Bioprocess Strategies for Vitamin B12 Production by Microbial Fermentation and Its Market Applications
Abstract
1. Historical Overview
2. Structure of Cobalamin Derivatives and Functions as Enzyme Cofactors
3. Biosynthesis of Vitamin B12: The Aerobic and Anaerobic Pathways
4. Microbial Production of Vitamin B12: Bioprocess Optimization for Cyanocobalamin Production
4.1. Microbial Production in Pseudomonas denitrificans
4.2. Microbial Production in Propionibacterium freudenreichii
5. Vitamin B12 Downstream Processing and Post-Modification Strategies
6. Patents—State of the Art
Patent Application Number (Reference) | Name | Microorganism/Strain | Innovation | Volumetric Production | Year | |
---|---|---|---|---|---|---|
Propionibacterium genus | US4544633A [43] (Expired) | Process for producing vitamin B12 by the fermentation technique, and vitamin B12-producing microorganism | P. freudenreichii (IFO 12424, IFO 12391, IFO 12426) | Creation of propionic-resistant strains (P. freudenreichii FERM-86 and FERM-87) for enhanced CNCbl production | 15 mg/L | 1983 |
US6492141B1 [107] (Expired) | Process for the production of vitamin B12 | P. freudenreichii CBS 929.97 | O2 effect in production during the anaerobic phase and a "fill and draw" strategy for enhanced production | 19 mg/L | 1999 | |
US6187761B1 [117] (Expired) | Production and use of compositions comprising high concentrations of vitamin B12 activity | P. freudenreichii subsp. shermanii and P. denitrificans | Method for producing vitamin B12 and making highly concentrated compositions | 10 mg/L | 1999 | |
US7427397B2 [108] (Expired) | Probiotic Propionibacterium | Propionibacterium jensenii 702 | Propionibacterium jensenii as a probiotic | 0.0012 mg/L | 2004 | |
EP2376644B1 [118] (Active) | Process for the preparation of a fermentation broth | Lactobacillus plantarum DSM 22,118 and P. freudenreichii DSM 22120 | Fermentation media optimization and co-culture for folate and vitamin B12 production | 1.07 mg/L | 2009 | |
CN206828509U [110] (Active) | A device for producing propionic acid and co-producing vitamin B12 by semi-continuous fermentation | P. freudenreichii | Simultaneous production of propionic acid and vitamin B12 in a semicontinuous fermentation with propionic acid separation | 20.12 mg/L | 2017 | |
US9938554 [109] (Active) | Co-cultivation of Propionibacterium and yeast. | P. freudenreichii (ATCC 6207) and yeast cells (DSM 28271) | Co-culture of Propionibacterium and propionic-resistant yeast to decrease the chemical oxygen load (COD) of spent media | 16 mg/L | 2018 | |
US20200149084A1 [83] (Active) | Sequential co-culturing method for producing a vitamin- and protein-rich food product | Basidiomycota and P. freudenreichii | Co-culture of Basidiomycota genus strains and vitamin B12-producing strains for in situ food fortification | 0.0014 mg/L 1 | 2020 | |
IN201827044769 A [111] (Active) | Continuous process for co-production of vitamin B12 and organic acids | P. freudenreichii (ATCC 13673) | Co-production of vitamin B12 and organic acids in a continuous fermentation with a single bioreactor | 76.13 mg/L | 2020 | |
WO21041759 A1 [119] (Active) | Modified Propionibacterium and methods of use | P. freudenreichii (P. UF 1) | Generation of a vitamin B12-overproducing strain by introducing a mutation that decreases the activity of the cbiMcbl riboswitch | n.d. 2 | 2021 | |
Pseudomonas denitrificans | US3018225A [100] (Expired) | Production of vitamin B12 | P. denitrificans MB-580 | A process for vitamin B12 production with a high-yield strain (P. denitrificans MB-580) | 2.4 mg/L 1 | 1962 |
US20060019352A1 [101] (Abandoned) | Methods for increasing the production of cobalamins using cob gene expression | P. denitrificans | Overexpression of several genes involved in Cob biosynthesis; generation of several overproducing strains, such as SC-510 | 65 mg/L | 1990 | |
US6156545A [120] (Expired) | Biosynthesis method enabling the preparation of cobalamins | P. denitrificans G2650 | Enhanced Cob production by the heterologous overexpression of precursors, such as DMBI and O-phospo-L-threonine | 7.9 mg/L | 1996 | |
CN101538599A [121] (Active) | Method for improving the yield of denitrified pseudomonas vitamin B12 | P. denitrificans J741 | Enhance cob production by betaine addition optimization | 177.49 mg/L | 2008 | |
CN102399845A [122] (Active) | Vitamin B12 fermentation production control process based on CO2 concentration in tail gas | P. denitrificans MB-580 | Vitamin B12 enhanced production through a carbon dioxide control strategy during fermentation | 164.6 mg/L | 2010 | |
CN101748177 A [123] (Active) | Optimized method for producing vitamin B12 through P. denitrificans fermentation and synthetic medium | P. denitrificans | Development and optimization of media and bioprocess conditions for improved vitamin B12 production | 77 mg/L | 2010 | |
CN102021214 A [124] (Active) | Oxygen consumption rate-based vitamin B12 fermentation production control process | P. denitrificans | Vitamin B12 production optimization through an oxygen control strategy | 171,4 mg/L | 2011 | |
CN102453740 A [125] (Active) | Culture medium for producing vitamin B12 by fermenting P. denitrificans and fermentation method thereof | P. denitrificans | Use of artificial molasses and bioprocess optimization for a more stable fermentation yield | 198 mg/L | 2012 | |
CN108949866 A [103] (Active) | Multi-stage rotating speed regulating policy for improving P. denitrificans fermentation for production of vitamin B12 | P. denitrificans | Vitamin B12 production improved by optimization of the culture media and the stirring speed of the bioprocess | 246 mg/L 1 | 2018 | |
CN108913739 A [126] (Active) | Method for producing vitamin B12 by using P. denitrificans based on pH value control | P. denitrificans | Improved vitamin B12 production by optimization of the bioprocess through pH value control | 248 mg/L | 2018 | |
CN110205350 A [104] (Active) | Method for improving the yield of vitamin B12 based on the regulation of ammonia nitrogen index | P. denitrificans | A method for improved Cbl production by supplementation with yeast extract controlled by the ammonia nitrogen index | 167 mg/L 1 | 2019 | |
CN109837320 A [105] (Active) | Method for promoting P. denitrificans to generate vitamin B12 | P. denitrificans | Optimization of media and culture conditions for improved vitamin B12 production | 198 mg/L | 2019 | |
CN111808158 A [106] (Active) | Preparation method of vitamin B12 crude product | P. denitrificans | Downstream process improvement for AdoCbl extraction | n.d. 2 | 2020 | |
CN111254173 A [102] (Active) | Screening method and screening culture medium for bacterial strains for high yield of vitamin B12 produced through fermentation production with P. denitrificans | Several high-yield strains of P. denitrificans | Screening for high-vitamin B12 producing P. denitrificans strains and culture medium screening for high vitamin B12 production | 281 mg/L 1 | 2020 | |
Other producers | US2650896A [127] (Expired) | Cyanide ions in production of vitamin B12 | Streptomyces griseus | Effects of cyanide ions in B12 production | Biological assay | 1953 |
US2576932A [112] (expired) | Fermentation process to produce vitamin B12 | B. megaterium B-938 | Vitamin B12 production with B. megaterium in a nutrient media with sucrose | 0.45 mg/L | 1983 | |
US20050227332A1 [128] (Expired) | Method for producing vitamin B12 from hydrogen-metabolizing methane bacterium | A mesophilic methane bacterium obtained from digested sludge | The culture is acclimatized in a H2–CO media and grown in an immobilized bed bioreactor | 25.2 mg/L | 2005 | |
US20060105432A1 [129] (Abandoned) | Method for the production of vitamin B12 | B. megaterium DSMZ509 | Genetically modified B. megaterium strain | 0.008 mg/L 1 | 2006 | |
WO2011154820A2 [113] (Application granted) | Vitamin B12-producing probiotic bacterial strains | Lactobacillus reuteri (DSM 17938, DSM 16143, ATCC 55730) | In situ food fortification for increased vitamin B12 production with Lactobacillus reuteri strains | 0.018 mg/L 1 | 2011 | |
CN104342390 A [114] (Active) | Sinorhizobium meliloti strain and composition and application of Sinorhizobium meliloti strain | S. meliloti (CGMCC 9638) | A S. melitolli strain capable of producing vitamin B12 and optimization of the bioprocess for vitamin B12 production | At least 50 mg/L | 2015 | |
WO2019109975A1 [116] (Active) | Recombinant strain of Escherichia coli for de novo synthesis of vitamin B12, construction method therefor and application thereof | E. coli | Recombinant E. coli for the de novo synthesis of vitamin B12 | 89 µg/g DCW | 2019 | |
CN110804598 A [115] (Active) | Procorrin-2C(20)-methyltransferase mutant and mutant gene and application thereof in preparing vitamin B12 | Sinorhizobium (CGMCC 9638) | Generation of a vitamin B12 overproducer strain by overexpressing the precorrin-2C(20)-methyltransferase gene | 115 mg/L | 2020 |
7. Vitamin B12 Market Applications and the State of the Market
8. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martens, H.; Barg, M.; Warren, D.; Jah, J.-H. Microbial Production of Vitamin B12. Appl. Microbiol. Biotechnol. 2002, 58, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Minot, G.R.; Murphy, W.P. Treatment of Pernicious Anemia by a Special Diet. J. Am. Med. Assoc. 1926, 87, 1666. [Google Scholar] [CrossRef]
- Rickes, E.L.; Brink, N.G.; Koniuszy, F.R.; Wood, T.R.; Folkers, K. Crystalline Vitamin B12. Science 1948, 107, 396–397. [Google Scholar] [CrossRef] [PubMed]
- Smith, L. Purification of Anti-Pernicious Anemia Factors from Liver. Nature 1948, 161, 638–639. [Google Scholar] [CrossRef]
- Hodgkin, D.C.; Kamper, J.; Lindsey, J.; Mackay, M.; Pickworth, J.; Robertson, J.H.; Shoemaker, C.B.; White, J.G. The Structure of Vitamin B12. I. An Outline of the Crystallographic Investigation of Vitamin B12. Proc. R. Soc. London Ser. A. Math. Phys. Sci. 1957, 242, 228–263. [Google Scholar] [CrossRef]
- Dixon, M.M.; Huang, S.; Matthews, R.G.; Ludwig, M. The Structure of the C-Terminal Domain of Methionine Synthase: Presenting S-Adenosylmethionine for Reductive Methylation of B12. Structure 1996, 4, 1263–1275. [Google Scholar] [CrossRef]
- Mancia, F.; Keep, N.H.; Nakagawa, A.; Leadlay, P.F.; McSweeney, S.; Rasmussen, B.; Bösecke, P.; Diat, O.; Evans, P.R. How Coenzyme B12 Radicals Are Generated: The Crystal Structure of Methylmalonyl-Coenzyme A Mutase at 2 Å Resolution. Structure 1996, 4, 339–350. [Google Scholar] [CrossRef]
- Wuerges, J.; Garau, G.; Geremia, S.; Fedosov, S.N.; Petersen, T.E.; Randaccio, L. Structural Basis for Mammalian Vitamin B12 Transport by Transcobalmin. Proc. Natl. Acad. Sci. USA 2006, 103, 4386–4391. [Google Scholar] [CrossRef]
- Mathews, F.S.; Gordon, M.M.; Chen, Z.; Rajashankar, K.R.; Ealick, S.E.; Alpers, D.H.; Sukumar, N. Crystal Structure of Human Intrinsic Factor: Cobalamin Complex at 2.6-Å Resolution. Proc. Natl. Acad. Sci. USA 2007, 104, 17311–17316. [Google Scholar] [CrossRef]
- Alam, A.; Woo, J.S.; Schmitz, J.; Prinz, B.; Root, K.; Chen, F.; Bloch, J.S.; Zenobi, R.; Locher, K.P. Structural Basis of Transcobalamin Recognition by Human CD320 Receptor. Nat. Commun. 2016, 7, 12100. [Google Scholar] [CrossRef]
- Furger, E.; Frei, D.C.; Schibli, R.; Fischer, E.; Prota, A.E. Structural Basis for Universal Corrinoid Recognition by the Cobalamin Transport Protein Haptocorrin. J. Biol. Chem. 2013, 288, 25466–25476. [Google Scholar] [CrossRef]
- Koutmos, M.; Gherasim, C.; Smith, J.L.; Banerjee, R. Structural Basis of Multifunctionality in a Vitamin B12- Processing Enzyme. J. Biol. Chem. 2011, 286, 29780–29787. [Google Scholar] [CrossRef]
- Yamada, K.; Gherasim, C.; Banerjee, R.; Koutmos, M. Structure of Human B12 Trafficking Protein CblD Reveals Molecular Mimicry and Identifies a New Subfamily of Nitro-FMN Reductases. J. Biol. Chem. 2015, 290, 29155–29166. [Google Scholar] [CrossRef]
- Xu, D.; Feng, Z.; Hou, W.T.; Jiang, Y.L.; Wang, L.; Sun, L.; Zhou, C.Z.; Chen, Y. Cryo-EM Structure of Human Lysosomal Cobalamin Exporter ABCD4. Cell Res. 2019, 29, 1039–1041. [Google Scholar] [CrossRef]
- Schubert, H.L.; Hill, C.P. Structure of ATP-Bound Human ATP:Cobalamin Adenosyltransferase. Biochemistry 2006, 45, 15188–15196. [Google Scholar] [CrossRef]
- Woodward, R. The Total Synthesis of Vitamin B12. Pure Appl. Chem. 1973, 33, 145–177. [Google Scholar] [CrossRef]
- Eschenmoser, A.; Wintner, C.E. Natural Product Synthesis and Vitamin B12. Science 1977, 196, 1410–1420. [Google Scholar] [CrossRef]
- Fink, R.G. Coenzyme B12-Based Chemical Precedent for Co-C Bond Homolysis and Other Key Elementary Steps; Krautler, B., Arigoni, D., Golding, B.T., Eds.; Wiley-VCH: Weinheim, Germany, 1998. [Google Scholar]
- Hannibal, L.; Axhemi, A.; Glushchenko, A.V.; Moreira, E.S.; Brasch, N.E.; Jacobsen, D.W. Accurate Assessment and Identification of Naturally Occurring Cellular Cobalamins Luciana. Clin. Chem. Lab. Med. 2008, 46, 1739–1746. [Google Scholar] [CrossRef]
- Juzeniene, A.; Nizauskaite, Z. Photodegradation of Cobalamins in Aqueous Solutions and in Human Blood. J. Photochem. Photobiol. B Biol. 2013, 122, 7–14. [Google Scholar] [CrossRef]
- Hogenkamp, H.P.C.; Vergamini, P.J.; Matwiyoff, N.A. The Effect of Temperature and Light on the Carbon43 Nuclear Magnetic Resonance Spectra of Alkylcorrinoids, Selectively Enriched with Carbon-13. J. Chem. SOC. (A) 1975, 23, 2628–2633. [Google Scholar] [CrossRef]
- Obeid, R.; Fedosov, S.N.; Nexo, E. Cobalamin Coenzyme Forms Are Not Likely to Be Superior to Cyano- and Hydroxyl-Cobalamin in Prevention or Treatment of Cobalamin Deficiency. Mol. Nutr. Food Res. 2015, 59, 1364–1372. [Google Scholar] [CrossRef] [PubMed]
- Roth, J.R.; Lawrence, J.G.; Bobik, T.A. Cobalamin (Coenzyme B12): Synthesis and Biological Significance. Annu. Rev. Microbiol. 1996, 50, 137–181. [Google Scholar] [CrossRef] [PubMed]
- Leeper, F.J. The Biosynthesis of Porphyrins, Chlorophylls, and Vitamin B12. Nat. Prod. Rep. 1989, 6, 171–203. [Google Scholar] [CrossRef] [PubMed]
- Thibaut, D.; Blanche, F.; Cameron, B.; Crouzet, J.; Debussche, L.; Remy, E.; Vuilhorgne, M. Vitamin B12 Biosynthesis in Pseudomonas denitrificans. In Vitamin B12, and B12-Proteins; Kräutler, B., Arigoni, D., Golding, B.T., Eds.; Wiley-VCH: Weinheim, Germany, 1998; pp. 63–79. [Google Scholar]
- Crouzet, J.; Cauchois, L.; Blanche, F.; Debussche, L.; Thibaut, D.; Rouyez, M.C.; Rigault, S.; Mayaux, J.F.; Cameron, B. Nucleotide Sequence of a Pseudomonas Dentrificans 5.4-Kilobase DNA Fragment Containing Five Cob Genes and Identification of Structural Genes Encoding S-Adenosyl-L-Methionine: Uroporphyrinogen III Methyltransferase and Cobyrinic Acid a,c-Diamide Synthase. J. Bacteriol. 1990, 172, 5968–5979. [Google Scholar] [CrossRef] [PubMed]
- Stamford, N.P.J.; Duggan, S.; Li, Y.; Alanine, A.I.D.; Crouzet, J.; Battersby, A.R. Biosynthesis of Vitamin B12: The Multi-Enzyme Synthesis of Precorrin-4 and Factor IV. Chem. Biol. 1997, 4, 445–451. [Google Scholar] [CrossRef]
- Moore, S.J.; Warren, M.J. The Anaerobic Biosynthesis of Vitamin B12. Biochem. Soc. Trans. 2012, 40, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, E.K. The Porphobilinogen Synthase Family of Metalloenzymes. Acta Crystallogr. Sect. D Biol. Crystallogr. 2000, 56, 115–128. [Google Scholar] [CrossRef]
- Jordan, P.M. The Biosynthesis of 5-Aminolaevulinic Acid and Its Transformation into Uroporphyrinogen III. In New Comprehensive Biochemistry; Krebs, J., Michalak, M., Eds.; Elsevier: Amsterdam, The Netherlands, 1991; Volume 19, pp. 1–66. [Google Scholar]
- Raux, E.; Schubert, H.L.; Warren, M.J. Biosynthesis of Cobalamin (Vitamin B12): A Bacterial Conundrum. Cell. Mol. Life Sci. 2000, 57, 1880–1893. [Google Scholar] [CrossRef]
- Warren, M.J.; Raux, E.; Schubert, H.L.; Escalante-Semerena, J.C. The Biosynthesis of Adenosylcobalamin (Vitamin B12). Nat. Prod. Rep. 2002, 19, 390–412. [Google Scholar] [CrossRef]
- Debussche, L.; Couder, M.; Thibaut, D.; Cameron, B.; Crouzet, J.; Blanche, F. Assay, Purification, and Characterization of Cobaltochelatase, a Unique Complex Enzyme Catalyzing Cobalt Insertion in Hydrogenobyrinic Acid a,c- Diamide during Coenzyme B12 Biosynthesis in Pseudomonas denitrificans. J. Bacteriol. 1992, 174, 7445–7451. [Google Scholar] [CrossRef]
- Mathur, Y.; Sreyas, S.; Datar, P.M.; Sathian, M.B.; Hazra, A.B. CobT and BzaC Catalyze the Regiospecific Activation and Methylation of the 5-Hydroxybenzimidazole Lower Ligand in Anaerobic Cobamide Biosynthesis. J. Biol. Chem. 2020, 295, 10522–10534. [Google Scholar] [CrossRef]
- Campbell, G.R.O.; Taga, M.E.; Mistry, K.; Lloret, J.; Anderson, P.J.; Roth, J.R.; Walker, G.C. Sinorhizobium Meliloti BluB Is Necessary for Production of 5,6-Dimethylbenzimidazole, the Lower Ligand of B12. Proc. Natl. Acad. Sci. USA 2006, 103, 4634–4639. [Google Scholar] [CrossRef]
- Balabanova, L.; Averianova, L.; Marchenok, M.; Son, O.; Tekutyeva, L. Microbial and Genetic Resources for Cobalamin (Vitamin B12) Biosynthesis: From Ecosystems to Industrial Biotechnology. Int. J. Mol. Sci. 2021, 22, 4522. [Google Scholar] [CrossRef]
- Deptula, P.; Kylli, P.; Chamlagain, B.; Holm, L.; Kostiainen, R.; Piironen, V.; Savijoki, K.; Varmanen, P. BluB/CobT2 Fusion Enzyme Activity Reveals Mechanisms Responsible for Production of Active Form of Vitamin B12 by Propionibacterium freudenreichii. Microb. Cell Factories 2015, 14, 186. [Google Scholar] [CrossRef]
- Nguyen-Vo, T.P.; Ainala, S.K.; Kim, J.R.; Park, S. Analysis, Characterization of Coenzyme B12 Biosynthetic Gene Clusters and Improvement of B12 Biosynthesis in Pseudomonas denitrificans ATCC 13867. FEMS Microbiol. Lett. 2018, 365, fny211. [Google Scholar] [CrossRef]
- Hazra, A.B.; Han, A.W.; Mehta, A.P.; Mok, K.C.; Osadchiy, V.; Begley, T.P.; Taga, M.E. Anaerobic Biosynthesis of the Lower Ligand of Vitamin B12. Proc. Natl. Acad. Sci. USA 2015, 112, 10792–10797. [Google Scholar] [CrossRef]
- Fang, H.; Kang, J.; Zhang, D. Microbial Production of Vitamin B12: A Review and Future Perspectives. Microb. Cell Fact. 2017, 16, 15. [Google Scholar] [CrossRef]
- Sobczyńska-Malefora, A.; Delvin, E.; McCaddon, A.; Ahmadi, K.R.; Harrington, D.J. Vitamin B12 Status in Health and Disease: A Critical Review. Diagnosis of Deficiency and Insufficiency–Clinical and Laboratory Pitfalls. Crit. Rev. Clin. Lab. Sci. 2021, 58, 399–429. [Google Scholar] [CrossRef]
- Hardlei, T.F.; Obeid, R.; Herrmann, W.; Nexo, E. Cobalamin Analogues in Humans: A Study on Maternal and Cord Blood. PLoS ONE 2013, 8, e61194. [Google Scholar] [CrossRef]
- Kojima, I. Process for Producing Vitamin B12 by the Fermentation Technique, and Vitamin B12-Producing Microorganism. U.S. Patent 4,544,633, 1 October 1985. [Google Scholar]
- Piao, Y.; Yamashita, M.; Kawaraichi, N.; Asegawa, R.; Ono, H.; Murooka, Y. Production of Vitamin B12 in Genetically Engineered Propionibacterium freudenreichii. J. Biosci. Bioeng. 2004, 98, 167–173. [Google Scholar] [CrossRef]
- Piao, Y.; Kiatpapan, P.; Yamashita, M.; Murooka, Y. Effects of Expression of HemA and HemB Genes on Production of Porphyrin in Propionibacterium freudenreichii. Appl. Environ. Microbiol. 2004, 70, 7561–7566. [Google Scholar] [CrossRef]
- Biedendieck, R.; Malten, M.; Barg, H.; Bunk, B.; Martens, J.H.; Deery, E.; Leech, H.; Warren, M.J.; Jahn, D. Metabolic Engineering of Cobalamin (Vitamin B12) Production in Bacillus Megaterium. Microb. Biotechnol. 2010, 3, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, Y.; Lee, B.; Kang, Z.; Du, G. Development of a Two-Step Cultivation Strategy for the Production of Vitamin B12 by Bacillus Megaterium. Microb. Cell Factories 2014, 13, 102. [Google Scholar] [CrossRef]
- Bernhardt, C.; Zhu, X.; Schütz, D.; Fischer, M.; Bisping, B. Cobalamin Is Produced by Acetobacter Pasteurianus DSM 3509. Appl. Microbiol. Biotechnol. 2019, 103, 3875–3885. [Google Scholar] [CrossRef]
- Gu, Q.; Zhang, C.; Song, D.; Li, P.; Zhu, X. Enhancing Vitamin B12 Content in Soy-Yogurt by Lactobacillus Reuteri. Int. J. Food Microbiol. 2015, 206, 56–59. [Google Scholar] [CrossRef]
- Thirupathaiah, Y.; Rani, C.S.; Reddy, M.S.; Venkateswar Rao, L. Effect of Chemical and Microbial Vitamin B12 Analogues on Production of Vitamin B12. World J. Microbiol. Biotechnol. 2012, 28, 2267–2271. [Google Scholar] [CrossRef]
- Wang, P.; Shen, C.; Li, L.; Guo, J.; Cong, Q.; Lu, J. Simultaneous Production of Propionic Acid and Vitamin B12 from Corn Stalk Hydrolysates by Propionibacterium freudenreichii in an Expanded Bed Adsorption Bioreactor. Prep. Biochem. Biotechnol. 2020, 50, 763–767. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Y.; Liu, Y.; Shi, H.; Su, Z. Novel in Situ Product Removal Technique for Simultaneous Production of Propionic Acid and Vitamin B12 by Expanded Bed Adsorption Bioreactor. Bioresour. Technol. 2012, 104, 652–659. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Z.; Jiao, Y.; Liu, S.; Wang, Y. Improved Propionic Acid and 5,6-Dimethylbenzimidazole Control Strategy for Vitamin B12 Fermentation by Propionibacterium freudenreichii. J. Biotechnol. 2015, 193, 123–129. [Google Scholar] [CrossRef]
- Wang, P.; Jiao, Y.; Liu, S. Novel Fermentation Process Strengthening Strategy for Production of Propionic Acid and Vitamin B12 by Propionibacterium freudenreichii. J. Ind. Microbiol. Biotechnol. 2014, 41, 1811–1815. [Google Scholar] [CrossRef]
- Hugenschmidt, S.; Schwenninger, S.M.; Lacroix, C. Concurrent High Production of Natural Folate and Vitamin B12 Using a Co-Culture Process with Lactobacillus Plantarum SM39 and Propionibacterium freudenreichii DF13. Process Biochem. 2011, 46, 1063–1070. [Google Scholar] [CrossRef]
- Xie, C.; Coda, R.; Chamlagain, B.; Varmanen, P.; Piironen, V.; Katina, K. Co-Fermentation of Propionibacterium freudenreichiiand Lactobacillus Brevisin Wheat Bran for in Situproduction of Vitamin B12. Front. Microbiol. 2019, 10, 1541. [Google Scholar] [CrossRef] [PubMed]
- Miyano, K.I.; Ye, K.; Shimizu, K. Improvement of Vitamin B12 Fermentation by Reducing the Inhibitory Metabolites by Cell Recycle System and a Mixed Culture. Biochem. Eng. J. 2000, 6, 207–214. [Google Scholar] [CrossRef]
- Hajfarajollah, H.; Mokhtarani, B.; Mortaheb, H.; Afaghi, A. Vitamin B12 Biosynthesis over Waste Frying Sunflower Oil as a Cost Effective and Renewable Substrate. J. Food Sci. Technol. 2015, 52, 3273–3282. [Google Scholar] [CrossRef] [PubMed]
- Pillai, V.V.; Prakash, G.; Lali, A.M. Growth Engineering of Propionibacterium freudenreichii Shermanii for Organic Acids and Other Value-Added Products Formation. Prep. Biochem. Biotechnol. 2018, 48, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wang, Y.; Su, Z. Improvement of Adenosylcobalamin Production by Metabolic Control Strategy in Propionibacterium freudenreichii. Appl. Biochem. Biotechnol. 2012, 167, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Kośmider, A.; Białas, W.; Kubiak, P.; Drozdzyńska, A.; Czaczyk, K. Vitamin B12 Production from Crude Glycerol by Propionibacterium freudenreichii ssp. Shermanii: Optimization of Medium Composition through Statistical Experimental Designs. Bioresour. Technol. 2012, 105, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Chamlagain, B.; Deptula, P.; Edelmann, M.; Kariluoto, S.; Grattepanche, F.; Lacroix, C.; Varmanen, P.; Piironen, V. Effect of the Lower Ligand Precursors on Vitamin B12 Production by Food-Grade Propionibacteria. LWT-Food Sci. Technol. 2016, 72, 117–124. [Google Scholar] [CrossRef]
- Chamlagain, B.; Sugito, T.A.; Deptula, P.; Edelmann, M.; Kariluoto, S.; Varmanen, P.; Piironen, V. In Situ Production of Active Vitamin B12 in Cereal Matrices Using Propionibacterium freudenreichii. Food Sci. Nutr. 2018, 6, 67–76. [Google Scholar] [CrossRef]
- Deptula, P.; Chamlagain, B.; Edelmann, M.; Sangsuwan, P.; Nyman, T.A.; Savijoki, K.; Piironen, V.; Varmanen, P. Food-like Growth Conditions Support Production of Active Vitamin B12 by Propionibacterium freudenreichii 2067 without DMBI, the Lower Ligand Base, or Cobalt Supplementation. Front. Microbiol. 2017, 8, 368. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Wu, J.; Fang, H.; Jin, Z.; Zhang, D. Metabolic Profiling Analysis of the Vitamin B12 Producer Propionibacterium freudenreichii. Microbiologyopen 2021, 10, e1199. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Wang, Z.; Wang, Y.; Ma, Y.; Su, Z. Metabolic Flux Analysis of Simultaneous Production of Vitamin B12 and Propionic Acid in a Coupled Fermentation Process by Propionibacterium freudenreichii. Appl. Biochem. Biotechnol. 2021, 193, 3045–3061. [Google Scholar] [CrossRef]
- Cheng, X.; Chen, W.; Peng, W.; Li, K. Improved Vitamin B12 Fermentation Process by Adding Rotenone to Regulate the Metabolism of Pseudomonas denitrificans. Appl. Biochem. Biotechnol. 2014, 173, 673–681. [Google Scholar] [CrossRef]
- Li, K.T.; Liu, D.H.; Li, Y.L.; Chu, J.; Wang, Y.H.; Zhuang, Y.P.; Zhang, S.L. An Effective and Simplified PH-Stat Control Strategy for the Industrial Fermentation of Vitamin B12 by Pseudomonas denitrificans. Bioprocess Biosyst. Eng. 2008, 31, 605–610. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H.; Li, Y.; Chu, J.; Huang, M.; Zhuang, Y.; Zhang, S. Improved Vitamin B12 Production by Step-Wise Reduction of Oxygen Uptake Rate under Dissolved Oxygen Limiting Level during Fermentation Process. Bioresour. Technol. 2010, 101, 2845–2852. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, H.; Wang, P. The Online Morphology Control and Dynamic Studies on Improving Vitamin B12 Production by Pseudomonas denitrificans with Online Capacitance and Specific Oxygen Consumption Rate. Appl. Biochem. Biotechnol. 2016, 179, 1115–1127. [Google Scholar] [CrossRef]
- Xia, W.; Wei, P.; Kun, C. Interactive Performances of Betaine on the Metabolic Processes of Pseudomonas denitrificans. J. Ind. Microbiol. Biotechnol. 2014, 42, 273–278. [Google Scholar] [CrossRef]
- Xia, W.; Chen, W. Industrial Vitamin B12 Production by Pseudomonas denitrificans Using Maltose Syrup and Corn Steep Liquor as the Cost-Effective Fermentation Substrates. Bioprocess Biosyst. Eng. 2015, 38, 1065–1073. [Google Scholar] [CrossRef]
- Li, K.T.; Zhou, J.; Cheng, X.; Wei, S.J. Study on the Dissolved Oxygen Control Strategy in Large-Scale Vitamin B12 Fermentation by Pseudomonas denitrificans. J. Chem. Technol. Biotechnol. 2012, 87, 1648–1653. [Google Scholar] [CrossRef]
- Vandamme, E.J.; Revuelta, J.L. (Eds.) Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants; Wiley-VCH: Weinheim, Germany, 2016; ISBN 9783527681754. [Google Scholar]
- CEIC. China Production: Year to Date: Vitamin E. Available online: https://www.ceicdata.com/en/china/pharmaceuticalproduction-ytd-antiparasitics-vitamins-and-minerals/cn-production-ytd-vitamin-e (accessed on 21 June 2022).
- Li, K.T.; Liu, D.H.; Li, Y.L.; Chu, J.; Wang, Y.H.; Zhuang, Y.P.; Zhang, S.L. Improved Large-Scale Production of Vitamin B12 by Pseudomonas denitrificans with Betaine Feeding. Bioresour. Technol. 2008, 99, 8516–8520. [Google Scholar] [CrossRef]
- Li, K.T.; Liu, D.H.; Li, Y.L.; Chu, J.; Wang, Y.H.; Zhuang, Y.P.; Zhang, S.L. Influence of Zn2+, Co2+ and Dimethylbenzimidazole on Vitamin B12 Biosynthesis by Pseudomonas denitrificans. World J. Microbiol. Biotechnol. 2008, 24, 2525–2530. [Google Scholar] [CrossRef]
- Kusel, J.; Fa, Y.; Demain, A. Betaine Stimulation of Vitamin B12 Biosynthesis in Pseudomonas denitrificans May Be Mediated by an Increase in Activity of δ-Aminolaevulinic Acid Synthase. J. Gen. Microbiol. 1984, 130, 835–841. [Google Scholar] [CrossRef][Green Version]
- Zhang, Y.; Liu, J.Z.; Huang, J.S.; Mao, Z.W. Genome Shuffling of Propionibacterium shermanii for Improving Vitamin B12 Production and Comparative Proteome Analysis. J. Biotechnol. 2010, 148, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.J.; Escalante-Semerena, J.C. Single-Enzyme Conversion of FMNH2 to 5,6-Dimethylbenzimidazole, the Lower Ligand of B12. Proc. Natl. Acad. Sci. USA 2007, 104, 2921–2926. [Google Scholar] [CrossRef]
- Signorini, C.; Carpen, A.; Coletto, L.; Borgonovo, G.; Galanti, E.; Capraro, J.; Magni, C.; Abate, A.; Johnson, S.K.; Duranti, M.; et al. Enhanced Vitamin B12 Production in an Innovative Lupin Tempeh Is Due to Synergic Effects of Rhizopus and Propionibacterium in Cofermentation. Int. J. Food Sci. Nutr. 2018, 69, 451–457. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A Taxonomic Note on the Genus Lactobacillus: Description of 23 Novel Genera, Emended Description of the Genus Lactobacillus Beijerinck 1901, and Union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Frettloeh Martin Sequential Co-Culturing Method for Producing a Vitamin- and Protein-Rich Food Product. U.S. Patent 2020-0149084 A1, 14 May 2020.
- Quesada-Chanto, A.; Afschar, A.S.; Wagner, F. Microbial Production of Propionic Acid and Vitamin B12 Using Molasses or Sugar. Appl. Microbiol. Biotechnol. 1994, 41, 378–383. [Google Scholar] [CrossRef]
- Haddadin, M.S.Y.; Abu-Reesh, I.M.; Haddadin, F.A.S.; Robinson, R.K. Utilisation of Tomato Pomace as a Substrate for the Production of Vitamin B12—A Preliminary Appraisal. Bioresour. Technol. 2001, 78, 225–230. [Google Scholar] [CrossRef]
- Assis, D.A.D.; Matte, C.; Aschidamini, B.; Rodrigues, E.; Záchia Ayub, M.A. Biosynthesis of Vitamin B12 by Propionibacterium freudenreichii subsp. Shermanii ATCC 13673 Using Liquid Acid Protein Residue of Soybean as Culture Medium. Biotechnol. Prog. 2020, 36, e3011. [Google Scholar] [CrossRef]
- Gardner, N.; Champagne, C.P. Production of Propionibacterium Shermanii Biomass and Vitamin B12 on Spent Media. J. Appl. Microbiol. 2005, 99, 1236–1245. [Google Scholar] [CrossRef]
- Moine, G.; Hohmann, H.-P.; Kurth, R.; Paust, J.; Hähnlein, W.; Pauling, H.; Weimann, B.-J.; Kaesler, B. Vitamins, 6. B Vitamins. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH GmbH & Co. KGaA: Weinheim, Germany, 2011. [Google Scholar]
- Survase, S.A.; Bajaj, I.B.; Singhal, R.S. Biotechnological Production of Vitamins. Food Technol. Biotechnol. 2006, 44, 381–396. [Google Scholar]
- Nielsen, M.J.; Rasmussen, M.R.; Andersen, C.B.F.; Nexø, E.; Moestrup, S.K. Vitamin B12 Transport from Food to the Body’s Cells—A Sophisticated, Multistep Pathway. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 345–354. [Google Scholar] [CrossRef]
- Berlin, H.; Berlin, R.; Brante, G. Oral Treatment of Pernicious Anemia with High Doses of Vitamin B12 without Intrinsic Factor. Acta Med. Scand. 1968, 184, 247–258. [Google Scholar] [CrossRef]
- Gamboa, J.M.; Leong, K.W. In vitro and in vivo Models for the Study of Oral Delivery of Nanoparticles. Adv. Drug Deliv. Rev. 2013, 65, 800–810. [Google Scholar] [CrossRef]
- Dhakal, S.P.; He, J. Microencapsulation of Vitamins in Food Applications to Prevent Losses in Processing and Storage: A Review. Food Res. Int. 2020, 137, 109326. [Google Scholar] [CrossRef]
- Matos, M.; Gutiérrez, G.; Iglesias, O.; Coca, J.; Pazos, C. Enhancing Encapsulation Efficiency of Food-Grade Double Emulsions Containing Resveratrol or Vitamin B12 by Membrane Emulsification. J. Food Eng. 2015, 166, 212–220. [Google Scholar] [CrossRef]
- Ramalho, M.J.; Loureiro, J.A.; Pereira, M.C. Poly (Lactic-Co-Glycolic Acid) Nanoparticles for the Encapsulation and Gastrointestinal Release of Vitamin B9 and Vitamin B12. ACS Appl. Nano Mater. 2021, 4, 6881–6892. [Google Scholar] [CrossRef]
- Bochicchio, S.; Barba, A.A.; Grassi, G.; Lamberti, G. Vitamin Delivery: Carriers Based on Nanoliposomes Produced via Ultrasonic Irradiation. LWT-Food Sci. Technol. 2016, 69, 9–16. [Google Scholar] [CrossRef]
- Estevinho, B.N.; Mota, R.; Leite, J.P.; Tamagnini, P.; Gales, L.; Rocha, F. Application of a Cyanobacterial Extracellular Polymeric Substance in the Microencapsulation of Vitamin B12. Powder Technol. 2019, 343, 644–651. [Google Scholar] [CrossRef]
- Carlan, I.C.; Estevinho, B.N.; Rocha, F. Study of Microencapsulation and Controlled Release of Modified Chitosan Microparticles Containing Vitamin B12. Powder Technol. 2017, 318, 162–169. [Google Scholar] [CrossRef]
- Fidaleo, M.; Tacconi, S.; Sbarigia, C.; Passeri, D.; Rossi, M.; Tata, A.M.; Dini, L. Current Nanocarrier Strategies Improve Vitamin B12 Pharmacokinetics, Ameliorate Patients’ Lives, and Reduce Costs. Nanomaterials 2021, 11, 743. [Google Scholar] [CrossRef]
- Long, R.A. Production of Vitamin B12. U.S. Patent 3,018,225, 23 January 1962. [Google Scholar]
- Crouzet, J.; Debussche, L.; Schil, S.L.; Thibaut, D. Methods of Increasing the Production of Cobalamins Using Cob Gene Expression. U.S. Patent 2006/0019352 A1, 26 January 2006. [Google Scholar]
- Zhendong, L.; Qing, C.; Weikai, X.; Hua, L.; Lulu, Y. Screening Method and Screening Culture Medium for Bacterial Strain for High Yield of Vitamin B12 Produced through Fermentation Production with Pseudomonas denitrificans. CN Patent 111254173 A, 9 June 2020. [Google Scholar]
- Yonggan, H.; Yanmao, L.; Hui, L.; Xin, W. Multi-Stage Rotating Speed Regulating Policy for Improving Pseudomonas denitrificans Fermentation for Production of Vitamin B12. CN Patent 108949866 A, 7 December 2018. [Google Scholar]
- Wang, J.; Wang, J.; Hanzhong, L.; Yanxia, C.; Mu, Q.; Yingran, L.; Xueran, L.; Jingkun, Z.; Hong, W.; Yuan, Y. Method for Improving Yield of Vitamin B12 Based of Regulation of Ammonia Nitrogen Index. CN Patent 110205350 A, 6 September 2019. [Google Scholar]
- Ruiyan, L.; Jiexi, M.; Wei, L.; Caixia, Z.; Fengyu, K. Method for Promoting Pseudomonas denitrificans to Generate Vitamin B12. CN Patent 109837320 A, 4 June 2019. [Google Scholar]
- Pengdong, H.; Lizhong, P.; Hongwei, G.; Yi, S.; Qiong, M. Preparation Method of Vitamin B12 Crude Product. CN Patent 111808158 A, 23 October 2020. [Google Scholar]
- Hunik, J.H. Process for the Production of Vitamin B12. U.S. Patent 6,492,141 B1, 10 December 2002. [Google Scholar]
- Michelle, I.; Adams, C. Probiotic Propionibacterium. U.S. Patent 7.427,397 B2, 23 September 2008. [Google Scholar]
- Gregor, K.; Stefan, F.; Mirjan, S.; Hrvoje, P. Co-Cultivation of Propionibacterium and Yeast. U.S. Patent 9,938,554, 10 April 2018. [Google Scholar]
- Zhiguo, W.Z.; Guoxia, X.; Liquan, W.; Yunshan, W.S. Device for Producing Propionic Acid and Co-Producing Vitamin B12 by Semi-Continuous Fermentation 2017. CN Patent 206828509 U, 2 January 2018. [Google Scholar]
- Mallinath, L.A.; Pillai, V. Continuous Process for Co-Production of Vitamin B12 and Organic Acids. IN Patent 201827044769, 2 October 2020. [Google Scholar]
- Garibaldi, J.A.; Kosuke, I.; Lewis, J.C.; Mcginnis, J. Fermentation Process for Production of Vitamin B12. U.S. Patent 2576,932, 4 December 1994. [Google Scholar]
- Mogna, G.; Paolo Strozzi, G.; Mogna, L. Vitamin B12 Producing Lactobacillus Reuteri Strains 201. International Patent 2011/154820 A2, 15 December 2011. [Google Scholar]
- Dawei, Z.; Miaomiao, X.; Sha, L.; Wenjuan, Z.; Ping, Z.; Huan, F. Sinorhizobium Meliloti Strain and Composition and Application of Sinorhizobium Meliloti Strain. CN Patent 104342390 A, 11 February 2015. [Google Scholar]
- Dawei, Z.; Huina, D. Procorrin-2C(20)-Methyltransferase Mutant and Mutant Gene and Application Thereof in Preparing Vitamin B12 2020. CN Patent 110804598 A, 18 February 2020. [Google Scholar]
- Zhang, D.; Fang, H. Recombinant Strain of Escherichia Coli for de Novo Synthesis of Vitamin B12, Construction Method Therefor and Application Thereof. International Patent 2019/109975A1, 13 June 2019. [Google Scholar]
- Bijl, H.L. Production and Use of Compositions Comprising High Concentrations of Vitamin B12 Activity. U.S. Patent 6,187,761 B1, 13 February 2001. [Google Scholar]
- Hugenschmidt, S.; Miescher Schwenninger, S.; Lacroix, C. Process for the Preparation of a Fermentation Broth. EU Patent 2 376 644 B1, 23 April 2014. [Google Scholar]
- Mansour, M. Modified Propionibacterium and Methods of Use. International Patent 2021/041759, 4 March 2021. [Google Scholar]
- Remy, E.; Examiner, P.; Achutamurthy, P. Biosynthesis Method Enabling the Preparation of Cobalamins. U.S. Patent 6,156,545, 5 December 2000. [Google Scholar]
- Zhang, S.; Zhao, Q.; Li, K.; Liu, D.; Hongzhuang, Y.; Wang, Z.; Li, Y. Method for Improving Yield of Denitrified Pseudomonas Vitamin B12. CN Patent 101538599 A, 23 September 2009. [Google Scholar]
- Zhang, S.; Chen, X.; Li, Y.; Zhenguo, W.; Xie, L.; Cao, Y.; Tang, L.; Wang, Z.; Zhuang, Y. Vitamin B12 Fermentation Production Control Process Based on CO2 Concentration in Tail Gas. CN Patent 102399845 A, 13 September 2010. [Google Scholar]
- Zhang, S.; Zhang, Y.; Wang, Z.; Wang, H.; Zhuang, Y.; Chu, J.; Siliang, Z.; Yiming, Z.; Yinping, Z.; Huiyuan, W.; et al. Optimized Method for Producing Vitamin B12 through Pseudomonas denitrificans Fermentation and Synthetic Medium. CN Patent 101748177 A, 9 December 2008. [Google Scholar]
- Wang, H.; Chu, J.; Wang, Z.; Zhuang, Y.; Zhang, S.; Zejian, W.; Huiyan, W.; Yingping, Z.; Siliang, Z.; Ju, C. Oxygen Consumption Rate-Based Vitamin B12 Fermentation Production Control Process. CN Patent 102021214 A, 22 September 2009. [Google Scholar]
- Ren, Y.; Leng, X.; Wang, Y.; Qi, N.; Dong, Y.; Xiaohong, L.; Nai, Q.; Yong, R.; Youshan, W.; Yuan, D. Culture Medium for Producing Vitamin B12 by Fermenting Pseudomonas denitrificans and Fermentation Method Thereof. CN Patent 102453740 A, 16 May 2012. [Google Scholar]
- Ju, Y.; Yang, H.; Yanmao, L.; Guangyong, Z. Method for Producing Vitamin B12 by Using Pseudomonas denitrificans Based on PH Value Control. CN Patent 108913739 A, 30 November 2018. [Google Scholar]
- Mcdaniel, L.E.; Harold, B. Cyanide Ion in Production of Vitamin B12. U.S. Patent 2,650,896, 1 September 1953. [Google Scholar]
- Takaaki, M.; Zhenya, Z. Method for Producing Vitamin B12 from Hydrogen-Metabolizing Methane Bacte-Rium. U.S. Patent 2005/0227332 A1, 13 October 2005. [Google Scholar]
- Barg, H.; Jahn, D. Method for the Production of Vitamin B12. U.S. Patent 2006/0105432 A1, 18 May 2006. [Google Scholar]
- Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; Bastos, M.D.L.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.; Gropp, J.; et al. Safety and Efficacy of Vitamin B12 (in the Form of Cyanocobalamin) Produced by Ensifer spp. as a Feed Additive for All Animal Species Based on a Dossier Submitted by VITAC EEIG. EFSA J. 2018, 16, e05336. [Google Scholar] [CrossRef]
- Rizzo, G.; Laganà, A.S.; Rapisarda, A.M.C.; la Ferrera, G.M.G.; Buscema, M.; Rossetti, P.; Nigro, A.; Muscia, V.; Valenti, G.; Sapia, F.; et al. Vitamin B12 among Vegetarians: Status, Assessment and Supplementation. Nutrients 2016, 8, 767. [Google Scholar] [CrossRef]
- Watanabe, F.; Yabuta, Y.; Tanioka, Y.; Bito, T. Biologically Active Vitamin B12 Compounds in Foods for Preventing Deficiency among Vegetarians and Elderly Subjects. J. Agric. Food Chem. 2013, 61, 6769–6775. [Google Scholar] [CrossRef]
- Titcomb, T.J.; Tanumihardjo, S.A. Global Concerns with B Vitamin Statuses: Biofortification, Fortification, Hidden Hunger, Interactions, and Toxicity. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1968–1984. [Google Scholar] [CrossRef]
- Oh, S.; Cave, G.; Lu, C. Vitamin B12 (Cobalamin) and Micronutrient Fortification in Food Crops Using Nanoparticle Technology. Front. Plant Sci. 2021, 12, 1451. [Google Scholar] [CrossRef]
- Pawlak, R.; Rusher, D.R. A Review of 89 Published Case Studies of Vitamin B12 Deficiency. J. Hum. Nutr. Food Sci. 2013, 1, 1008. [Google Scholar]
- Watkins, D.; Rosenblatt, D.S. Inborn Errors of Cobalamin Absorption and Metabolism. Am. J. Med. Genet. Part C Semin. Med. Genet. 2011, 157, 33–44. [Google Scholar] [CrossRef]
- Shepherd, G.; Velez, L.I. Role of Hydroxocobalamin in Acute Cyanide Poisoning. Ann. Pharmacother. 2008, 42, 661–669. [Google Scholar] [CrossRef]
- Linnell, J.C.; Smith, A.D.; Smith, C.L.; Wilson, M.J.; Matthews, D.M. Effects of Smoking on Metabolism and Excretion of Vitamin B12. BMJ 1968, 2, 215–216. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.; Rosenberg, I.; Oakley, G.; Omenn, S. Considering the Case for Vitamin B12 Fortification of Flour. Food Nutr. Bull. 2010, 31 (Suppl. S1), S36–S46. [Google Scholar] [CrossRef] [PubMed]
- Hamel, J. A Review of Acute Cyanide Poisoning with a Treatment Update. Crit. Care Nurse 2011, 31, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Reports and Data Vitamin B12 (Cobalamin) Market to Reach USD 409.7 Million By 2027. Available online: https://www.globenewswire.com/news-release/2020/08/26/2084313/0/en/Vitamin-B12-Cobalamin-Market-To-Reach-USD-409-7-Million-By-2027-Reports-and-Data.html (accessed on 22 April 2022).
- Rabah, H.; Rosa do Carmo, F.L.; Jan, G. Dairy Propionibacteria: Versatile Probiotics. Microorganisms 2017, 5, 24. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Y. (Eds.) Atlas of Oral Microbiology: From Healthy Microflora to Disease; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Acevedo-Rocha, C.G.; Gronenberg, L.S.; Mack, M.; Commichau, F.M.; Genee, H.J. Microbial Cell Factories for the Sustainable Manufacturing of B Vitamins. Curr. Opin. Biotechnol. 2019, 56, 18–29. [Google Scholar] [CrossRef]
Microorganism/Strain | Main Media Components | Scale | Summary/Innovation | Volumetric Production | Volumetric Productivity (mg/L/h) | Reference |
---|---|---|---|---|---|---|
B. megaterium DSM 319 | Terrific broth media | 250 mL shake flask | Precursor supplementation and pO2 control | 0.21 mg/L c | 0.006 mg/L/h c | [47] |
Lactobacillus reuteri ZJ03 | Soymilk | 250 mL shake flask | Different carbon source supplementation | 0.204 mg/L | 0.003 mg/L/h | [49] |
P. freudenreichii subsp. shermanii NRRL-B-4327, 3523 and NRRL-B-3524 | Sodium lactate broth | 250 mL shake flask | Vitamin B12 analogue addition | 31 mg/L | 0.51 mg/L | [50] |
P. freudenreichii CICC 10019 | Glucose, CSL a | 7 L stirred tankbioreactor | Expanded-bed bioreactor (EBAB) with crop stark hydrolysates | 47.6 mg/L | 0.18 mg/L/h | [51] |
P. freudenreichii CICC 10019 | Glucose, CSL | 7 L stirred tank bioreactor | EBAB bioreactor | 43.4 mg/L | 0.27 mg/L/h | [52] |
P. freudenreichii CICC 10019 | Glucose, CSL | 1.5 L stirred tank bioreactor | EBAB bioreactor and DMBI addition | 58.8 mg/L | 0.59 mg/L/h | [53] |
P. freudenreichii CICC 10019 | Glucose/glycerol, CSL | 5 L stirred tank bioreactor | EBAB bioreactor, glycerol as carbon source and crop stalk hydrolysate as nitrogen source | 43 mg/L | 0.36 mg/L/h | [54] |
P. freudenreichii DF13 | Supplemented whey permeate | 1 L stirred tank bioreactor | Co-culture with Lactobacillus plantarum SM39 for simultaneous folate and Cbl production | 0.75 mg/L | 0.004 mg/L/h | [55] |
P. freudenreichii DSM 20271//Lactobacillus brevis ATCC 14869 | Wheat bran dough | n.d. b | Co-fermentation in wheat bran dough for in situ production of Vitamin B12 | 332 ng/g c | n.d. b | [56] |
P. freudenreichii IFO 12424//Ralstonia eutropha H16 (ATCC17699) | Polypeptone, casein, yeast extract | 5 L stirred tank bioreactor | Cell recycling system and co-culture with Ralstonia eutropha for decreasing propionic acid inhibition | 8 mg/L c | 0.14 mg/L/h c | [57] |
P. freudenreichii PTCC 1674. | Tryptone, yeast extract, different carbon sources | 100 cm3 | Waste frying sun oil as a carbon source for vitamin B12 production | 2.74 mg/L | 0.02 mg/L/h | [58] |
P. freudenreichii subsp. shermanii ATCC 13673 | Glucose, yeast extract | 2 L stirred tank bioreactor | Inoculum volume, pH control and substrate concentration optimization | 0.087 mg/L | 0.002 mg/L/h | [59] |
P. freudenreichii subsp. shermanii CICC 10019 | Glucose, CSL | 100 L fermenter | Addition of DMBI precisely with Ado-Cbl control strategy | 39.15 mg/L | 0.32 mg/L/h | [60] |
P. freudenreichii subsp. shermanii | Glycerol, tryptone, casein, DMBI | 200 mL shake flask | Media optimization by design of experiments with crude glycerol as the main carbon source | 4.01 mg/L | 0.024 mg/L/h | [61] |
P. freudenreichii subsp. shermanii | Whey based media | 20 mL tubes | DMBI, Nicotinamide and Riboflavin supplementation | 5.3 mg/L | 0.03 mg/L/h | [62] |
P. freudenreichii subsp. shermanii | Food-like media (cereal matrices) | n.d. b | Precursor supplementation in different cereal-like matrices | 1.5 mg/Kg | 0.009 mg/Kg/h | [63] |
P. freudenreichii subsp. shermanii 2067 | Cheese-based propionic media/whey-based liquid media | 50 mL shake flask | Production in food-like conditions without DMBI addition | 0.124 mg/L c | 0.0013 mg/L/h | [64] |
P. freudenreichii CICC10019 | Glucose, yeast extract, CSL | 100 mL flasks | Media optimization by statistical analysis | 8.32 mg/L | 0.068 mg/L/h | [65] |
P. freudenreichii CICC10019 | Glucose, CSL | 7 L fermenter | Membrane separation-coupled fed-batch fermentation | 21.6 mg/L | 0.16 mg/L/h | [66] |
P. denitrificans | Maltose, peptone, betaine | 250 mL shake flask | Addition of rotenone as a respiration inhibitor for enhanced production | 54.7 mg/L | 0.57 mg/L/h | [67] |
P. denitrificans | Beet molasses, sucrose, betaine | 120 m3 fermenter | Glucose-betaine feeding, pH control strategy | 214.13 mg/L c | 1.27 mg/L/h c | [68] |
P. denitrificans | Glucose, CSL, betaine | 120 m3 fermenter | Stepwise oxygen uptake rate control strategy | 188 mg/L | 1.12 mg/L/h | [69] |
P. denitrificans | Glucose, CSL, betaine | 50 L fermenter | Effects of specific oxygen consumption rate on cell morphology and production | 213.1 mg/L | 1.88 mg/L/h | [70] |
P. denitrificans | Maltose, peptone, betaine | 250 mL shake flask | Betaine supplementation | 58.61 mg/L | 0.48 mg/L/h | [71] |
P. denitrificans | Maltose syrup, CSL, betaine | 120 m3 fermenter | Maltose syrup and CSL as the main substrates | 198.27 mg/L | 1.10 mg/L/h | [72] |
P. denitrificans | Glucose, CSL, betaine | 120 m3 fermenter | pO2 stepwise control | 198.80 mg/L | 1.18 mg/L/h | [73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calvillo, Á.; Pellicer, T.; Carnicer, M.; Planas, A. Bioprocess Strategies for Vitamin B12 Production by Microbial Fermentation and Its Market Applications. Bioengineering 2022, 9, 365. https://doi.org/10.3390/bioengineering9080365
Calvillo Á, Pellicer T, Carnicer M, Planas A. Bioprocess Strategies for Vitamin B12 Production by Microbial Fermentation and Its Market Applications. Bioengineering. 2022; 9(8):365. https://doi.org/10.3390/bioengineering9080365
Chicago/Turabian StyleCalvillo, Álvaro, Teresa Pellicer, Marc Carnicer, and Antoni Planas. 2022. "Bioprocess Strategies for Vitamin B12 Production by Microbial Fermentation and Its Market Applications" Bioengineering 9, no. 8: 365. https://doi.org/10.3390/bioengineering9080365
APA StyleCalvillo, Á., Pellicer, T., Carnicer, M., & Planas, A. (2022). Bioprocess Strategies for Vitamin B12 Production by Microbial Fermentation and Its Market Applications. Bioengineering, 9(8), 365. https://doi.org/10.3390/bioengineering9080365