactoperoxidase (mg/L) | Lactoferrin (g/L) |
---|---|---|---|
Human | 0.12 | 0.77 | 0.3–4.2 |
Donkey | 1.0 | 0.11 | 0.08 |
Bovine | Trace | 30–100 | 0.10 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vincenzetti, S.; Pucciarelli, S.; Polzonetti, V.; Polidori, P. Role of Proteins and of Some Bioactive Peptides on the Nutritional Quality of Donkey Milk and Their Impact on Human Health. Beverages 2017, 3, 34. https://doi.org/10.3390/beverages3030034
Vincenzetti S, Pucciarelli S, Polzonetti V, Polidori P. Role of Proteins and of Some Bioactive Peptides on the Nutritional Quality of Donkey Milk and Their Impact on Human Health. Beverages. 2017; 3(3):34. https://doi.org/10.3390/beverages3030034
Chicago/Turabian StyleVincenzetti, Silvia, Stefania Pucciarelli, Valeria Polzonetti, and Paolo Polidori. 2017. "Role of Proteins and of Some Bioactive Peptides on the Nutritional Quality of Donkey Milk and Their Impact on Human Health" Beverages 3, no. 3: 34. https://doi.org/10.3390/beverages3030034
APA StyleVincenzetti, S., Pucciarelli, S., Polzonetti, V., & Polidori, P. (2017). Role of Proteins and of Some Bioactive Peptides on the Nutritional Quality of Donkey Milk and Their Impact on Human Health. Beverages, 3(3), 34. https://doi.org/10.3390/beverages3030034