Generation of an Adequate Perfusion Network within Dense Collagen Hydrogels Using Thermoplastic Polymers as Sacrificial Matrix to Promote Cell Viability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collagen Extraction and Purification
2.2. Design of the Sacrificial Matrix
2.3. Preparation of the Constructs
2.4. Differential Scanning Calorimetry
2.5. Rheological Measurements
2.6. Scanning Electron Microscopy
2.7. MicroCT Imaging
2.8. Diffusion Study
2.9. Cell Cultivation
2.10. Live/Dead Assay
2.11. Statistical Analysis
3. Results and Discussion
3.1. Thermoplastics Screening
3.2. Dichloromethane Treatment and Collagen Physico-Chemical Properties
3.3. Sacrificial Matrix Design Optimization
3.4. Cell Colonization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Place, E.S.; Evans, N.D.; Stevens, M.M. Complexity in biomaterials for tissue engineering. Nat. Mater. 2009, 8, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Chieh, H.-F.; Sun, Y.; Liao, J.-D.; Su, F.-C.; Zhao, C.; Amadio, P.C.; An, K.-N. Effects of cell concentration and collagen concentration on contraction kinetics and mechanical properties in a bone marrow stromal cell-collagen construct. J. Biomed. Mater. Res. A 2009, 93, 1132–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helary, C.; Zarka, M.; Giraud-Guille, M.M. Fibroblasts within Concentrated Collagen Hydrogels Favour Chronic Skin Wound Healing. J. Tissue Eng. Regen. Med. 2012, 6, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Helary, C.; Abed, A.; Mosser, G.; Louedec, L.; Letourneur, D.; Coradin, T.; Giraud-Guille, M.M.; Meddahi-Pellé, A. Evaluation of dense collagen matrices as medicated wound dressing for the treatment of cutaneous chronic wounds. Biomater. Sci. 2015, 3, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Helary, C.; Abed, A.; Mosser, G.; Louedec, L.; Meddahi-Pellé, A.; Giraud-Guille, M.M. Synthesis and in vivo integration of improved concentrated collagen hydrogels. J. Tissue Eng. Regen. Med. 2011, 5, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Nazhat, S.N.; Abou Neel, E.A.; Kidane, A.; Ahmed, I.; Hope, C.; Kershaw, M.; Lee, P.D.; Stride, E.; Saffari, N.; Knowles, J.C.; et al. Controlled microchannelling in dense collagen scaffolds by soluble phosphate glass fibers. Biomacromolecules 2007, 8, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Bell, E.; Ivarsson, B.; Merrill, C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. USA 1979, 76, 1274–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cioffi, M.; Küffer, J.; Ströbel, S.; Dubini, G.; Martin, I.; Wendt, D. Computational evaluation of oxygen and shear stress distributions in 3D perfusion culture systems: Macro-scale and micro-structured models. J. Biomech. 2008, 41, 2918–2925. [Google Scholar] [CrossRef] [PubMed]
- Radisic, M.; Malda, J.; Epping, E.; Geng, W.; Langer, R.; Vunjak-Novakovic, G. Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol. Bioeng. 2006, 93, 332–343. [Google Scholar] [CrossRef] [PubMed]
- Helary, C.; Ovtracht, L.; Coulomb, B.; Godeau, G.; Giraudguille, M. Dense Fibrillar collagen matrices: A model to study myofibroblast behaviour during wound healing. Biomaterials 2006, 27, 4443–4452. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.D.D.M.; Gomes, R.A.D.S.; Hial, V.; Lopes, I.C.R.; Reis, M.A.D.; Teixeira, V.D.P.A. Correlations between the collagen content of the human left ventricular myocardium, measured by biochemical and morphometric methods. Arq. Bras. Cardiol. 2002, 79, 15–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoker, M.E.; Gerdes, A.M.; May, J.F. Regional differences in capillary density and myocyte size in the normal human heart. Anat. Rec. 1982, 202, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Chrobak, K.M.; Potter, D.R.; Tien, J. Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res. 2006, 71, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, K.; Shimizu, T.; Horaguchi, S.; Sekine, H.; Yamato, M.; Umezu, M.; Okano, T. In vitro engineering of vascularized tissue surrogates. Sci. Rep. 2013, 3, 1316. [Google Scholar] [CrossRef] [PubMed]
- Mori, N.; Morimoto, Y.; Takeuchi, S. Skin integrated with perfusable vascular channels on a chip. Biomaterials 2017, 116, 48–56. [Google Scholar] [CrossRef]
- Salameh, S.; Tissot, N.; Cache, K.; Lima, J.; Suzuki, I.; Marinho, P.A.; Rielland, M.; Soeur, J.; Takeuchi, S.; Germain, S.; et al. A perfusable vascularized full-thickness skin model for potential topical and systemic applications. Biofabrication 2021, 13, 035042. [Google Scholar] [CrossRef]
- Camman, M.; Joanne, P.; Agbulut, O.; Hélary, C. 3D models of dilated cardiomyopathy: Shaping the chemical, physical and topographical properties of biomaterials to mimic the cardiac extracellular matrix. Bioact. Mater. 2021, 7, 275–291. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Lee, V.; Polio, S.; Keegan, P.; Lee, J.-H.; Fischer, K.; Park, J.-K.; Yoo, S.-S. On-Demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnol. Bioeng. 2010, 105, 1178–1186. [Google Scholar] [CrossRef] [PubMed]
- Kolesky, D.B.; Truby, R.L.; Gladman, A.S.; Busbee, T.A.; Homan, K.A.; Lewis, J.A. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 2014, 26, 3124–3130. [Google Scholar] [CrossRef] [PubMed]
- Gobeaux, F. Phases Denses de Collagène de Type I:Transition Isotrope/Cholestérique, Fibrillogenèse et Minéralisation. Ph.D. Thesis, Université Pierre et Marie Curie-Paris VI, Paris, France, 2008. [Google Scholar]
- Teixeira, S.; Eblagon, K.M.; Miranda, F.; R. Pereira, M.F.; Figueiredo, J.L. Towards controlled degradation of poly (lactic) acid in technical applications. C 2021, 7, 42. [Google Scholar] [CrossRef]
Sacrificial Material | Full Name | Dissolution |
---|---|---|
Z-PLA | PolyLacticAcid | NH3 |
Dichloromethane | ||
Z-ABS | Acrylonitrile butadiene styrene | Acetone |
Dichloromethane | ||
Z-HIPS | High impact polystyrene | Dichloromethane |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camman, M.; Marquaille, P.; Joanne, P.; Agbulut, O.; Hélary, C. Generation of an Adequate Perfusion Network within Dense Collagen Hydrogels Using Thermoplastic Polymers as Sacrificial Matrix to Promote Cell Viability. Bioengineering 2022, 9, 313. https://doi.org/10.3390/bioengineering9070313
Camman M, Marquaille P, Joanne P, Agbulut O, Hélary C. Generation of an Adequate Perfusion Network within Dense Collagen Hydrogels Using Thermoplastic Polymers as Sacrificial Matrix to Promote Cell Viability. Bioengineering. 2022; 9(7):313. https://doi.org/10.3390/bioengineering9070313
Chicago/Turabian StyleCamman, Marie, Pierre Marquaille, Pierre Joanne, Onnik Agbulut, and Christophe Hélary. 2022. "Generation of an Adequate Perfusion Network within Dense Collagen Hydrogels Using Thermoplastic Polymers as Sacrificial Matrix to Promote Cell Viability" Bioengineering 9, no. 7: 313. https://doi.org/10.3390/bioengineering9070313
APA StyleCamman, M., Marquaille, P., Joanne, P., Agbulut, O., & Hélary, C. (2022). Generation of an Adequate Perfusion Network within Dense Collagen Hydrogels Using Thermoplastic Polymers as Sacrificial Matrix to Promote Cell Viability. Bioengineering, 9(7), 313. https://doi.org/10.3390/bioengineering9070313