Effect of UV-C Radiation and Thermal Treatment on Volatile Compounds, Physicochemical, Microbiological and Phytochemical Parameters on Apple Juice (Malus domestica) with Raspberry (Rubus idaleus L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Apple-Raspberry Juice Elaboration
2.3. Treatments and Measurements
2.3.1. Ultraviolet Radiation Treatment
2.3.2. Thermal Treatment
2.3.3. Combined Treatment (Ultraviolet Radiation and Moderate Heat Treatment)
2.4. Storage
2.5. Physicochemical Analysis and Optical Properties
2.6. Analysis of Volatile Compounds
2.7. Polyphenols, Flavonoids, and Antioxidant Activity Analysis
2.8. Microbiological Analysis
2.9. Statistic Analysis
3. Results y Discussion
3.1. Physicochemical Analysis and Optical Properties
3.2. Physicochemical Parameters
3.3. Analysis of Volatile Compounds
3.4. Content of total Polyphenols (CTP), Total Flavonoids (TF), Total Antioxidant Activity (TAA)
3.5. Microbiological Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magrach, A.; Sanz, M.J. Environmental and social consequences of the increase in the demand of ‘superfoods’ world-wide. People Nat. 2020, 2, 267–278. [Google Scholar] [CrossRef]
- Zielinski, A.; Haminiuk, C.; Nunes, C.; Schnitzler, E.; van Ruth, S.; Granato, D. Chemical composition, sensory properties, provenance, and bioactivity of fruit juices as assessed by chemometrics: A critical review and guideline. Compr. Rev. Food Sci. Food Saf. 2014, 13, 300–316. [Google Scholar] [CrossRef]
- Molva, C.; Baysal, A.H. Effects of pomegranate and pomegranate-apple blend juices on the growth characteristics of Alicyclobacillus acidoterrestris DSM 3922 type strain vegetative cells and spores. Int. J. Food Microbiol. 2015, 200, 52–56. [Google Scholar] [CrossRef]
- Alongi, M.; Verardo, G.; Gorassini, A.; Lemos, M.A.; Hungerford, G.; Cortella, G.; Anese, M. Phenolic content and potential bioactivity of apple juice as affected by thermal and ultrasound pasteurization. Food Funct. 2019, 10, 7366–7377. [Google Scholar] [CrossRef]
- Pires, T.C.; Dias, M.I.; Barros, L.; Alves, M.J.; Oliveira, M.B.P.; Santos-Buelga, C.; Ferreira, I.C. Antioxidant and antimicrobial properties of dried Portuguese apple variety (Malus domestica Borkh. cv Bravo de Esmolfe). Food Chem. 2018, 240, 701–706. [Google Scholar] [CrossRef]
- Aprea, E.; Biasioli, F.; Gasperi, F. Volatile compounds of raspberry fruit: From analytical methods to biological role and sensory impact. Molecules 2015, 20, 2445–2474. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.Y.; Ren, J.N.; Dong, M.; Tai, Y.N.; Yang, S.Z.; Shao, J.H.; Fan, G. Changes in the Physicochemical Characteristics, Free and Bound Aroma Compounds in the Raspberry Juice during Storage. J. Food Process. Preserv. 2015, 39, 2834–2843. [Google Scholar] [CrossRef]
- Jiménez-Garcia, S.N.; Guevara-Gonzalez, R.G.; Miranda-Lopez, R.; Feregrino-Perez, A.A.; Torres-Pacheco, I.; Vazquez-Cruz, M.A. Functional properties and quality characteristics of bioactive compounds in berries: Biochemistry, biotechnology, and genomics. Food Res. Int. 2013, 54, 1195–1207. [Google Scholar] [CrossRef]
- Nile, S.H.; Park, S.W. Edible berries: Bive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef]
- Rao, A.V.; Snyder, D.M. Raspberries and Human Health: A Review. J. Agric. Food Chem. 2010, 58, 3871–3883. [Google Scholar] [CrossRef]
- Szajdek, A.; Borowska, E.J. Bioactive compounds and health-promoting properties of berry fruits: A review. Plant Foods Hum. Nutr. 2008, 63, 147–156. [Google Scholar] [CrossRef]
- Burleigh, A.E.; Benck, S.M.; McAchran, S.E.; Reed, J.D.; Krueger, C.G.; Hopkins, W.J. Consumption of sweetened, dried cranberries may reduce urinary tract infection incidence in susceptible women a modified observational study. J. Nutr. 2013, 12, 1–7. [Google Scholar] [CrossRef]
- Giampieri, F.; Forbes-Hernandez, T.Y.; Gasparrini, M.; Alvarez-Suarez, J.M.; Afrin, S.; Bompadre, S.; Battino, M. Strawberry as a health promoter: An evidence based review. Food Funct. 2015, 6, 1386–1398. [Google Scholar] [CrossRef]
- Jennings, A.; Welch, A.A.; Spector, T.; Macgregor, A.; Cassidy, A. Intakes of anthocyaninis and flavones are associated with biomarkers of insulin resistance and inflammation in women. J. Nutr. 2014, 144, 202–208. [Google Scholar] [CrossRef]
- Johnson, S.; HArjmandi, B. Evidence for anti-cancer properties of blueberries. A mini-review. Anticancer. Agents Med. Chem. 2013, 13, 1138–1142. [Google Scholar] [CrossRef]
- Törrönen, R.; Kolehmainen, M.; Sarkkinen, E.; Poutanen, K.; Mykkänen, H.; Niskanen, L. Berries reduce postprandial insulin responses to wheat and rye breads in healthy women. J. Nutr. 2013, 143, 430–436. [Google Scholar] [CrossRef]
- Kaur, C.; Kapoor, H.C. Antioxidants in fruits and vegetables-the millennium’s health. Int. J. Food Sci. Technol. 2001, 36, 703–725. [Google Scholar] [CrossRef]
- Ghafoor, K.; Choi, Y.H. Polyphenoloxidase deactivation in juice from “campbell early” grapes by heating under vacuum pressure. J. Food Process Eng. 2012, 35, 391–402. [Google Scholar] [CrossRef]
- Caminiti, I.M.; Noci, F.; Muñoz, A.; Whyte, P.; Morgan, D.J.; Cronin, D.A.; Lyng, J.G. Impact of selected combinations of non-thermal processing technologies on the quality of an apple and cranberry juice blend. Food Chem. 2011, 124, 1387–1392. [Google Scholar] [CrossRef]
- Grobelna AKalisz, S.; Kieliszek, M. The effect of the addition of blue honeysuckle berry juice to apple juice on the selected quality characteristics, anthocyanin stability, and antioxidant properties. Biomolecules 2019, 9, 744. [Google Scholar] [CrossRef]
- Ohwesiri, M.; Kiin-Kabari, D.; Ebere, C. Quality characteristics of orange/pineapple fruit juice blends. Am. J. Food Sci. Technol. 2016, 4, 43–47. [Google Scholar] [CrossRef]
- Roobab, U.; Aadil, R.; Madni, G.; Bekhit, A.D. The Impact of Nonthermal Technologies on the Microbiological Quality of Juices: A Review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 437–457. [Google Scholar] [CrossRef]
- Rommel, A.; Heatherbell, D.A.; Wrolstad, R.E. Red Raspberry Juice and Wine: Effect of Processing and Storage on Anthocyanin Pigment Composition, Color and Appearance. J. Food Sci. 1990, 55, 1011–1017. [Google Scholar] [CrossRef]
- Petruzzi, L.; Campaniello, D.; Speranza, B.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Thermal treatments for fruit and vegetable juices and beverages: A literature overview. Compr. Rev. Food Sci. Food Saf. 2017, 16, 668–691. [Google Scholar] [CrossRef]
- El-Nemr, S.E.; Ismail, I.A.; Askar, A. Aroma changes in mango juice during processing and storage. Food Chem. 1988, 30, 269–275. [Google Scholar] [CrossRef]
- Perez-Cacho, P.R.; Rouseff, R. Processing and storage effects on orange juice aroma: A review. J. Agric. Food Chem. 2008, 56, 9785–9796. [Google Scholar] [CrossRef]
- Zhang, W.; Lao, F.; Bi, S.; Pan, X.; Pang, X.; Hu, X.; Wu, J. Insights into the major aroma-active compounds in clear red raspberry juice (Rubus idaeus L. cv. Heritage) by molecular sensory science approaches. Food Chem. 2021, 336, 127721. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Petruzzi, L.; Perricone, M.; Speranza, B.; Campaniello, D.; Sinigaglia, M.; Corbo, M.R. Nonthermal technologies for fruit and vegetable juices and beverages: Overview and advances. Compr. Rev. Food Sci. Food Saf. 2018, 17, 2–62. [Google Scholar] [CrossRef]
- Lopez-Malo, A.; Palou, E. Ultraviolet light and food preservation. In Novel Food Processing Technologies; Barbosa-Cánova, G.V., Tapia, M.S., Cano, M.P., Eds.; CRC Press, Inc.: Boca Raton, FL, USA, 2005; pp. 1357–1372. [Google Scholar]
- Müller, A.; Stahl, M.R.; Graef, V.; Franz, C.M.; Huch, M. UV-C treatment of juices to inactivate microorganisms using Dean vortex technology. J. Food Eng. 2011, 107, 268–275. [Google Scholar] [CrossRef]
- La Cava, E.L.M.; Sgroppo, S.C. Combined effect of UV-C light and mild heat on microbial quality and antioxidant capacity of grapefruit juice by flow continuous reactor. Food Bioprocess Technol. 2019, 12, 645–653. [Google Scholar] [CrossRef]
- Quintero-Ramos, A.; Churey, J.J.; Hartman, P.; Barnard, J.; Worobo, R.W. Modeling of Escherichia coli inactivation by UV irradiation at different pH values in apple cider. J. Food Prot. 2004, 67, 1153–1156. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, M.Z.; Quintero-Ramos, A.; Meléndez-Pizarro, C.O.; Meza-Velázquez, J.A.; Jiménez-Castro, J.A.; Sánchez-Madrigal, M.Á.; Ruiz Gutiérrez, M.G.; Espinoza-Hicks, J.C. Microbial and physicochemical properties of UV-C processed Aloe vera gel blends at different pHs using a continuous flow UV system. Rev. Mex. Ing. Quim. 2020, 19, 175–188. [Google Scholar] [CrossRef]
- Keyser, M.; Műller, I.A.; Cilliers, F.P.; Nel, W.; Gouws, P.A. Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innov. Food Sci. Emerg. Technol. 2008, 9, 348–354. [Google Scholar] [CrossRef]
- Hakguder Taze, B.; Unluturk, S.; Buzrul, S.; Alpas, H. The impact of UV-C irradiation on spoilage microorganisms and colour of orange juice. J. Food Sci. Technol. 2015, 52, 1000–1007. [Google Scholar] [CrossRef]
- Tran, M.T.T.; Farid, M. Ultraviolet treatment of orage juice. Innov. Food Sci. Emerg Technol. 2004, 5, 495–502. [Google Scholar] [CrossRef]
- Bazaraa, W.A.; Eissa, H.A.; Helmy, S.A.; Ramadan, M.T.; Aboelhaggag, R.M. Effect of ultra violet (UV-C) and cold storage on orange juice quality. Food Sci. Technol. Int. 2023, 29, 757–764. [Google Scholar] [CrossRef]
- Sauceda-Gálvez, J.N.; Codina-Torrella, I.; Martinez-Garcia, M.; Hernández-Herrero, M.M.; Gervilla, R.; Roig-Sagués, A.X. Combined effects of ultra-high pressure homogenization and short-wave ultraviolet radiation on the properties of cloudy apple juice. LWT 2021, 136, 110286. [Google Scholar] [CrossRef]
- Baysal, A.H. Short-wave ultraviolet light inactivation of pathogens in fruit juices. In Fruit Juices; Academic Press: Cambridge, MA, USA, 2018; pp. 463–510. [Google Scholar]
- Gopisetty, V.V.S.; Patras, A.; Kilonzo-Nthenge, A.; Yannam, S.; Bansode, R.R.; Sasges, M.; Burns, S.M.; Vergner, M.J.; Pan, C.; Xiao, H. Impact of UV-C irradiation on the quality, safety, and cytotoxicity of cranberry-flavored water using a novel continuous flow UV system. LWT 2018, 95, 230–239. [Google Scholar] [CrossRef]
- Aguilar, K.; Ibarz, R.; Garvín, A.; Ibarz, A. Effect of UV–Vis irradiation on enzymatic activities and the physicochemical properties of nectarine juices from different varieties. LWT—Food Sci. Technol. 2016, 65, 969–977. [Google Scholar] [CrossRef]
- Jeong, Y.J.; Ha, J.W. Simultaneous effects of UV-a and UV-b irradiation on the survival of Escherichia coli O157: H7, Salmonella typhimurium, and Listeria monocytogenes in buffer solution and apple juice. J. Food Prot. 2019, 82, 2065–2070. [Google Scholar] [CrossRef] [PubMed]
- Koutchma, T.A. Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food Bioprocess Technol. 2009, 2, 138–155. [Google Scholar] [CrossRef]
- Hernández-Carranza, P.; Peralta-Pérez, A.; Avila-Sosa, R.; Ruiz-López, I.I.; Benitez-Rojas, A.C.; Ochoa-Velasco, C.E. Effect of ultraviolet-C light and mild thermal treatment on the storage life of orange juice. Czech J. Food Sci. 2021, 39, 106–112. [Google Scholar] [CrossRef]
- Fenoglio, D.; Ferrario, M.; Schenk, M.; Guerrero, S. Effect of pilot-scale UV-C light treatment assisted by mild heat on E. coli, L. plantarum and S. cerevisiae inactivation in clear and turbid fruit juices. Storage study of surviving populations. Int. J. Food Microbiol. 2020, 332, 108767. [Google Scholar] [CrossRef]
- Gouma, M.; Álvarez, I.; Condón, S.; Gayán, E. Pasteurization of carrot juice by combining UV-C and mild heat: Impact on shelf-life and quality compared to conventional thermal treatment. Innov. Food Sci. Emerg. Technol. 2020, 64, 102362. [Google Scholar] [CrossRef]
- Riganakos, K.A.; Karabagias, I.K.; Gertzou, I.; Stahl, M. Comparison of UV-C and thermal treatments for the preservation of carrot juice. Innov. Food Sci. Emerg. Technol. 2017, 42, 165–172. [Google Scholar] [CrossRef]
- Suthiluk, P.; Chuensombat, N.; Setha, S.; Naradisorn, M. Synergistic effect of UV-C irradiation and high-pressure processing in reducing microbial load in “Nanglae” pineapple juice compared to conventional heat treatment. Front. Sustain. Food Syst. 2023, 7, 979943. [Google Scholar] [CrossRef]
- Tchonkouang, R.D.; Lima, A.R.; Quintino, A.C.; Cristofoli, N.L.; Vieira, M.C. UV-C Light: A Promising Preservation Technology for Vegetable-Based Nonsolid Food Products. Foods 2023, 12, 3227. [Google Scholar] [CrossRef]
- Abdul Karim Shah, N.N.; Shamsudin, R.; Abdul Rahman, R.; Adzahan, N.M. Fruit Juice Production Using Ultraviolet Pasteurization: A Review. Beverages 2016, 2, 22. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1996. [Google Scholar]
- Koutchma, T.; Keller, S.; Chirtel, S.; Paris, B. Ultraviolet disinfection of juice products in laminar and turbulent flow reactors. Innov. Food Sci. Emerg. Technol. 2004, 5, 179–189. [Google Scholar] [CrossRef]
- Estrada-Beltran, A.; Salas-Salazar, N.A.; Parra-Quezada, R.A.; Gonzalez-Franco, A.C.; Soto-Caballero, M.C.; Rodriguez-Roque, M.J.; Flores-Cordova, M.A.; Chavez-Martinez, A. Effect of conventional and organic fertilizers on volatile compounds of raspberry fruit. Not. Bot. Horti. Agrobo. 2020, 48, 862–870. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth. Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Julián-Loaeza, A.P.; Santos-Sánchez, N.F.; Valadez-Blanco, R.; Sánchez-Guzmán, B.S.; Salas-Coronado, R. Chemical composition, color, and antioxidant activity of three varieties of Annona diversifolia Safford fruits. Ind. Crop. Prod. 2011, 34, 1262–1268. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- APHA. Compendium of Methods for the Microbiological Examination of Foods; American Public Health Association: Washington, DC, USA, 1992. [Google Scholar]
- Sánchez-Moreno, C.; Plaza, L.; de Ancos, B.; Cano, M.P. Nutritional characterization of commercial traditional pasteurized tomato juices: Carotenoids, vitamin C and radical scavenging capacity. Food Chem. 2006, 98, 749–756. [Google Scholar] [CrossRef]
- Feng, M.; Ghafoor, K.; Seo, B.; Yang, K.; Park, J. Effects of ultraviolet-C treatment in Teflon®-coli on microbial populations and physico-chemical characteristics of watermelon juice. Innov. Food Sci. Emerg. Technol. 2013, 19, 133–139. [Google Scholar] [CrossRef]
- Unluturk, S.; Atilgan, M.R. Microbial safety and shelf life of UV-C treated freshly squeezed white grape juice. J. Food Sci. 2015, 80, M1831–M1841. [Google Scholar] [CrossRef] [PubMed]
- Chia, S.L.; Rosnah, S.; Noranizan, M.A.; Ramli, W.W. The effect of storage on the quality attributes of ultraviolet-irradiated and thermally pasteurised pineapple juices. Int. Food Res. J. 2012, 19, 1001. Available online: http://agris.upm.edu.my:8080/dspace/handle/0/12748 (accessed on 2 November 2023).
- Rivas, A.; Rodrigo, D.; Martinez, A.; Barbosa-Cánovas, G.V.; Rodrigo, M. Effect of PEF and heat pasteurization on the physical-chemical characteristics of blended orange and carrot juice. J. Food Sci. Technol. 2006, 39, 1163–1170. [Google Scholar] [CrossRef]
- Nachay, K. A new color palette emerges. Food Technol. 2009, 63, 50–62. Available online: www.ift.org/news-and-publications/food-technology-magazine/issues/2009/april/features/a-new-color (accessed on 14 July 2023).
- Withy, L.M.; Nguyen, T.T.; Wrolstad, R.E.; Heatherbell, D.A. Storage changes in anthocyanin content of red raspberry juice concentrate. J. Food Sci. 1993, 58, 190–192. [Google Scholar] [CrossRef]
- Shamsudin, R.; Ling, C.S.; Adzahan, N.M.; Wan Daud, W.R. Rheological properties of ultraviolet-irradiated and thermally pasteurized Yankee pineapple juice. J. Food Eng. 2013, 116, 548–553. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, I.; Oms-Oliu, G.; Soliva-Fortuny, R.; Martin-Belloso, O. Changes in quality attributes throughout storage of strawberry juice processed by high-intensity pulsed electric fields or heat treatments. LWT—Food Sci. Technol. 2009, 42, 813–818. [Google Scholar] [CrossRef]
- Ibarz, A.; Pagán, J.; Panadés, R.; Garza, S. Photochemical destruction of color compounds in fruit juices. J. Food Eng. 2005, 69, 155–160. [Google Scholar] [CrossRef]
- Ramirez-Navas, J.S.; de Stouvenel, A.R. Characterization of Colombian quesillo cheese by spectrocolorimetry. Vitae 2012, 19, 178–185. [Google Scholar] [CrossRef]
- Leffingwell, J.C.; Leffingwell, D. GRAS flavor chemicals-detection thresholds. Perfum. Flavor. 1991, 16, 1–19. [Google Scholar]
- Larsen, M.; Poll, L. Odour threshold of some important aroma compounds in raspberries. Z. Lebensm. Unters. Forsch. 1990, 191, 129–131. [Google Scholar] [CrossRef]
- Dimick, P.S.; Hoskin, J.C.; Acree, T.E. Review of apple flavor state of the art. Crit. Rev. Food Sci. Nutr. 1983, 18, 387–409. [Google Scholar] [CrossRef]
- Alothman, M.; Bhat, R.; Karim, A.A. Effects of radiation processing on phytochemicals and antioxidants in plant produce. Trends Food Sci. Technol. 2009, 20, 201–212. [Google Scholar] [CrossRef]
- Swanson, K.M.J. Microbiology and Preservation. In Processed Apple Products; Downing, D.L., Ed.; Springer: New York, NY, USA, 1989; pp. 343–363. [Google Scholar] [CrossRef]
- Ferrario, M.; Schenk, M.; Carrillo, M.G.; Guerrero, S. Development and quality assesment of a turbid carrot-orange juice blend processed by UV-C light assisted by mild heat and addition of Yerba Mate (Ilex paraguariensis) extract. Food Chem. 2018, 269, 567–576. [Google Scholar] [CrossRef]
- Gouma, M.; Gayán, E.; Raso, J.; Condón, S.; Álvarez, I. Inactivation of spoilage yeasts in apple juice by UV-C light and in combination with mild heat. Innov. Food Sci. Emerg. Technol. 2015, 32, 146–155. [Google Scholar] [CrossRef]
- Kaya, Z.; Unluturk, S. Pasteurization of verjuice by UV-C irradiation and mild heat treatment. J. Food Process Eng. 2019, 42, 13131. [Google Scholar] [CrossRef]
Parameters | Treatment | Storage Time (Days) | ||||
---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | ||
L* | Control | 33.27 ± 0.05 aA | 33.07 ± 0.22 aA | 33.26 ± 0.46 aA | 33.41 ± 0.36 aAB | 34.46 ± 0.16 aB |
Ultraviolet | 32.44 ± 0.17 bA | 32.29 ± 0.19 aA | 32.34 ± 0.05 aA | 32.51 ± 0.17 aA | 33.43 ± 1.01 aA | |
Thermal | 32.30 ± 0.12 bA | 32.32 ± 0.37 aA | 32.72 ± 0.28 aA | 32.91 ± 0.11 aA | 32.96 ± 0.16 aA | |
Combined | 32.24 ± 0.10 bA | 32.44 ± 0.19 aA | 32.29 ± 0.33 aA | 32.72 ± 0.51 aA | 32.98 ± 0.06 aA | |
a* | Control | 7.62 ± 0.01 aA | 7.40 ± 0.07 aA | 7.57 ± 0.02 aA | 6.75 ± 0.74 aA | 6.43 ± 0.27 aA |
Ultraviolet | 7.58 ± 0.16 aA | 7.60 ± 0.05 aA | 7.55 ± 0.14 aA | 6.85 ± 0.27 aA | 6.54 ± 0.42 aA | |
Thermal | 6.44 ± 0.06 bA | 6.39 ± 0.10 bA | 6.24 ± 0.19 bA | 6.22 ± 0.39 aA | 6.28 ± 0.02 aA | |
Combined | 6.78 ± 0.03 bA | 6.58 ± 0.10 bA | 6.51 ± 0.21 bA | 6.51 ± 0.02 aA | 6.53 ± 0.55 aA | |
b* | Control | 4.22 ± 0.00 aA | 4.43 ± 0.09 aB | 5.54 ± 0.02 aC | 5.55 ± 0.01 aC | 5.57 ± 0.01 aC |
Ultraviolet | 4.17 ± 0.19 aA | 4.51 ± 0.05 aA | 4.66 ± 0.08 bA | 4.75 ± 0.56 bA | 4.81 ± 0.18 bA | |
Thermal | 4.07 ± 0.01 aA | 4.37 ± 0.16 aA | 4.72 ± 0.04 bB | 4.87 ± 0.07 bB | 5.43 ± 0.01 aC | |
Combined | 4.12 ± 0.08 aA | 4.69 ± 0.09 aB | 4.74 ± 0.06 bB | 5.19 ± 0.04 bC | 5.25 ± 0.01 aC | |
ΔΕ | Control | - | - | - | - | - |
Ultraviolet | 0.85 ± 0.14 aA | 1.03 ± 0.20 abA | 1.04 ± 0.01 aA | 1.27 ± 0.30 aA | 1.43 ± 0.51 aA | |
Thermal | 1.54 ± 0.03 bA | 1.57 ± 0.32 bA | 1.59 ± 0.08 aA | 1.59 ± 0.35 aA | 1.84 ± 0.03 aA | |
Combined | 1.33 ± 0.09 bA | 1.41 ± 0.16 bA | 1.58 ± 0.37 aA | 1.61 ± 0.21 aA | 1.62 ± 0.39 aA |
Aroma Compounds | Retention Time (min) | Diagnostic Ions (m/z) | Control | Thermal | Ultraviolet | Combined |
---|---|---|---|---|---|---|
Hexanal | 18.17 | 56 (999) 44 (889) 41 (810) 57 (668) 43 (569) | 17.16 ± 4.89 a | 23.91 ± 4.47 a | 8.59 ± 0.48 a | 12.97 ± 3.93 a |
2-Methylbutyl acetate | 18.69 | 43 (999) 70 (289) 55 (143) 41 (128) 29 (117) | 6.58 ± 2.65 a | 7.37 ± 0.99 a | 16.25 ± 1.17 b | 2.64 ± 0.73 a |
Butan-2-yl nitrite | 23.70 | 43 (999) 57 (307) 41 (200) 45 (155) 44 (107) | 3.85 ± 1.16 a | 1.38 ± 0.68 a | n.d. | 1.60 ± 0.62 a |
Hexyl acetate | 25.49 | 43 (999) 56 (308) 55 (180) 61 (178) 42 (161) | 4.21 ± 0.93 a | n.d. | n.d. | 1.35 ± 0.53 b |
1-Hexanol | 28.50 | 56 (999) 43 (831) 41 (590) 55 (569) 42 (534) | 8.26 ± 3.69 a | 11.44 ± 0.24 a | 10.29 ± 2.22 a | 5.86 ± 1.74 a |
Nonanal | 29.85 | 41 (999) 57 (997) 43 (695) 29 (692) 56 (607) | n.d. | 1.57 ± 0.28 a | 4.28 ± 1.62 a | 1.47 ± 0.02 a |
(1R, 2S) 2-Methylcyclopentanol | 29.97 | 57 (999) 41 (490) 44 (380) 82 (330) 43 (320) | 7.52 ± 3.93 a | 3.88 ± 2.05 a | 4.53 ± 1.30 a | n.d. |
2-Methylhept-6-en-1-ol | 31.72 | 95 (999) 41 (566) 69 (421) 45 (362) 55 (268) | 2.50 ± 2.15 a | 1.10 ± 0.52 a | n.d. | n.d. |
2-Ethylhexan-1-ol | 32.47 | 57 (999) 41 (454) 55 (366) 43 (287) 56 (271) | n.d. | 2.40 ± 1.29 a | 3.97 ± 0.34 a | n.d. |
Decanal | 32.81 | 43 (999) 41 (807) 57 (621) 55 (618) 44 (539) | n.d. | 2.43 ± 0.06 a | n.d. | 1.47 ± 0.35 b |
Linalool | 33.93 | 71 (999) 93 (610) 41 (571) 43 (486) 69 (486) | 2.29 ± 1.24 a | 1.43 ± 0.02 a | 3.58 ± 0.71 a | 1.38 ± 0.22 a |
L-α-Terpineol | 37.82 | 59 (999) 93 (580) 121 (470) 136 (430) 81 (370) | n.d. | 0.43 ± 0.43 a | n.d. | 1.55 ± 0.55 a |
Geranyl vinyl ether | 41.03 | 69 (999) 41 (667) 68 (265) 43 (209) 67 (147) | n.d. | 1.37 ± 0.09 a | 4.51 ± 0.79 b | n.d. |
α-Ionone | 41.46 | 121 (999) 93 (770) 43 (760) 136 (620) 77 (333) | 4.63 ± 2.13 a | 3.01 ± 0.42 a | 6.83 ± 3.04 a | 5.99 ± 0.89 a |
(3-Hydroxy-2,4,4-trimethylpentyl) 2-methylpropanoate | 41.63 | 71 (999) 56 (793) 89 (722) 43 (600) 41 (221) | 4.53 ± 2.23 a | 8.85 ± 0.24 ab | 4.97 ± 0.06 a | 13.69 ± 2.68 a |
2.2.4-Trimethyl-1,3-pentanediol diisoutyrate | 42.10 | 71 (999) 43 (667) 56 (199) 41 (168) 83 (131) | 4.46 ± 0.63 ab | 7.79 ± 0.92 ac | 3.49 ± 0.25 b | 9.08 ± 1.22 c |
α-Ionol | 42.25 | 95 (999) 43 (656) 138 (400) 41 (158) 96 (135) | 3.57 ± 0.71 a | 2.81 ± 0.16 a | 3.76 ± 0.40 a | 5.21 ± 0.96 a |
β-Ionone | 43.35 | 177 (999) 43 (408) 91 (173) 135 (153) 178 (134) | 5.89 ± 3.63 a | 3.67 ± 0.27 a | 5.23 ± 2.34 a | 3.54 ± 1.77 a |
1-Dodecanol | 43.58 | 55 (999) 43 (901) 69 (858) 41 (854) 56 (770) | 0.72 ± 1.02 a | 1.24 ± 1.24 a | 3.88 ± 1.19 a | 5.16 ± 0.44 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estrada-Beltrán, A.E.; Salas-Salazar, N.A.; Quintero-Ramos, A.; Parra-Quezada, R.A.; Soto-Caballero, M.C.; Rodríguez-Roque, M.J.; Chávez-Martínez, A.; Flores-Cordova, M.A. Effect of UV-C Radiation and Thermal Treatment on Volatile Compounds, Physicochemical, Microbiological and Phytochemical Parameters on Apple Juice (Malus domestica) with Raspberry (Rubus idaleus L.). Beverages 2024, 10, 7. https://doi.org/10.3390/beverages10010007
Estrada-Beltrán AE, Salas-Salazar NA, Quintero-Ramos A, Parra-Quezada RA, Soto-Caballero MC, Rodríguez-Roque MJ, Chávez-Martínez A, Flores-Cordova MA. Effect of UV-C Radiation and Thermal Treatment on Volatile Compounds, Physicochemical, Microbiological and Phytochemical Parameters on Apple Juice (Malus domestica) with Raspberry (Rubus idaleus L.). Beverages. 2024; 10(1):7. https://doi.org/10.3390/beverages10010007
Chicago/Turabian StyleEstrada-Beltrán, Aztrid E., Nora A. Salas-Salazar, Armando Quintero-Ramos, Rafael A. Parra-Quezada, Mayra C. Soto-Caballero, María J. Rodríguez-Roque, América Chávez-Martínez, and María A. Flores-Cordova. 2024. "Effect of UV-C Radiation and Thermal Treatment on Volatile Compounds, Physicochemical, Microbiological and Phytochemical Parameters on Apple Juice (Malus domestica) with Raspberry (Rubus idaleus L.)" Beverages 10, no. 1: 7. https://doi.org/10.3390/beverages10010007
APA StyleEstrada-Beltrán, A. E., Salas-Salazar, N. A., Quintero-Ramos, A., Parra-Quezada, R. A., Soto-Caballero, M. C., Rodríguez-Roque, M. J., Chávez-Martínez, A., & Flores-Cordova, M. A. (2024). Effect of UV-C Radiation and Thermal Treatment on Volatile Compounds, Physicochemical, Microbiological and Phytochemical Parameters on Apple Juice (Malus domestica) with Raspberry (Rubus idaleus L.). Beverages, 10(1), 7. https://doi.org/10.3390/beverages10010007