Sealing Ability of Bioactive Root-End Filling Materials in Retro Cavities Prepared with Er,Cr:YSGG Laser and Ultrasonic Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Root-End Cavity Preparation
2.3. Root-End Filling Procedure
2.4. Bacterial Nutrient Leakage Model
2.5. Polymerase Chain Reaction
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Setzer, F.C.; Kohli, M.R.; Shah, S.B.; Karabucak, B.; Kim, S. Outcome of endodontic surgery: A meta-analysis of the literature—Part 2: Comparison of endodontic microsurgical techniques with and without the use of higher magnification. J. Endod. 2012, 38, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kratchman, S. Modern endodontic surgery concepts and practice: A review. J. Endod. 2006, 32, 601–623. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.F., Jr.; Rôças, I.N.; Ricucci, D.; Hulsmann, M. Causes and management of post-treatment apical periodontitis. Brit. Dent. J. 2014, 216, 305–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torabinejad, M.; Parirokh, M.; Dummer, P.M.H. Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview—part II: Other clinical applications and complications. Int. Endod. J. 2018, 51, 284–317. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Burns, R.C. Pathways of the Pulp, 8th ed.; Mosby: St. Louis, MO, USA, 2002; p. 102. [Google Scholar]
- Karlovic, Z.; Pezelj-Ribaric, S.; Miletic, I.; Jukic, S.; Grgurevic, J.; Anic, I. Erbium: YAG laser versus ultrasonic in preparation of root end cavities. J. Endod. 2005, 31, 821–823. [Google Scholar] [CrossRef]
- Chong, B.S.; Rhodes, J.S. Endodontic surgery. Br. Dent. J. 2014, 216, 281–290. [Google Scholar] [CrossRef]
- von Arx, T.; Walker, W.A., 3rd. Microsurgical instruments for root-end cavity preparation following apicoectomy: A literature review. Endod. Dent. Traumatol. 2000, 16, 47–62. [Google Scholar] [CrossRef] [Green Version]
- Bernardes, R.A.; de Moraes, I.G.; Garcia, R.B.; Bernardineli, N.; Baldi, J.V.; Victorino, F.R.; Vasconcelos, B.C.; Duarte, M.A.H.; Bramante, C.M. Evaluation of apical cavity preparation with a new type of ultrasonic diamond tip. J. Endod. 2007, 33, 484–487. [Google Scholar] [CrossRef]
- Koçak, M.M.; Koçak, S.; Görücü, S.A.J.; Yaman, S.D. Sealing ability of retrofilling materials following various root-end cavity preparation techniques. Lasers Med. Sci. 2011, 26, 427–431. [Google Scholar] [CrossRef]
- Komori, T.; Yokoyama, K.; Takato, T.; Matsumoto, K. Clinical application of the Erbium: YAG laser for apicoectomy. J. Endod. 1997, 23, 748–750. [Google Scholar] [CrossRef]
- Franzen, R.; Gutknecht, N.; Falken, S.; Heussen, N.; Meister, J. Bactericidal effect of a Nd: YAG laser on Enterococcus faecalis at pulse durations of 15 and 25 ms in dentine depths of 500 and 1000 μm. Lasers Med. Sci. 2011, 26, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Theodoro, L.H.; Zezell, D.M.; Garcia, V.G.; Haypek, P.; Nagata, M.J.H.; de Almeida, J.M.; Eduardo, C.d.P. Comparative analysis of root surface smear layer removal by different etching modalities or erbium:yttrium-aluminum-garnet laser irradiation. A scanning electron microscopy study. Lasers Med. Sci. 2010, 25, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Eren, S.K.; Görduysus, M.Ö.; Şahin, C. Sealing ability and adaptation of root-end filling materials in cavities prepared with different techniques. Microsc. Res. Tech. 2017, 80, 756–762. [Google Scholar] [CrossRef] [PubMed]
- Çırakoğlu, S.; Baddal, B.; İslam, A. The Effectiveness of Laser-Activated Irrigation on the Apical Microleakage Qualities of MTA Repair HP and NeoMTA Plus in Simulated Immature Teeth: A Comparative Study. Materials 2020, 13, 3287. [Google Scholar] [CrossRef] [PubMed]
- Corsentino, G.; Mazzitelli, C.; Mazzoni, A.; Ambu, E.; Perotto, C.; Franciosi, G.; Grandini, S. Sealing ability of two root-end filling materials at different retro-preparation lengths. J. Oral. Sci. 2022, 64, 80–84. [Google Scholar] [CrossRef]
- Clauder, T. Present status and future directions—Managing perforations. Int. Endod. J. 2022; Epub ahead of print. [Google Scholar] [CrossRef]
- Kim, S.G.; Malek, M.; Sigurdsson, A.; Lin, L.M.; Kahler, B. Regenerative endodontics: A comprehensive review. Int. Endod. J. 2018, 51, 1367–1388. [Google Scholar] [CrossRef]
- Wu, M.-K.; Kontakiotis, E.G.; Wesselink, P.R. Long-term seal provided by some root-end filling materials. J. Endod. 1998, 24, 557–560. [Google Scholar] [CrossRef]
- Camilleri, J. The chemical composition of mineral trioxide aggregate. J. Conserv. Dent. 2008, 11, 141–143. [Google Scholar] [CrossRef]
- Jovanović, L.Z.; Bajkin, B.V. Scanning electron microscopy analysis of marginal adaptation of mineral trioxide aggregate, tricalcium silicate cement, and dental amalgam as a root end filling materials. Microsc. Res. Tech. 2021, 84, 2068–2074. [Google Scholar] [CrossRef]
- Espir, C.G.; Guerreiro-Tanomaru, J.M.; Spin-Neto, R.; Chávez-Andrade, G.M.; Berbert, F.L.; Tanomaru-Filho, M. Solubility and bacterial sealing ability of MTA and root-end filling materials. J. Appl. Oral. Sci. 2016, 24, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Primathena, I.; Nurdin, D.; Hermawan, H.; Cahyanto, A. Synthesis, characterization, and antibacterial evaluation of a cost-effective endodontic sealer based on tricalcium silicate-white portland cement. Materials 2021, 14, 417. [Google Scholar] [CrossRef] [PubMed]
- Shinbori, N.; Grama, A.M.; Patel, Y.; Woodmansey, K.; He, J. Clinical outcome of endodontic microsurgery that uses EndoSequence BC Root Repair Material as the root-end filling material. J. Endod. 2015, 41, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Parirokh, M.; Torabinejad, M.; Dummer, P.M.H. Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview—part I: Vital pulp therapy. Int. Endod. J. 2018, 51, 177–205. [Google Scholar] [CrossRef] [PubMed]
- Alanezi, A.Z.; Jiang, J.; Safavi, K.E.; Spangberg, L.S.; Zhu, Q. Cytotoxicity evaluation of endosequence root repair material. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol Endod. 2010, 109, 122–125. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.; Karabucak, B.; Wang, C.; Wang, H.-G.; Koyama, E.; Kohli, M.R.; Nah, H.-D.; Kim, S. Healing after root-end microsurgery by using mineral trioxide aggregate and a new calcium silicate-based bioceramic material in dogy. J. Endod. 2015, 41, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Tran, D.; He, J.; Glickman, G.N.; Woodmansey, K.F. Comparative Analysis of Calcium Silicate-based Root Filling Materials Using an Open Apex Model. J. Endod. 2016, 42, 654–658. [Google Scholar] [CrossRef]
- Antunes, H.S.; Gominho, L.F.; Andrade, C.V., Jr.; Dessaune-Neto, N.; Alves, F.R.F.; Rôças, N.; Siquera, J.F., Jr. Sealing ability of two root-end filling materials in bacterial nutrient leakage model. J. Endod. 2016, 49, 960–965. [Google Scholar] [CrossRef]
- Viapiana, R.; Moinzadeh, A.T.; Camilleri, L.; Wesselink, P.R.; Tanomaru Filho, M.; Camilleri, J. Porosity and sealing ability of root fillings with guttapercha and BioRoot RCS or AH Plus sealers. Evaluation by three ex vivo methods. Int. Endod. J. 2016, 49, 774–782. [Google Scholar] [CrossRef]
- Generali, L.; Prati, C.; Pirani, C.; Cavani, F.; Gatto, M.R.; Gandolfi, M.G. Double dye technique and fluid filtration test to evaluate early sealing ability of an endodontic sealer. Clin. Oral. Invest. 2017, 2, 1267–1276. [Google Scholar] [CrossRef]
- Barthel, C.R.; Moshonov, J.; Shuping, G.; Orstavik, D. Bacterial leakage versus dye leakage in obturated root canals. Int. Endod. J. 1999, 32, 370–375. [Google Scholar] [CrossRef]
- Balić, M.; Lucić, R.; Mehadžić, K.; Anić, I.; Jakovljević, S.; Plačeko, V. The efficacy of photon-initiated photoacoustic streaming and sonic-activated irrigation combined with QMiX solution or soudium hypochlorite against intracanal E. faeaclis biofilm. Lasers Med. Sci. 2016, 31, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Nair, U.; Ghattas, S.; Saber, M.; Natera, M.; Walker, C.; Pileggi, R. A comparative evaluation of the sealing ability of 2 root-end filling materials: An in vitro leakage study using Enterococcus faecalis. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 2011, 112, e74–e77. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.W.; Marshal, J.G.; Sedgley, C.M. Comparison of intracanal EndoSequence root repair material and ProRoot MTA to induce pH changes in simulated root resorption defects over 4 weeks in matched pairs of human teeth. J. Endod. 2011, 37, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Roghanizad, N.; Fekrazad, R.; Kalhori, K.A.M.; Khalilak, Z.; Esmaeili, M.A.; Lizarelli, R.F.Z. A comparison of Er, Cr: YSGG laser with ultrasonic preparation on the seal of retrograde cavities. Laser Ther. 2015, 24, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.K.; Wesselink, P.R. Endodontic leakage studies reconsidered. Part I. Methodology, application and relevance. Int. Endod. J. 1993, 26, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Polesel, A.; Polesel, F.; Arakelyan, M.G.; Solimei, L.; Amaroli, A.; Signore, A. Apical leakage evaluation of two different coated carrier systems for root canal obturation using a dye penetration evaluation method. J. Contemp. Dent. Pract. 2021, 22, 979–984. [Google Scholar]
- Asawaworarit, W.; Pinyosopon, T.; Kijsamanmith, K. Comparison of apical sealing ability of bioceramic sealer and epoxy resin-based sealer using the fluid filtration technique and scanning electron microscopy. J. Dent. Sci. 2020, 15, 186–192. [Google Scholar] [CrossRef]
- Hibst, R.; Keller, U. Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate. Laser Surg. Med. 1989, 9, 338–344. [Google Scholar] [CrossRef]
- Shamsudeen, S.M.; Thavarajah, R.; Joshua, E.; Rao, U.D.K.; Kannan, R. Evaluating and comparing the morphological and histopathological changes induced by erbium:yttrium-aluminum-garnet laser and diamond bur on enamel, dentin and pulp tissue. J. Investig. Clin. Dent. 2019, 10, e12475. [Google Scholar] [CrossRef]
- Diaci, J.; Gaspric, B. Comparison of Er:YAG and Er,Cr:YSGG lasers used in dentistry. J. Lasers Health Acad. 2012, 2, 1–13. [Google Scholar]
- Birang, R.; Kiani, S.; Shokraneh, A.; Hasheminia, S.M. Effect of Nd: YAG laser on the apical seal after root-end resection and MTA retrofill: A bacterial leakage study. Lasers Med. Sci. 2015, 30, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.; Nakamura, Y.; Yamada, Y.; Kimura, Y.; Matsumoto, N.; Matsumoto, K. Effects of Er,Cr:YSGG laser irradiation in human enamel and dentin: Ablation and morphological studies. J. Clin. Laser. Med. Surg. 1999, 17, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Candaiero, G.T.; Correia, F.C.; Duarte, M.A. Evaluation of radiopacity, pH, release of calcium ions, and flow of bioceramic root canal sealer. J. Endod. 2012, 38, 842–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rechenberg, D.K.; De-Deus, G.; Zehnder, M. Potential systematic error in laboratory experiments on microbial leakage through filled root canals: Review of published articles. Int. Endod. J. 2011, 44, 183–194. [Google Scholar] [CrossRef] [PubMed]
Groups | Positive Samples | Range | Percentiles | ||
---|---|---|---|---|---|
25th | 50th (Median) | 75th | |||
US/BC-RRM | 4 | 0–6 × 106 | 0 | 0 | 2.8 × 105 |
US/MTA | 2 | 0–4 × 104 | 0 | 0 | 1.0 × 103 |
Er,Cr:YSGG/BC-RRM | 10 | 1 × 103–7 × 107 | 9.25 × 104 | 1.7 × 106 | 4.5 × 106 |
Er,Cr:YSGG/MTA | 1 | 0–6 × 103 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bago, I.; Lucić, R.; Budimir, A.; Rajić, V.; Balić, M.; Anić, I. Sealing Ability of Bioactive Root-End Filling Materials in Retro Cavities Prepared with Er,Cr:YSGG Laser and Ultrasonic Techniques. Bioengineering 2022, 9, 314. https://doi.org/10.3390/bioengineering9070314
Bago I, Lucić R, Budimir A, Rajić V, Balić M, Anić I. Sealing Ability of Bioactive Root-End Filling Materials in Retro Cavities Prepared with Er,Cr:YSGG Laser and Ultrasonic Techniques. Bioengineering. 2022; 9(7):314. https://doi.org/10.3390/bioengineering9070314
Chicago/Turabian StyleBago, Ivona, Ružica Lucić, Ana Budimir, Valentina Rajić, Merima Balić, and Ivica Anić. 2022. "Sealing Ability of Bioactive Root-End Filling Materials in Retro Cavities Prepared with Er,Cr:YSGG Laser and Ultrasonic Techniques" Bioengineering 9, no. 7: 314. https://doi.org/10.3390/bioengineering9070314
APA StyleBago, I., Lucić, R., Budimir, A., Rajić, V., Balić, M., & Anić, I. (2022). Sealing Ability of Bioactive Root-End Filling Materials in Retro Cavities Prepared with Er,Cr:YSGG Laser and Ultrasonic Techniques. Bioengineering, 9(7), 314. https://doi.org/10.3390/bioengineering9070314