Naturally Equipped Urinary Exosomes Coated Poly (2−ethyl−2−oxazoline)−Poly (D, L−lactide) Nanocarriers for the Pre−Clinical Translation of Breast Cancer
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of UEs
2.3. Preparation of UEPP−D NPs
2.4. Western Blot Analysis
2.5. Characterization
2.6. Drug Release
2.7. Cell Culture and Cellular Uptake Assay
2.8. Cell Viability Assay
2.9. Apoptosis Study
2.10. In Vivo Tumor Targeting
2.11. Anti−Phagocytosis and Pharmacokinetics Study
2.12. In Vivo Therapeutic Efficacy and Side Toxicity
2.13. Statistical Analysis
3. Results and Discussion
3.1. Preparation and Characterization of UEPP−D NPs
3.2. In Vitro Cellular Uptake and Homologous Targeting Analysis
3.3. In Vitro Anti−Tumor Analysis
3.4. In Vitro Anti−Phagocytosis, In Vivo Tumor Targeting, and Pharmacokinetics Study
3.5. In Vivo Therapeutic Efficacy and Systemic Toxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pan, S.; Pei, L.; Zhang, A.; Zhang, Y.; Zhang, C.; Huang, M. Passion fruit−like exosome−PMA/Au−BSA@Ce6 nanovehicles for real−time fluorescence imaging and enhanced targeted photodynamic therapy with deep penetration and superior retention behavior in tumor. Biomaterials 2020, 230, 119606. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Zheng, Z.; Zhu, L.; Pang, L.; Ma, J.; Zhu, S.; Du, L.; Jin, Y. 3D printing-based drug−loaded implanted prosthesis to prevent breast cancer recurrence post-conserving surgery. Asian J. Pharm. Sci. 2021, 16, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Shin, D.H.; Kim, J.S. Let−7 miRNA and CDK4 siRNA co encapsulated in Herceptin−conjugated liposome for breast cancer stem cells. Asian J. Pharm. Sci. 2020, 15, 472–481. [Google Scholar] [CrossRef]
- Pillai, S.C.; Borah, A.; Jindal, A.; Jacob, E.M.; Yamamoto, Y.; Kumar, D.S. Encapsulated Nanoformulation for Overcoming Drug−Resistant Breast Cancers. Asian J. Pharm. Sci. 2020, 15, 701–712. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, J.; Chen, S.; Guo, Q.; Jing, Z.; Huang, B.; Pan, Y.; Wang, L.; Hu, Y. Zoledronate and SPIO dual—Targeting nanoparticles loaded with ICG for photothermal therapy of breast cancer tibial metastasis. Sci. Rep. 2020, 10, 13675. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Yang, H.; Wan, C.; Zheng, D.; Zhou, Z.; Xie, S.; Xu, L.; Du, J.; Li, F. Her2−Functionalized Gold−Nanoshelled Magnetic Hybrid Nanoparticles: A Theranostic Agent for Dual−Modal Imaging and Photothermal Therapy of Breast Cancer. Nanoscale Res. Lett. 2019, 14, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Liu, J.; Li, X.; Li, F.; Lee, R.J.; Sun, F.; Li, Y.; Liu, Z.; Teng, L. Trastuzumab−Coated Nanoparticles Loaded with Docetaxel for Breast Cancer Therapy. Dose Response 2019, 17, 1559325819872583. [Google Scholar] [CrossRef]
- Fasehee, H.; Dinarvand, R.; Ghavamzadeh, A.; Esfandyari−Manesh, M.; Moradian, H.; Faghihi, S.; Ghaffari, S.H. Delivery of disulfiram into breast cancer cells using folate-receptor-targeted PLGA-PEG nanoparticles: In vitro and in vivo investigations. J. Nanobiotechnol. 2016, 14, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, J.; Jiang, B.; Luo, Y.; Zou, J.; Gao, X.; Xu, D.; Du, Y.; Hao, L. Multifunctional Nanoparticles Encapsulating Astragalus Polysaccharide and Gold Nanorods in Combination with Focused Ultrasound for the Treatment of Breast Cancer. Int. J. Nanomed. 2020, 15, 4151–4169. [Google Scholar] [CrossRef]
- Devulapally, R.; Lee, T.; Barghava−shah, A.; Sekar, T.V. Ultrasound−guided delivery of thymidine kinase–nitroreductase dual therapeutic genes by PEGylated−PLGA/PIE nanoparticles for enhanced triple negative breast cancer therapy. Nanomedicine 2018, 13, 1051–1066. [Google Scholar] [CrossRef] [PubMed]
- Valcourt, D.M.; Dang, M.N.; Day, E.S. IR820−loaded PLGA nanoparticles for photothermal therapy of triple−negative breast cancer. J. Biomed. Mater. Res. A 2020, 107, 1702–1712. [Google Scholar] [CrossRef] [PubMed]
- Duan, T.; Xu, Z.; Sun, F.; Wang, Y.; Zhang, J.; Luo, C.; Wang, M. HPA aptamer functionalized paclitaxel−loaded PLGA nanoparticles for enhanced anticancer therapy through targeted effects and microenvironment modulation. Biomed. Pharmacother. 2019, 117, 109121. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Yang, B.; Zhou, X.; Han, Q.; Zou, J.; Cheng, L. Stimuli−responsive drug delivery systems for head and neck cancer therapy. Drug Deliv. 2021, 28, 272–284. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Chen, Q.; Zhang, J.; Li, W.; Hu, H.; Zhao, X.; Qiao, M.; Chen, D. Synthetic polymeric mixed micelles target to lymph node triggering enhanced cellular and humoral immune responses. ACS Appl. Mater. Interfaces 2018, 10, 2874–2889. [Google Scholar] [CrossRef] [PubMed]
- Venugopal, V.; Krishnan, S.; Palanimuthu, V.R.; Sankarankutty, S.; Kalaimani, J.K.; Karupiah, S.; Kit, N.S.; Hock, T.T. Anti−EGFR anchored paclitaxel loaded PLGA nanoparticles for the treatment of triple negative breast cancer. In−vitro and in−vivo anticancer activities. PLoS ONE 2018, 13, e0206109. [Google Scholar] [CrossRef]
- Ferreira, S.D.C.; Domingues, S.C.; Viana, D.B.; Tebaldi, M.L. Polymer−hybrid nanoparticles: Current advances in biomedical applications. Biomed. Pharmacother. 2020, 131, 110695. [Google Scholar] [CrossRef]
- Emens, L.A. Breast Cancer Immunotherapy: Facts and Hopes. Clin. Cancer Res. 2018, 24, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Yang, X.; Malichewe, C.; Li, Y.; Guo, X. Exosomal microRNAs−mediated intercellular communication and exosome−based cancer treatment. Int. J. Biol. Macromol. 2020, 158, 530–541. [Google Scholar] [CrossRef]
- Oosthuyzen, W.; Sime, N.E.L.; Ivy, J.R.; Turtle, E.J.; Street, J.M.; Pound, J.; Bath, L.E.; Webb, D.J.; Gregory, C.D.; Bailey, M.A.; et al. Quantification of human urinary exosomes by nanoparticle tracking analysis. J. Physiol. 2013, 591, 5833–5842. [Google Scholar] [CrossRef]
- Dubey, A.; Lobo, C.L.; Ravi, G.S.; Shetty, A.; Hebbar, S.; El−Zahaby, S.A. Exosomes: Emerging Implementation of Nanotechnology for Detecting and Managing Novel Corona Virus− SARS−CoV−2. Asian J. Pharm. Sci. 2022, 17, 20–34. [Google Scholar] [CrossRef]
- Xu, N.; Guo, R.; Yang, X.; Li, N.; Yu, J.; Zhang, P. Exosomes−mediated tumor treatment: One body plays multiple roles. Asian J. Pharm. Sci. 2022, 17, 385–400. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Xu, H.; Zuo, L.; Li, C.; Qiao, G. Exosomes−coated bcl−2 siRNA inhibits the growth of digestive system tumors both in vitro and in vivo. Int. J. Biol. Macromol. 2020, 161, 470–480. [Google Scholar] [CrossRef]
- Pan, S.; Zhang, Y.; Huang, M.; Deng, Z.; Zhang, A.; Pei, L. Urinary exosomes−based Engineered Nanovectors for Homologously Targeted Chemo−Chemodynamic Prostate Cancer Therapy via abrogating IGFR/AKT/NF−kB/IkB signaling. Biomaterials 2021, 275, 120946. [Google Scholar] [CrossRef]
- Tran, P.H.L.; Xiang, D.; Tran, T.T.D.; Yin, W.; Zhang, Y.; Kong, L. Exosomes and Nanoengineering: A Match Made for Precision Therapeutics. Adv. Mater. 2019, 32, 1904040. [Google Scholar] [CrossRef] [PubMed]
- Nam, G.; Choi, Y.; Kim, G.B.; Kim, S.; Kim, S.A.; Kim, I. Emerging Prospects of Exosomes for Cancer Treatment: From Conventional Therapy to Immunotherapy. Adv. Mater. 2020, 32, 2002440. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, C.; Mao, J.; Li, H.; Ding, J.; Zhou, W. Spermine modified polymeric micelles with pH−sensitive drug release for targeted and enhanced antitumor therapy. RSC Adv. 2019, 9, 11026–11037. [Google Scholar] [CrossRef] [Green Version]
- Su, F.; Yun, P.; Li, C.; Li, R.; Xi, L.; Wang, Y.; Chen, Y.; Li, S. Novel self−assembled micelles of amphiphilic poly(2−ethyl−2−oxazoline)−poly(L−lactide) diblock copolymers for sustained drug delivery. Colloids Surf. A 2019, 566, 120–127. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, L.; Hu, X.; Zhou, C.; Tang, Y.; Ma, Y.; Wang, X.; Liu, Y. Fabrication of deoxycholic acid−modified polymeric micelles and their transmembrane transport. J. Chin. Pharm. Sci. 2021, 30, 17–26. [Google Scholar]
- Wang, C.H.; Wang, C.H.; Hsiue, G.H. Polymeric micelles with a pH−responsive structure as intracellular drug carriers. J. Control. Release 2005, 108, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Gulyuz, S.; Ozkose, U.U.; Kocak, P.; Telci, D.; Yilmaz, O.; Tasdelen, M.A. In−vitro cytotoxic activities of poly(2−ethyl−2−oxazoline)−based amphiphilic block copolymers prepared by CuAAC click chemistry. Express Polym. Lett. 2018, 12, 146–158. [Google Scholar] [CrossRef]
- Vlassi, E.; Papagiannopoulos, A.; Pispas, S. Amphiphilic poly(2−oxazoline) copolymers as self−assembled carriers for drug delivery applications. Eur. Pol. J. 2017, 88, 516–523. [Google Scholar] [CrossRef]
- He, L.; Zhu, D.; Wang, J.; Wu, X. A highly efficient method for isolating urinary exosomes. Int. J. Mol. Med. 2019, 43, 83–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Zhou, Y.; Li, X.; Qu, X.; Deng, Y.; Wang, Z.; He, C.; Zou, Y.; Jin, Y.; Liu, Y. Mechanisms of pH−Sensitivity and Cellular Internalization of PEOz-b-PLA Micelles with Varied Hydrophilic/Hydrophobic Ratios and Intracellular Trafficking Routes and Fate of the Copolymer. ACS Appl. Mater. Interfaces 2017, 9, 6916–6930. [Google Scholar] [CrossRef]
- Guo, Q.; Chang, Z.; Khan, N.U.; Miao, T.; Ju, X.; Feng, H.; Zhang, L.; Sun, Z.; Li, H.; Han, L. Nanosizing Noncrystalline and Porous Silica Material—Naturally Occurring Opal Shale for Systemic Tumor Targeting Drug Delivery. ACS Appl. Mater. Interfaces 2018, 10, 25994–26004. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Miao, T.; Su, M.; Khan, N.U.; Ju, X.; Liang, H. PSMA−targeted nanoparticles for specific penetration of blood−brain tumor barrier and combined therapy of brain metastases. J. Control. Release 2020, 329, 934–947. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.U.; Ni, J.; Ju, X.; Miao, T.; Liang, H. Escape from abluminal LRP1−mediated clearance for boosted nanoparticle brain delivery and brain metastasis treatment. APSB 2021, 11, 1341–1354. [Google Scholar] [CrossRef] [PubMed]
- Jabbari, N.; Akbariazar, E.; Feqhhi, M.; Rahbarghazi, R.; Rezaie, J. Breast cancer-derived exosomes: Tumor progression and therapeutic agents. J. Cell. Physiol. 2020, 235, 6345–6356. [Google Scholar] [CrossRef]
- Haggag, Y.A.; Ibrahim, R.R. Design, Formulation and in vivo Evaluation of Novel Honokiol−Loaded PEGylated PLGA Nanocapsules for Treatment of Breast Cancer. Int. J. Nanomed. 2020, 15, 1625–1642. [Google Scholar] [CrossRef] [Green Version]
Groups | AUC0→t (µg h/mL) | MRT0→t (h) | t1/2 (h) | CL (mL/h/Kg) |
---|---|---|---|---|
Free IR780 | 37.48 ± 7.85 | 12.44 ± 2.16 | 8.72 ± 1.03 | 0.336 ± 0.085 |
PP−IR780 NPs | 149.46 ± 32.53 *** | 45.53 ± 7.27 *** | 27.44 ± 3.18 *** | 0.115 ± 0.022 *** |
UEPP−IR780 NPs | 207.54 ± 28.75 ** | 53.46 ± 6.35 ** | 31.25 ± 4.30 ** | 0.071 ± 0.021 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, J.; Mi, Y.; Wang, B.; Zhu, Y.; Ding, Y.; Ding, Y.; Li, X. Naturally Equipped Urinary Exosomes Coated Poly (2−ethyl−2−oxazoline)−Poly (D, L−lactide) Nanocarriers for the Pre−Clinical Translation of Breast Cancer. Bioengineering 2022, 9, 363. https://doi.org/10.3390/bioengineering9080363
Ni J, Mi Y, Wang B, Zhu Y, Ding Y, Ding Y, Li X. Naturally Equipped Urinary Exosomes Coated Poly (2−ethyl−2−oxazoline)−Poly (D, L−lactide) Nanocarriers for the Pre−Clinical Translation of Breast Cancer. Bioengineering. 2022; 9(8):363. https://doi.org/10.3390/bioengineering9080363
Chicago/Turabian StyleNi, Jiang, Yuanyuan Mi, Bei Wang, Yuting Zhu, Yang Ding, Yongjuan Ding, and Xia Li. 2022. "Naturally Equipped Urinary Exosomes Coated Poly (2−ethyl−2−oxazoline)−Poly (D, L−lactide) Nanocarriers for the Pre−Clinical Translation of Breast Cancer" Bioengineering 9, no. 8: 363. https://doi.org/10.3390/bioengineering9080363
APA StyleNi, J., Mi, Y., Wang, B., Zhu, Y., Ding, Y., Ding, Y., & Li, X. (2022). Naturally Equipped Urinary Exosomes Coated Poly (2−ethyl−2−oxazoline)−Poly (D, L−lactide) Nanocarriers for the Pre−Clinical Translation of Breast Cancer. Bioengineering, 9(8), 363. https://doi.org/10.3390/bioengineering9080363