Sustainable Herbal Teas from Fig (Ficus carica L.) Waste Leaves: Volatile Fingerprinting, Sensory Descriptors, and Consumer Acceptability
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Drying Processes
2.2. Fig Tea Preparation
2.3. Total Phenolic Content and Antioxidant Capacity
2.4. Volatile Aroma Compound Analysis
2.5. Qualitative Descriptive Analysis
2.6. Consumers’ Acceptability Test
2.7. Statistical Analysis
3. Results and Discussions
3.1. Total Phenolic Content and Antioxidant Activity
3.2. Volatile Aroma Compounds
3.3. Sensory Analysis
3.3.1. Qualitative Descriptive Analysis
3.3.2. Consumers’ Acceptability
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Euromonitor International, 2023. Tea in Western Europe, February 2023. Available online: https://www.euromonitor.com/tea-in-western-europe/report (accessed on 8 November 2024).
- Global Herbal Tea Market Overview. Available online: https://www.marketresearchfuture.com/reports/herbal-tea-market-5420 (accessed on 9 January 2025).
- Poswal, F.S.; Russell, G.; Mackonochie, M.; MacLennan, E.; Adukwu, E.C.; Rolfe, V. Herbal teas and their health benefits: A scoping review. Plant Foods Hum. Nutr. 2019, 74, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Huda, H.S.A.; Majid, N.B.A.; Chen, Y.; Adnan, M.; Ashraf, S.A.; Roszko, M.; Sasidharan, S. Exploring the ancient roots and modern global brews of tea and herbal beverages: A comprehensive review of origins, types, health benefits, market dynamics, and future trends. Food Sci. Nut 2024, 12, 6938–6955. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Lopez, C.; Fraga-Corral, M.; Carpena, M.; García-Oliveira, P.; Echave, J.; Pereira, A.G.; Simal-Gandara, J. Agriculture waste valorisation as a source of antioxidant phenolic compounds within a circular and sustainable bioeconomy. Food Funct. 2020, 11, 4853–4877. [Google Scholar] [CrossRef]
- Pavlić, B.; Aćimović, M.; Sknepnek, A.; Miletić, D.; Mrkonjić, Ž.; Kljakić, A.C.; Teslić, N. Sustainable raw materials for efficient valorization and recovery of bioactive compounds. Ind. Crop Prod. 2023, 193, 116167. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, M.; Zhou, P.; Tian, M.; Zhou, J.; Zhang, L. Analysis of chemical composition in Chinese olive leaf tea by UHPLC-DAD-Q-TOF-MS/MS and GC–MS and its lipid-lowering effects on the obese mice induced by high-fat diet. Food Res. Int. 2020, 128, 108785. [Google Scholar] [CrossRef] [PubMed]
- Veberic, R.; Mikulic-Petkovsek, M. Phytochemical composition of common fig (Ficus carica L.) cultivars. In Nutritional Composition of Fruit Cultivars; Simmonds, M.S.J., Preedy, V.R., Eds.; Academic Press: London, UK, 2016; pp. 235–255. [Google Scholar] [CrossRef]
- Li, C.; Yu, M.; Li, S.; Yang, X.; Qiao, B.; Shi, S.; Zhao, C.; Fu, Y. Valorization of fig (Ficus carica L.) waste leaves: HPLC-QTOF-MS/MS-DPPH system for online screening and identification of antioxidant compounds. Plants 2021, 10, 2532. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, S.; Khali, M.; Benkhaled, A.; Benamirouche, K.; Baiti, I. Phenolic and flavonoid contents, antioxidant and antimicrobial activities of leaf extracts from ten Algerian Ficus carica L. varieties. Asian Pac. J. Trop. Med. 2016, 6, 239–245. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell B 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, C.S.H.; Zbiss, Y.; Roriz, C.L.; Dias, M.I.; Prieto, M.A.; Calhelha, R.C.; Alves, M.J.; Heleno, S.A.; da Cunha Mendes, V.; Carocho, M.; et al. Fig leaves (Ficus carica L.): Source of bioactive ingredients for industrial valorization. Processes 2023, 11, 1179. [Google Scholar] [CrossRef]
- Abe, T. Fig (Ficus carica L.) leaf tea suppresses allergy by acceleration disassembly of IgE-receptor complexes. Biosci. Biotech. Bioch 2020, 84, 1013–1022. [Google Scholar] [CrossRef]
- Abe, T.; Koyama, Y.; Nishimura, K.; Okiura, A.; Takahashi, T. Efficacy and safety of fig (Ficus carica L.) leaf tea in adults with mild atopic dermatitis: A double-blind, randomized, placebo-controlled preliminary trial. Nutrients 2022, 14, 4470. [Google Scholar] [CrossRef]
- Br Bangun, A.G.; Pardede, A.S.; Siagian, M. The Effect of Administration Fig Leaf Tea to Reduce Blood Glucose Levels in Diabetes Mellitus Patients. In Proceedings of the IEEE International Conference on Health, Instrumentation & Measurement, and Natural Sciences (InHeNce), Medan, Indonesia, 14–16 July 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Amanto, B.S.; Laily, F.N.; Nursiwi, A. Influence of withering time and leaf condition on physical and chemical characteristics of fig leaf tea. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Wuhan, China, 10–12 October 2019; IOP Publishing: Bristol, UK, 2019; Volume 633, p. 012042. [Google Scholar] [CrossRef]
- Iranza, T.A.; Suhaidi, I.; Nainggolan, R.J. The effect of the comparison of fig leaves with stevia leaves and drying time on the quality of fig leaf teabags. In Proceedings of the E3S Web of Conferences, Sanya, China, 28–29 August 2021; EDP Sciences: Les Ulis, France, 2021; Volume 332, p. 08003. [Google Scholar] [CrossRef]
- Thamkaew, G.; Sjöholm, I.; Galindo, F.G. A review of drying methods for improving the quality of dried herbs. Crit. Rev. Food Sci. Nutr. 2021, 61, 1763–1786. [Google Scholar] [CrossRef]
- Cincotta, F.; Merlino, M.; Condurso, C.; Miller, A.; Torre, M.; Verzera, A. Avocado leaf-waste management: Drying technology and quality of leaf herbal teas of different varieties cultivated in the Mediterranean area. Int. J. Food Sci. Tech. 2024, 59, 2516–2523. [Google Scholar] [CrossRef]
- Vinci, G.; D’Ascenzo, F.; Maddaloni, L.; Prencipe, S.A.; Tiradritti, M. The influence of green and black tea infusion parameters on total polyphenol content and antioxidant activity by ABTS and DPPH assays. Beverages 2022, 8, 18. [Google Scholar] [CrossRef]
- Saifullah, M.; McCullum, R.; McCluskey, A.; Van Vuong, Q. Effect of drying techniques and operating conditions on the retention of color, phenolics, and antioxidant properties in dried lemon scented tea tree (Leptospermum petersonii) leaves. J. Food Proc. Pres. 2021, 45, e15257. [Google Scholar] [CrossRef]
- Saifullah, M.; McCullum, R.; McCluskey, A.; Vuong, Q. Effects of different drying methods on extractable phenolic compounds and antioxidant properties from lemon myrtle dried leaves. Heliyon 2019, 5, e03044. [Google Scholar] [CrossRef]
- Ozcan, M.M.; Al Juhaimi, F.; Ahmed, I.A.M.; Uslu, N.; Babiker, E.E.; Ghafoor, K. Effect of microwave and oven drying processes on antioxidant activity, total phenol and phenolic compounds of kiwi and pepino fruits. J. Food Scie Tech. 2020, 57, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Gulati, A.; Rawat, R.; Singh, B.; Ravindranath, S.D. Application of microwave energy in the manufacture of enhanced-quality green tea. J. Agric. Food Chem. 2003, 51, 4764–4768. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.K.; Ahmad, K.; Hassan, S.; Imran, M.; Ahmad, N.; Xu, C. Effect of novel technologies on polyphenols during food processing. Innov. Food Sci. Emerg. Technol. 2018, 45, 361–381. [Google Scholar] [CrossRef]
- Cheng, L.; Li, X.; Tian, Y.; Wang, Q.; Li, X.; An, F.; Luo, Z.; Shang, P.; Liu, Z.; Huang, Q. Mechanisms of cooking methods on flavor formation of Tibetan pork. Food Chem. X 2023, 19, 100873. [Google Scholar] [CrossRef]
- Catalano, A.; Mariconda, A.; D’Amato, A.; Iacopetta, D.; Ceramella, J.; Marra, M.; Longo, P. Aldehydes: What We Should Know About Them. Organics 2024, 5, 395–428. [Google Scholar] [CrossRef]
- Payá, C.; López-Gresa, M.P.; Intrigliolo, D.S.; Rodrigo, I.; Bellés, J.M.; Lisón, P. (Z)-3-hexenyl butyrate induces stomata closure and ripening in vitis vinifera. Agronomy 2020, 10, 1122. [Google Scholar] [CrossRef]
- Tian, Z.; Dong, T.; Wang, S.; Sun, J.; Chen, H.; Zhang, N.; Wang, S. A comprehensive review on chemical composition, flavors, and the impacts of heat processing on the aroma formation of fresh carrot. Food Chem. X 2024, 22, 101201. [Google Scholar] [CrossRef]
- Havaux, M. β-Cyclocitral and derivatives: Emerging molecular signals serving multiple biological functions. Plant Physiol. Bioch 2020, 155, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Wang, X.; Li, D.; Meng, L.; Liu, C. Degradation of carotenoids in pumpkin (Cucurbita maxima L.) slices as influenced by microwave vacuum drying. Int. J. Food Prop. 2017, 20, 1479–1487. [Google Scholar] [CrossRef]
- Deng, X.; Huang, H.; Huang, S.; Yang, M.; Wu, J.; Ci, Z.; Zhang, D. Insight into the incredible effects of microwave heating: Driving changes in the structure, properties and functions of macromolecular nutrients in novel food. Front. Nutr. 2022, 9, 941527. [Google Scholar] [CrossRef]
Compound | LRI 1 | Odor | AD 2 | MWD 3 | ANOVA 4 |
---|---|---|---|---|---|
Alchools | |||||
Hexanol | 1345 | herbaceus | 0.62 ± 0.03 | - | ** |
(Z)-3-Hexen-1-ol | 1378 | green | 14.73 ± 1.27 | - | *** |
(Z)-2-Hexen-1-ol | 1397 | green | 0.99 ± 0.05 | 1.04 ± 0.07 | ns |
1-Octen-3-ol | 1438 | hearty | 0.24 ± 0.01 | 0.78 ± 0.04 | * |
2-Ethyl-hexanol | 1477 | citrus | 2.06 ± 0.14 | 1.87 ± 0.12 | ns |
1-Octanol | 1546 | waxy | 1.30 ± 0.07 | 0.92 ± 0.08 | * |
All | 19.93 ± 1.57 | 4.61 ± 0.31 | *** | ||
Aldehydes | |||||
2-Methyl-butanal | 914 | cocoa, musty | 0.25 ± 0.01 | 0.89 ± 0.04 | ** |
3-Methyl-butanal | 917 | aldehydic, fruity | 0.26 ± 0.02 | 0.81 ± 0.05 | ** |
Pentanal | 979 | fermented, fruity | 0.88 ± 0.04 | 9.12 ± 0.46 | *** |
Hexanal | 1078 | green | 2.60 ± 0.19 | 2.91 ± 0.13 | ns |
(Z)-2-Hexenal | 1198 | green | 0.37 ± 0.02 | 0.15 ± 0.01 | * |
(E)-2-Hexenal | 1216 | green | 25.27 ± 1.41 | 0.82 ± 0.07 | *** |
Octanal | 1279 | aldehydic, orange | 2.91 ± 0.24 | 7.35 ± 0.45 | ** |
(Z)-2-Heptenal | 1321 | - | 0.21 ± 0.02 | 0.99 ± 0.04 | * |
Nonanal | 1385 | orange peel | 12.96 ± 0.09 | 27.68 ± 1.11 | ** |
(E)-2-Octenal | 1426 | fatty | 0.29 ± 0.01 | 0.75 ± 0.03 | ** |
Decanal | 1492 | aldehydic | 4.07 ± 0.23 | 3.87 ± 0.31 | ns |
Benzaldehyde | 1529 | fruity, almond | 0.20 ± 0.02 | 0.50 ± 0.03 | * |
(E)-2-Nonenal | 1534 | fatty | 0.63 ± 0.04 | 1.14 ± 0.09 | * |
(2E,6Z)-Nonadienal | 1585 | green | - | 0.61 ± 0.04 | * |
All | 50.90 ± 2.34 | 57.58 ± 2.86 | |||
Esters | |||||
(Z)-3-Hexen-1-ol acetate | 1306 | green, slighty floreal | 1.90 ± 0.08 | 0.50 ± 0.02 | ** |
(3Z)-Hexenyl propanoate | 1373 | green | 0.33 ± 0.02 | - | * |
(3Z)-Hexenyl butyrate | 1450 | green, fruity, apple, brandy | 4.01 ± 0.24 | - | ** |
All | 6.24 ± 0.34 | 0.50 ± 0.02 | ** | ||
Furans | |||||
2-Methyl-furan | 899 | chocolate | 0.58 ± 0.03 | 0.96 ± 0.04 | * |
2-Ethyl-furan | 951 | malty | 0.41 ± 0.02 | 0.43 ± 0.03 | ns |
All | 0.99 ± 0.05 | 1.39 ± 0.07 | * | ||
Ketones | |||||
3-Heptanone | 1144 | green | 0.15 ± 0.01 | 0.11 ± 0.02 | ns |
2,5-Octanedione | 1313 | - | 0.68 ± 0.04 | 3.26 ± 0.21 | ** |
6-Methyl-5-hepten-2-one | 1331 | citrus, fruity | 3.47 ± 0.14 | 10.11 ± 0.86 | ** |
All | 4.31 ± 0.19 | 13.49 ± 1.09 | *** | ||
Terpenes | |||||
α-Terpinene | 1157 | woody, citrus | 0.04 ± 0.02 | - | ns |
Limonene | 1176 | citrus | 3.19 ± 0.14 | 3.90 ± 0.29 | ns |
Eucalyptol | 1194 | eucalyptus | 0.28 ± 0.03 | 0.33 ± 0.02 | ns |
γ-Terpinene | 1225 | terpenic | 0.11 ± 0.01 | 0.05 ± 0.03 | ns |
Linalool | 1534 | floral | - | 0.36 ± 0.04 | * |
(E)-Caryophyllene | 1596 | spicy, clove | 1.42 ± 0.09 | - | ** |
β-Cyclocitral | 1624 | hay-like, mild floral | 6.89 ± 0.15 | 13.37 ± 0.84 | ** |
Estragole | 1671 | anise | 5.26 ± 0.42 | 3.70 ± 0.18 | * |
Nerylacetone | 1864 | fatty | 0.45 ± 0.05 | 0.73 ± 0.04 | * |
All | 17.53 ± 0.91 | 22.14 ± 1.44 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cincotta, F.; Torre, M.; Merlino, M.; Condurso, C.; Buda, M.; Verzera, A. Sustainable Herbal Teas from Fig (Ficus carica L.) Waste Leaves: Volatile Fingerprinting, Sensory Descriptors, and Consumer Acceptability. Beverages 2025, 11, 16. https://doi.org/10.3390/beverages11010016
Cincotta F, Torre M, Merlino M, Condurso C, Buda M, Verzera A. Sustainable Herbal Teas from Fig (Ficus carica L.) Waste Leaves: Volatile Fingerprinting, Sensory Descriptors, and Consumer Acceptability. Beverages. 2025; 11(1):16. https://doi.org/10.3390/beverages11010016
Chicago/Turabian StyleCincotta, Fabrizio, Marco Torre, Maria Merlino, Concetta Condurso, Martina Buda, and Antonella Verzera. 2025. "Sustainable Herbal Teas from Fig (Ficus carica L.) Waste Leaves: Volatile Fingerprinting, Sensory Descriptors, and Consumer Acceptability" Beverages 11, no. 1: 16. https://doi.org/10.3390/beverages11010016
APA StyleCincotta, F., Torre, M., Merlino, M., Condurso, C., Buda, M., & Verzera, A. (2025). Sustainable Herbal Teas from Fig (Ficus carica L.) Waste Leaves: Volatile Fingerprinting, Sensory Descriptors, and Consumer Acceptability. Beverages, 11(1), 16. https://doi.org/10.3390/beverages11010016