A Liquid Metal-Enhanced Wearable Thermoelectric Generator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. LM-WTEG Working Principle
2.3. LM-WTEG Fabrication
2.4. Energy Management and Low-Power Sensors Design
2.5. Characterization Method
3. Results and Discussion
3.1. Thermal Performance of the LM-Finned Heat Sink
3.2. Performance of the LM-WTEG
3.3. Application of the LM-WTEG for Body Heat Harvesting
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Nozariasbmarz, A.; Collins, H.; Dsouza, K.; Polash, M.H.; Hosseini, M.; Hyland, M.; Liu, J.; Malhotra, A.; Ortiz, F.M.; Mohaddes, F.; et al. Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Appl. Energy 2020, 258, 114069. [Google Scholar] [CrossRef]
- Thielen, M.; Sigrist, L.; Magno, M.; Hierold, C.; Benini, L. Human body heat for powering wearable devices: From thermal energy to application. Energy Convers. Manag. 2017, 131, 44–54. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.R.; Ma, J.L.; Dai, L.; Yin, T.; He, Z.Z. A High-performance wearable thermoelectric generator with comprehensive optimization of thermal resistance and voltage boosting conversion. Appl. Energy 2022, 312, 118696. [Google Scholar] [CrossRef]
- Jia, Y.H.; Jiang, Q.L.; Sun, H.D.; Liu, P.P.; Hu, D.H.; Pei, Y.Z.; Liu, W.S.; Crispin, X.; Fabiano, S.; Ma, Y.G.; et al. Wearable Thermoelectric Materials and Devices for Self-Powered Electronic Systems. Adv. Mater. 2021, 33, 2102990. [Google Scholar] [CrossRef]
- Dargusch, M.; Liu, W.D.; Chen, Z.G. Thermoelectric Generators: Alternative Power Supply for Wearable Electrocardiographic Systems. Adv. Sci. 2020, 7, 2001362. [Google Scholar] [CrossRef]
- Soleimani, Z.; Zoras, S.; Ceranic, B.; Cui, Y.L.; Shahzad, S. A comprehensive review on the output voltage/power of wearable thermoelectric generators concerning their geometry and thermoelectric materials. Nano Energy 2021, 89, 106325. [Google Scholar] [CrossRef]
- Chen, S.; Wang, H.Z.; Zhao, R.Q.; Rao, W.; Liu, J. Liquid Metal Composites. Matter 2020, 146, 1446–1480. [Google Scholar] [CrossRef]
- Tang, S.Y.; Tabor, C.; Kalantar-Zadeh, K.; Dickey, M.D. Gallium liquid metal: The Devil’s elixir. Annu. Rev. Mater. Res. 2021, 51, 381–408. [Google Scholar] [CrossRef]
- Sun, X.Y.; Guo, R.; Yuan, B.; Chen, S.; Wang, H.Z.; Dou, M.J.; Liu, J.; He, Z.Z. Low-temperature triggered shape transformation of liquid metal microdroplets. ACS Appl. Mater. Interfaces 2020, 12, 38386–38396. [Google Scholar] [CrossRef]
- Dou, M.J.; Lu, C.N.; Liu, J.; Rao, W. Liquid helium enhanced vitrification efficiency of human bone-derived mesenchymal stem cells and human embryonic stem cells. Bioengineering 2021, 8, 162. [Google Scholar] [CrossRef]
- Liang, S.T.; Chen, X.Y.; Li, F.J.; Song, N. Laser-engraved liquid metal circuit for wearable electronics. Bioengineering 2022, 9, 59. [Google Scholar] [CrossRef]
- Chen, S.; Liu, J. Pervasive liquid metal printed electronics: From concept incubation to industry. IScience 2021, 24, 102026. [Google Scholar] [CrossRef]
- Johnston, L.; Yang, J.; Han, J.L.; Kalantar-Zadeh, K.; Tang, J.B. Intermetallic wetting enabled high resolution liquid metal patterning for 3D and flexible electronics. J. Mater. Chem. C 2022, 10, 921–931. [Google Scholar] [CrossRef]
- Wang, H.Z.; Chen, S.; Yuan, B.; Liu, J.; Sun, X.Y. Liquid metal transformable machines. Acc. Mater. Res. 2021, 2, 1227–1238. [Google Scholar] [CrossRef]
- Cao, L.X.; Yu, D.H.; Xia, Z.S.; Wan, H.Y.; Liu, C.K.; Yin, T.; He, Z.Z. Ferromagnetic liquid metal putty-like material with transformed shape and reconfigurable polarity. Adv. Mater. 2020, 32, 2000827. [Google Scholar] [CrossRef]
- Deng, Y.G.; Jiang, Y.; Liu, J. Low-melting-point liquid metal convective heat transfer: A review. Appl. Therm. Eng. 2021, 193, 117021. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, H.; Jiang, F.C.; He, Z.Z. Self-driven liquid metal cooling connector for direct current high power charging to electric vehicle. Etransportation 2021, 10, 100132. [Google Scholar] [CrossRef]
- Yu, D.H.; Liao, Y.; Song, Y.C.; Wang, S.L.; Wan, H.Y.; Zeng, Y.H.; Yin, T.; Yang, W.H.; He, Z.Z. A super-stretchable liquid metal foamed elastomer for tunable control of electromagnetic waves and thermal transport. Adv. Sci. 2020, 7, 202000177. [Google Scholar] [CrossRef]
- Liu, C.K.; He, Z.Z. High heat flux thermal management through liquid metal driven with electromagnetic induction pump. Front. Energy 2022, 1–11. [Google Scholar] [CrossRef]
- Guo, S.; Wang, P.; Zhang, J.C.; Luan, W.P.; Xia, Z.S.; Cao, L.X.; He, Z.Z. Flexible liquid metal coil prepared for electromagnetic energy harvesting and wireless charging. Front. Energy 2019, 13, 474–482. [Google Scholar] [CrossRef]
- Jeong, S.H.; Cruz, F.J.; Chen, S.; Gravier, L.; Liu, J.H.; Wu, Z.G.; Hjort, K.; Zhang, S.L.; Zhang, Z.B. Stretchable Thermoelectric Generators Metallized with Liquid Alloy. ACS Appl. Mater. Interfaces 2017, 9, 15791–15797. [Google Scholar] [CrossRef]
- Zhu, P.C.; Shi, C.Q.; Wang, Y.L.; Wang, Y.L.; Yu, Y.D.; Wang, Y.; Deng, Y.; Xiao, J.L. Recyclable, Healable, and Stretchable High-Power Thermoelectric Generator. Adv. Energy Mater. 2021, 11, 2100920. [Google Scholar] [CrossRef]
- Suarez, F.; Parekh, D.P.; Ladd, C.; Vashaee, D.; Dickey, M.D.; Ozturk, M.C. Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics. Appl. Energy 2017, 202, 736–745. [Google Scholar] [CrossRef]
- Sargolzaeiaval, Y.; Ramesh, V.P.; Neumann, T.V.; Misra, V.; Vashaee, D.; Dickey, M.D.; Ozturk, M.C. Flexible thermoelectric generators for body heat harvesting—Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects. Appl. Energy 2020, 262, 114370. [Google Scholar] [CrossRef]
- Ramesh, V.P.; Sargolzaeiaval, Y.; Neumann, T.; Misra, V.; Vashaee, D.; Dickey, M.D.; Ozturk, M.C. Flexible thermoelectric generator with liquid metal interconnects and low thermal conductivity silicone filler. NPJ Flex. Electron. 2021, 5, 5. [Google Scholar] [CrossRef]
- Jung, S.J.; Shin, J.; Lim, S.S.; Kwon, B.; Baek, S.H.; Kim, S.K.; Park, H.H.; Kim, J.S. Porous organic filler for high efficiency of flexible thermoelectric generator. Nano Energy 2021, 81, 105604. [Google Scholar] [CrossRef]
- Lee, D.; Park, H.; Park, G.; Kim, J.; Kim, H.; Cho, H.; Han, S.; Kim, W. Liquid-metal-electrode-based compact, flexible, and high-power thermoelectric device. Energy 2019, 188, 116019. [Google Scholar] [CrossRef]
- Kim, C.S.; Yang, H.M.; Lee, J.; Lee, G.S.; Choi, H.; Kim, Y.J.; Lim, S.H.; Cho, S.H.; Cho, B.J. Self-Powered Wearable Electrocardiography Using a Wearable Thermoelectric Power Generator. ACS Energy Lett. 2018, 3, 501–507. [Google Scholar] [CrossRef]
- Lee, G.; Kim, C.S.; Kim, S.; Kim, Y.J.; Choi, H.; Cho, B.J. Flexible heatsink based on a phase-change material for a wearable thermoelectric generator. Energy 2019, 179, 12–18. [Google Scholar] [CrossRef]
- Hong, S.; Gu, Y.; Seo, J.K.; Wang, J.; Liu, P.; Meng, Y.S.; Xu, S.; Chen, R.K. Wearable thermoelectrics for personalized thermoregulation. Sci. Adv. 2019, 5, eaaw0536. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Kim, J.; Roh, K.; Park, G.; Kim, W. High power density of radiative-cooled compact thermoelectric generator based on body heat harvesting. Nano Energy 2021, 87, 106180. [Google Scholar] [CrossRef]
- He, Z.Z. A coupled electrical-thermal impedance matching model for design optimization of thermoelectric generator. Appl. Energy 2020, 269, 115037. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Li, Z.; Yang, Y.; Hu, C.; Wang, Z.; Lu, Y. A Liquid Metal-Enhanced Wearable Thermoelectric Generator. Bioengineering 2022, 9, 254. https://doi.org/10.3390/bioengineering9060254
Liu W, Li Z, Yang Y, Hu C, Wang Z, Lu Y. A Liquid Metal-Enhanced Wearable Thermoelectric Generator. Bioengineering. 2022; 9(6):254. https://doi.org/10.3390/bioengineering9060254
Chicago/Turabian StyleLiu, Wei, Zhenming Li, Yanfang Yang, Chengbo Hu, Zhen Wang, and Yongling Lu. 2022. "A Liquid Metal-Enhanced Wearable Thermoelectric Generator" Bioengineering 9, no. 6: 254. https://doi.org/10.3390/bioengineering9060254
APA StyleLiu, W., Li, Z., Yang, Y., Hu, C., Wang, Z., & Lu, Y. (2022). A Liquid Metal-Enhanced Wearable Thermoelectric Generator. Bioengineering, 9(6), 254. https://doi.org/10.3390/bioengineering9060254