Research Progress on the Synthetic Biology of Botanical Biopesticides
Abstract
:1. Introduction
2. Botanical Biopesticides
2.1. Current Status of Botanical Pesticides Development
2.2. Botanical Biopesticides and Synthetic Biology
2.2.1. Selection and Modification of Highly Adaptable Chassis
2.2.2. Analysis of Plant Natural Product Synthesis Pathways and Mining of Key Enzymes
2.2.3. Optimization and Integration of Synthetic Biology Components
3. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Wang, C.; Bo, R. Current situation and Countermeasures of pesticide use in China. Pestic. Sci. Adm 2016, 2, 4–8. [Google Scholar]
- Park, M.G.; Blitzer, E.J.; Gibbs, J.; Losey, J.E.; Danforth, B.N. Negative effects of pesticides on wild bee communities can be buffered by landscape context. Proc. R. Soc. B Biol. Sci. 2015, 282, 20150299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whalon, M.E.; Motasanchez, D.; Hollingworth, R.M. Analysis of Global Pesticide Resistance in Arthropods; CABI: Wallingford, UK, 2008. [Google Scholar]
- Wang, X.; Huang, T. Problems and Countermeasures of pesticide pollution. Shaanxi J. Agric. Sci. 2016, 10, 108–111. [Google Scholar]
- Yun, Z.; Sha, L. Discussion on pesticide environmental pollution and control measures. Resour. Econ. Environ. Prot. 2015, 10, 168–169. [Google Scholar]
- Li, L. Green development of safe use of chemical pesticides. Guangdong Seric. 2020, 54, 39–40. [Google Scholar]
- Wang, S.; Cheng, W.; Shi, Q. Analysis on the internal mechanism of mountain, water, forest, field, lake and grass life community at the basin scale. J. Xinjiang Univ. 2021, 38, 313–320. [Google Scholar]
- Guo, J.; Zhang, Y.; Hu, Z.; Liu, F. Research progress of pesticide pollution analysis technology in environmental water samples. Rock Miner. Anal. 2021, 40, 16–32. [Google Scholar]
- Xu, G.; Wang, B.; Xu, Y.; Chen, Y. On the Harmful Biological Resistance of Agriculture. New Ctry. 2020, 12, 17–18. [Google Scholar]
- Ting, L. Pesticide hazards and green plant protection technology. Beijing Agric. 2016, 6, 55. [Google Scholar]
- Liu, Y.; Tian, Q.; Jiang, L. The food security and pesticide use. Nong Min Zhi Fu Zhi You. 2016, 19, 107. [Google Scholar]
- Zhou, M. Realistic challenges and countermeasures for the development of biopesticides in China. Chin. J. Biol. Control 2021, 37, 184–192. [Google Scholar]
- United States Environmental Protection Agency. What Are Biopesticides? Available online: https://www.epa.gov/ingredients-used-pesticide-products/what-are-biopesticides (accessed on 4 May 2022).
- Van Lenteren, J.C.; Sexsmith, W. Guidance for Information Requirements for Regulation of Invertebrates as Biological Control Agents (IBCAs) Series on Pesticides; Organisation for Economic Co-operation and Development (OECD): Paris, France, 2003. [Google Scholar]
- El-Abbassi, A.; Saadaoui, N.; Kiai, H.; Raiti, J.; Hafidi, A. Potential applications of olive mill wastewater as biopesticide for crops protection. Sci. Total Environ. 2017, 576, 10–21. [Google Scholar] [CrossRef]
- Maheswaran, R.; Ignacimuthu, S. A novel biopesticide PONNEEM to control human vector mosquitoes Anopheles stephensi L. and Culex quinquefasciatus Say. Environ. Sci. Pollut. Res. 2015, 22, 13153–13166. [Google Scholar] [CrossRef]
- Zhu, L.; Tian, L.-J.; Zheng, J.; Gao, Q.-L.; Wang, Y.-Y.; Peng, D.-H.; Ruan, L.F.; Sun, M. Complete genome sequence of Bacillus thuringiensis serovar galleriae strain HD-29, a typical strain of commercial biopesticide. J. Biotechnol. 2015, 195, 108–109. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, R.; Sharma, S. Effects of chemical and biological pesticides on plant growth parameters and rhizospheric bacterial community structure in Vigna radiata. J. Hazard. Mater. 2015, 291, 102–110. [Google Scholar] [CrossRef]
- Raguraman, S.; Kannan, M. Non-target effects of botanicals on beneficial arthropods with special reference to Azadirachta indica. Adv. Plant Biopestic. 2014, 1, 173–205. [Google Scholar]
- Huang, W.; Zhang, Y.; Chen, D.; Hu, H.; Zhuang, G. Degradation and residues of Bt proteins in several soils. J. Huazhong Agric. Univ. 2009, 28, 169–173. [Google Scholar]
- Yang, S.; Xu, S.; Zhou, Y. Effect of five biopesticides on the control of stem blight of asparagus. China Veg. 2021, 7, 5. [Google Scholar]
- Zhao, L.; Cheng, Y.; Yuan, S. Evaluation of the control effect of four biopesticides on tea looper. China Plant Prot. Guide 2018, 38, 70–72. [Google Scholar]
- Zhu, L.; Min, Y.; Qiu, Y.; Zhou, R.; Rao, B.; Chen, W.; Wang, K.; Yang, J.; Liu, X. Field trial of a new biological acaricide NBIF-001 against Panonchus citri Mc Gregor. Chin. J. Biol. Control 2021, 37, 376–379. [Google Scholar]
- West, A.W.; Burges, H.D.; Dixon, T.J.; Wyborn, C.H. Survival of Bacillus thuringiensis and Bacillus cereus spore inocula in soil: Effects of pH, moisture, nutrient availability and indigenous microorganisms. Soil Biol. Biochem. 1985, 17, 657–665. [Google Scholar] [CrossRef]
- Li, Z.; Bu, N.; Chen, X.; Cui, J.; Xiao, M.; Song, Z.; Nie, M.; Fang, C. Soil incubation studies with Cry1Ac protein indicate no adverse effect of Bt crops on soil microbial communities. Ecotoxicol. Environ. Saf. 2018, 152, 33–41. [Google Scholar]
- Schoenly, K.G.; Cohen, M.B.; Barrion, A.T.; Zhang, W.; Gaolach, B.; Viajante, V.D. Effects of Bacillus thuringiensis on non-target herbivore and natural enemy assemblages in tropical irrigated rice. Environ. Biosaf. Res. 2003, 2, 181–206. [Google Scholar] [CrossRef] [Green Version]
- Romeis, J.; Dutton, A.; Bigler, F. Bacillus thuringiensis toxin, Cry1Ab, has no direct effect on larvae of the green lacewing Chrysoperla carnea, Stephens, Neuroptera: Chrysopidae. J. Insect Physiol. 2004, 50, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, W.; Kessenich, C.R.; Petrick, J.S.; Rydel, T.J.; Sturman, E.J.; Lee, T.C.; Glenn, K.C.; Edrington, T.C. Safety of the Bacillus thuringiensis-derived Cry1A. 105 protein: Evidence that domain exchange preserves mode of action and safety. Regul. Toxicol. Pharmacol. 2018, 99, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.P. The Mammalian Safety of Bacillus thuringiensis- Based Insecticides. J. Invertebr. Pathol. 2001, 77, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J. Application and Research Progress of Biological Pesticides—Biocontrol Bacteria and Related Biological Pesticides. J. Green Sci. Technol. 2019, 22, 203–205. [Google Scholar]
- Chen, Y.Y.; Galloway, K.E.; Smolke, C.D. Synthetic biology: Advancing biological frontiers by building synthetic systems. Genome Biol. 2012, 13, 240. [Google Scholar] [CrossRef] [Green Version]
- Hutchison, C.A.; Chuang, R.-Y.; Noskov, V.N.; Assad-Garcia, N.; Deerinck, T.J.; Ellisman, M.H.; Gill, J.; Kannan, K.; Karas, B.J.; Ma, L.; et al. Design and synthesis of a minimal bacterial genome. Science 2016, 351, aad6253. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Pan, J.; Liu, W.; Jiang, F.; Dong, J.; Wang, H. Safety evaluation of three pesticides, polymyxin, abamectin emulsion and cypermethrin, on environmental organisms. J. Ecotoxicol. 2013, 6, 897–902. [Google Scholar]
- Richardson, S.M.; Mitchell, L.A.; Stracquadanio, G.; Yang, K.; Dymond, J.S.; Dicarlo, J.E.; Lee, D.; Huang, C.L.V.; Chandrasegaran, S.; Cai, Y.; et al. Design of a synthetic yeast genome. Science 2017, 355, 1040–1044. [Google Scholar] [CrossRef] [Green Version]
- Ro, D.-K.; Paradise, E.M.; Ouellet, M.; Fisher, K.J.; Newman, K.L.; Ndungu, J.M.; Ho, K.A.; Eachus, R.A.; Ham, T.S.; Kirby, J.; et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 2006, 440, 940–943. [Google Scholar] [CrossRef]
- Galanie, S.; Thodey, K.; Trenchard, I.J.; Filsinger Interrante, M.; Smolke, C.D. Complete biosynthesis of opioids in yeast. Science 2015, 349, 1095–1100. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Xie, M.; Xue, S.; Hamri, G.C.E.; Yin, J.; Zulewski, H.; Fussenegger, M. Self-adjusting synthetic gene circuit for correcting insulin resistance. Nat. Biomed. Eng. 2016, 1, 0005. [Google Scholar] [CrossRef]
- Rossger, K.; Charpin-El, H.G.; Fussenegger, M. A closedloop synthetic gene circuit for the treatment of dietinduced obesity in mice. Nat. Commun. 2013, 4, 2825. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.H.; Seo, H.; Park, W.; Seok, J.; Lee, J.A.; Kim, W.J.; Kim, G.B.; Kim, K.J.; Lee, S.Y. Enhanced succinic acid production by Mannheimia employing optimal malate dehydrogenase. Nat. Commun. 2020, 11, 1970. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Bai, S.; Liu, Z.; Hasunuma, T.; Kondo, A.; Ho, S.H. Fermentation of pigment—Extracted microalgal residue using yeast cell—Surface display: Direct high—Density ethanol production with competitive life cycle impacts. Green Chem. 2020, 22, 153–162. [Google Scholar] [CrossRef]
- Isman, M.B. A renaissance for botanical insecticides? Pest Manag. Sci. 2015, 71, 1587–1590. [Google Scholar] [CrossRef]
- Miresmailli, S.; Isman, M.B. Botanical insecticides inspired by plant-herbivore chemical interactions. Trends Plant Sci. 2014, 19, 29–35. [Google Scholar] [CrossRef]
- Pesticide Express Information. Inventory of China’s Biological Pesticide Registration. Available online: http://www.agroinfo.com.cn/news_detail_14002.html (accessed on 3 December 2020).
- Zhang, Z.; Xi, H.; Chang, W.; Huang, L.; Chen, Xiu. The commercial application status of botanical pesticides in my country and industrial development suggestions. World Pestic. 2020, 42, 6–15. [Google Scholar]
- Kikuta, Y.; Ueda, H.; Takahashi, M.; Mitsumori, T.; Yamada, G.; Sakamori, K.; Takeda, K.; Furutani, S.; Nakayama, K.; Katsuda, Y. Identification and characterization of a GDSL lipase-like protein that catalyzes the ester-forming reaction for pyrethrin biosynthesis in Tanacetum cinerariifolium- a new target for plant protection. Plant J. 2012, 71, 183–193. [Google Scholar] [CrossRef]
- Wu, W.; Hu, Z. Research and development of plant-derived pest control agents in China. Pesticides 1995, 34, 3. [Google Scholar]
- Yang, J.; Lin, R.; Yuan, S. Investigation and analysis of the status quo of biogenic pesticide industry in China. Chin. J. Biol. Control 2014, 30, 441–445. [Google Scholar]
- Yang, S.C.; Wang, J.L.; Li, Z.; Zhang, C.; Wang, T.; Zhang, Y. Isolation and structural identification of fatty acids from Dictamnus dasycarpus Turcz. J. Tianjin Univ. Tradit. Chin. Med 2018, 37, 323–325. [Google Scholar]
- Liu, X. The application status and development trend of rodenticides in my country. Plant Prot. 2018, 44, 85–90. [Google Scholar]
- Tian, T.; Wang, Q.; Wang, Y.; Chen, Y.; Sun, Q.; Zhang, X. Study on microbial fermentation transformation and extraction and isolation of fermentation products of C. tigrinus. Nat. Prod. Sep. 2006, 4, 4. [Google Scholar]
- Zeng, J.; Chen, X.; Pan, Y.; Shu, L. Research progress of curcumol. J. Chin. Med. Mater. 2008, 1, 168–170. [Google Scholar]
- Liu, X. Preliminary Study on the Action Mechanism of Meprofenone on Rice Blast Fungus. Ph.D. Thesis, Shenyang University of Chemical Technology, Shenyang, China, 2019. [Google Scholar]
- Yu, Y.; Chang, P.; Yu, H.; Ren, H.; Hong, D.; Li, Z.; Wang, Y.; Song, H.; Huo, Y.; Li, C. Productive Amyrin Synthases for Efficient alpha-Amyrin Synthesis in Engineered Saccharomyces cerevisiae. ACS Synth. Biol. 2018, 7, 2391–2402. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Qin, L.; Xue, H.; Yu, Y.; Ma, Y.; Wang, Y.; Li, C. Novel trends for producing plant triterpenoids in yeast. Crit. Rev. Biotechnol. 2019, 39, 618–632. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Wang, Y.; Zhou, Z.; Li, S.; Zhang, X. Study on synthetic biology of plant natural products. Bull. Chin. Acad. Sci. 2018, 33, 1228–1238. [Google Scholar]
- Pandey, R.P.; Parajuli, P.; Koffas, M.; Sohng, J.K. Microbial production of natural and non-natural flavonoids Pathway engineering, directed evolution and systems/synthetic biology. Biotechnol. Adv. 2016, 34, 634–662. [Google Scholar] [CrossRef] [Green Version]
- Liang, D. Mining and Application of Sesquiterpene Synthases for Botanical Pesticide Production. Ph.D. Thesis, Tianjin University, Tianjin, China, 2020. [Google Scholar]
- Xu, H.; Li, W.; Schilmiller, A.L.; van Eekelen, H.; de Vos, R.C.H.; Jongsma, M.A.; Pichersky, E. Pyrethric acid of natural pyrethrin insecticide Complete pathway elucidation and reconstitution in Nicotiana benthamiana. New Phytol. 2019, 223, 751–765. [Google Scholar] [CrossRef]
- Xiao, M.; Zhang, Y.; Chen, X.; Lee, E.J.; Barber, C.J.S.; Chakrabarty, R.; Desgagné-Penix, I.; Haslam, T.M.; Kim, Y.-B.; Liu, E.; et al. Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J. Biotechnol. 2013, 166, 122–134. [Google Scholar] [CrossRef]
- Deloache, W.C.; Russ, Z.N.; Narcross, L.; Gonzales, A.M.; Martin, V.J.J.; Dueber, J.E. An enzyme-coupled biosensor enables, S,-reticuline production in yeast from glucose. Nat. Chem. Biol. 2015, 11, 465. [Google Scholar] [CrossRef]
- Hawkins, K.M.; Smolke, C.D. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat. Chem. Biol. 2008, 4, 564–573. [Google Scholar] [CrossRef]
- Xu, H.; Moghe, G.D.; Wiegertrininger, K. Coexpression Analysis Identifies Two Oxidoreductases Involved in the Biosynthesis of the Monoterpene Acid Moiety of Natural Pyrethrin Insecticides in Tanacetum cinerariifolium. Plant Physiol. 2018, 176, 524. [Google Scholar] [CrossRef] [Green Version]
- Lv, P. Study on fermentation of rhodopsin production by Aspergillus ochraceus and its biosynthetic pathway and inducing mechanism. Ph.D. Thesis, Tianjin University, Tianjin, China, 2009. [Google Scholar]
- Cheng, S.; Liu, X.; Jiang, G.; Wu, J.; Zhang, J.L.; Lei, D.; Yuan, Y.; Qiao, J.; Zhao, G. Orthogonal engineering of biosynthetic pathway for efficient production of limonene in Saccharomyces cerevisiae ACS. Synth. Biol. 2019, 8, 968–975. [Google Scholar] [CrossRef]
- Sun, L.; Liu, G.; Li, Y.; Jiang, D.; Guo, W.; Xu, H.; Zhan, R. Metabolic engineering of Saccharomyces cerevisiae for efficient production of endocrocin and emodin. Metab. Eng. 2019, 54, 212–221. [Google Scholar] [CrossRef]
- Nguyen, T.D.; MacNevin, G.; Ro, D.-K. De Novo Synthesis of High-Value Plant Sesquiterpenoids in Yeast. Methods Enzymol. 2012, 517, 261–278. [Google Scholar]
- Duke, S.O. Agrochemicals from Natural Products; Godfrey, C.R.A., Ed.; Agriculture, Ecosystems & Environment; Marcel Dekker: New York, NY, USA, 1995; Volume 56, pp. 65–66. ISBN 0-8247-9553-9. [Google Scholar]
- Markham, K.A.; Palmer, C.M.; Chwatko, M.; Wagner, J.M.; Murray, C.; Vazquez, S.; Swaminathan, A.; Chakravarty, I.; Lynd, N.A.; Alper, H.S. Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation. Proc. Natl. Acad. Sci. USA 2018, 2096, 2096–2101. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Marsafari, M.; Wang, F.; Deng, L.; Xu, P. Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica. Metab. Eng. 2019, 56, 60–68. [Google Scholar] [CrossRef]
- Xie, M. Tobacco important genes 8. Tobacco P450 genes. Chin. Tob. Sci. 2015, 36, 118–120. [Google Scholar]
- Hadadi, N.; Hafner, J.; Shajkofci, A.; Zisaki, A.; Hatzimanikatis, V. ATLAS of Biochemistry A repository of all possible biochemical reactions for synthetic biology and metabolic engineering studies. ACS Synth. Biol. 2016, 5, 1155–1166. [Google Scholar] [CrossRef]
- Tu, L.; Su, P.; Zhang, Z.; Gao, L.; Wang, J.; Hu, T.; Hu, T.; Zhou, J.; Zhang, Y.; Zhao, Y.; et al. Genome of Tripterygium wilfordii and identification of cytochrome P450 involved in triptolide biosynthesis. Nat. Commun. 2020, 11, 971. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, A.; Minami, H.; Kim, J.S.; Koyanagi, T.; Katayama, T.; Sato, F.; Kumagai, H. Erratum A bacterial platform for fermentative production of plant alkaloids. Nat. Commun. 2012, 3, 819. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Daviet, L.; Schalk, M.; Siewers, V.; Nielsen, J. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab. Eng. 2013, 15, 48–54. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, J.; Zhang, G.; Ding, W.; Duan, L.; Yang, J.; Kui, L.; Cheng, X.; Ruan, J.; Fan, W.; et al. Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches. Nat. Commun. 2018, 9, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodgson, H.; De La Peña, R.; Stephenson, M.J.; Thimmappa, R.; Vincent, J.L.; Sattely, E.S.; Osbourn, A. PNAS Plus Identification of key enzymes responsible for protolimonoid biosynthesis in plants Opening the door to azadirachtin production. Proc. Natl. Acad. Sci. USA 2019, 116, 17096–17104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Hagel, J.M.; Chang, L.; Tucker, J.E.; Shiigi, S.A.; Yelpaala, Y.; Chen, S.-Y.; Estrada, R.; Colbeck, J.; Enquist-Newman, M.; et al. A pathogenesis-related 10 protein catalyzes the final step in thebaine biosynthesis. Nat. Chem. Biol. 2018, 14, 738. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, S.; Thodey, K.; Trenchard, I.; Cravens, A.; Smolke, C.D. Complete biosynthesis of noscapine and halogenated alkaloids in yeast. Proc. Natl. Acad. Sci. USA 2018, 115, E3922–E3931. [Google Scholar] [CrossRef] [Green Version]
- Li, L. Chinese scientists complete the sequencing and assembly of garlic genome. China Food 2020, 16, 11. [Google Scholar]
- Sun, X.; Zhu, S.; Li, N.; Cheng, Y.; Zhao, J.; Qiao, X.; Lu, L.; Liu, S.; Wang, Y.; Liu, C.; et al. A Chromosome-Level Genome Assembly of Garlic, Allium sativum, Provides Insights into Genome Evolution and Allicin Biosynthesis. Mol. Plant 2020, 13, 1328–1339. [Google Scholar] [CrossRef]
- Yutani, M.; Taniguchi, H.; Borjihan, H.; Ogita, A.; Fujita, K.-I.; Tanaka, T. Alliinase from Ensifer adhaerens and Its Use for Generation of Fungicidal Activity. AMB Express 2011, 1, 2. [Google Scholar] [CrossRef] [Green Version]
- Ying, T.; Xia, L.; Ding, X.; Luo, Y.; Huang, F.; Jiang, Y. Duplication of partial spinosyn biosynthetic gene cluster in Saccharopolyspora spinosa enhances spinosyn production. FEMS Microbiol. Lett. 2011, 325, 22–29. [Google Scholar]
- Casini, A.; Chang, F.-Y.; Eluere, R.; King, A.M.; Young, E.M.; Dudley, Q.M.; Karim, A.; Pratt, K.; Bristol, C.; Forget, A.; et al. A pressure test to make 10 molecules in 90 days External evaluation of methods to engineer biology. J. Am. Chem. Soc. 2018, 140, 4302–4316. [Google Scholar] [CrossRef]
- Dai, Z.; Liu, Y.; Huang, L.; Zhang, X. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae. Biotechnol. Bioeng. 2012, 109, 2845–2853. [Google Scholar] [CrossRef]
- Kikuta, Y.; Nakayama, K.; Katsuda, Y.; Hatanaka, A.; Yamada, G.; Mitsumori, T.; Matsuda, K. Variations of the Tanacetum cinerariifolium GDSL lipase influence its acyltransferase activity for pyrethrin synthesis. Acta Hortic. 2011, 11, 153–155. [Google Scholar] [CrossRef]
- Shao, M.; Chen, L.; Zhu, L.; Chen, X. Application of glucosyltransferase in biosynthesis of α-EG. Ind. Microbiol. 2018, 48, 38–43. [Google Scholar]
- Morishige, T.; Tamakoshi, M.; Takemura, T.; Sato, F. Molecular characterization of O-methyltransferases involved in isoquinoline alkaloid biosynthesis in Coptis japonica. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2010, 86, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Sato, F. Metabolic diversification of benzylisoquinoline alkaloid biosynthesis through the introduction of a branch pathway in Eschscholzia californica. Plant Cell Physiol. 2010, 51, 949–959. [Google Scholar]
- Gao, J.; Zhang, Y.; Liu, X.; Wu, X.; Huang, L.; Gao, W. Triptolide Pharmacological spectrum, biosynthesis, chemical synthesis and derivatives. Theranostics 2021, 11, 7199–7221. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, M.; Shen, C.; Liu, K.; Liu, H.; Ou, C.; Dai, W.; Liu, X.; Liu, J. Biosynthesis of plant-specific alkaloids tetrahydroprotoberberines in engineered Escherichia coli. Green Chem. 2021, 23, 5944–5955. [Google Scholar] [CrossRef]
- Thodey, K.; Galanie, S.; Smolke, C.D. A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat. Chem. Biol. 2014, 10, 837. [Google Scholar] [CrossRef]
- Li, Y.; Smolke, C.D. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast. Nat. Commun. 2016, 7, 12137. [Google Scholar] [CrossRef] [Green Version]
- Trenchard, I.J.; Smolke, C.D. Engineering strategies for the fermentative production of plant alkaloids in yeast. Metab. Eng. 2015, 30, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.; Clastre, M.; Courdavault, V.; O’Connor, S.E. De novo production of the plant-derived alkaloid strictosidine in yeast. Proc. Natl. Acad. Sci. USA 2015, 112, 3205–3210. [Google Scholar] [CrossRef] [Green Version]
- Valliere, M.A.; Korman, T.P.; Woodall, N.B.; Khitrov, G.A.; Taylor, R.E.; Baker, D.; Bowie, J.U. A cell-free platform for the prenylation of natural products and application to cannabinoid production. Nat. Commun. 2019, 10, 565. [Google Scholar] [CrossRef] [Green Version]
- Kashkooli, A.B.; Van Der Krol, A.R.; Rabe, P.; Dickschat, J.S.; Bouwmeester, H. Substrate promiscuity of enzymes from the sesquiterpene biosynthetic pathways from Artemisia annua and Tanacetum parthenium allows for novel combinatorial sesquiterpene production. Metab. Eng. 2019, 54, 12–23. [Google Scholar] [CrossRef]
- Runguphan, W.; Qu, X.; O’Connor, S.E. Integrating carbon–halogen bond formation into medicinal plant metabolism. Nature 2010, 468, 461. [Google Scholar] [CrossRef]
- Global Biopesticide Development and Registration Status. Available online: https//www.pig66.com/2019/145_0422/17868284.html (accessed on 22 April 2019).
- United States Environmental Protection Agency. NPIC Product Research Online (NPRO). Available online: http://npic.orst.edu/NPRO/ (accessed on 10 April 2022).
- European Commission. EU Pesticides Database. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/ppp/pppeas/screen/home (accessed on 10 April 2022).
- Global Biopesticides Market, 2015–2021—Low Shelf Life of Product Hampering Market Growth. Available online: https//www.prnewswire.com/news-releases/global-biopesticides-market-2015---2021---low-shelf-life-of-product-hampering-market-growth-565643111.html (accessed on 18 January 2016).
- Xin, G.; Wang, E.; Zhang, H. Study on the extraction and separation of triterpenoids and their determination. J. Chang. Univ. Tradit. Chin. Med. 2008, 04, 378–379. [Google Scholar]
- Tang, W.; Zhu, Y.; He, H.; Qiang, S. First Report of Southern Blight on Canadian Goldenrod (Solidago canadensis) Caused by Sclerotium rolfsii in China. Plant Dis. 2010, 94, 1172. [Google Scholar] [CrossRef] [PubMed]
- Paddon, C.J.; Westfall, P.J.; Pitera, D.J.; Benjamin, K.; Fisher, K.; McPhee, D.; Leavell, M.D.; Tai, A.; Main, A.; Eng, D.; et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 2013, 496, 528–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farhi, M.; Marhevka, E.; Ben-Ari, J.; Algamas-Dimantov, A.; Liang, Z.; Zeevi, V.; Edelbaum, Q.; Spitzer-Rimon, B.; Abeliovich, H.; Schwartz, B.; et al. Generation of the potent anti-malarial drug artemisinin in tobacco. Nat. Biotechnol. 2011, 29, 1072–1074. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.; Osbourn, A. Engineering terpenoid production through transient expression in Nicotiana benthamiana. Plant Cell Rep. 2018, 37, 1431–1441. [Google Scholar] [CrossRef]
- Huang, J.C.; Zhong, Y.J.; Liu, J.; Sandmann, G.; Chen, F. Metabolic engineering of tomato for high-yield production of astaxanthin. Metab. Eng. 2013, 17, 59–67. [Google Scholar] [CrossRef]
- Butelli, E.; Titta, L.; Giorgio, M.; Mock, H.P.; Matros, A.; Peterek, S.; Schijlen, E.; Hall, R.D.; Bovy, A.G.; Luo, J.; et al. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 2008, 26, 1301–1308. [Google Scholar] [CrossRef]
- Luo, J.; Butelli, E.; Hill, L.; Parr, A.; Niggeweg, R.; Bailey, P.; Weisshaar, B.; Martin, C. AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: Expression in fruit results in very high levels of both types of polyphenol. Plant J. 2008, 56, 316–326. [Google Scholar] [CrossRef]
- Caputi, L.; Franke, J.; Farrow, S.C.; Chung, K.; Richard, M.E.P.; Nguyen, T.; Dang, T.; Carqueijeiro, I.S.T.; Koudounas, K.; Bernonville, T.D.D.; et al. Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science 2018, 360, 1235–1239. [Google Scholar] [CrossRef] [Green Version]
- Lau, W.; Sattely, E.S. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science 2015, 349, 1224–1228. [Google Scholar] [CrossRef] [Green Version]
- Zi, J.; Peters, R.J. Characterization of CYP76AH4 clarifies phenolic diterpenoid biosynthesis in the Lamiaceae. Org. Biomol. Chem. 2013, 11, 7650–7652. [Google Scholar] [CrossRef] [Green Version]
- Urban, P.; Mignotte, C.; Kazmaier, M.; Delorme, F.; Pompon, D. Cloning, yeast expression, and characterization of the coupling of two distantly related Arabidopsis thalianaNADPH-cytochrome P450 reductases with P450 CYP73A5. J. Biol. Chem. 1997, 272, 19176–19186. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Dai, Z.; Zhang, X. Plant-derived natural products produced by yeast synthetic cells. J. Microbiol. 2016, 56, 516–529. [Google Scholar]
- Chou, H.H.; Keasling, J.D. Programming adaptive control to evolve increased metabolite production. Nat. Commun. 2013, 4, 2595. [Google Scholar] [CrossRef] [Green Version]
- Hafner, J.; Payne, J.; MohammadiPeyhani, H.; Hatzimanikatis, V.; Smoke, C. A computational workflow for the expansion of heterologous biosynthetic pathways to natural product derivatives. Nat. Commun. 2021, 12, 1760. [Google Scholar] [CrossRef]
Area | Capacity (Insecticide—Pyrethroids) (Tonnes) | Capacity (Insecticide—Botanical Products and Biologicals) (Tonnes) | Capacity (Seed Treat Fung—Botanical Products and Biologicals) (Tonnes) |
---|---|---|---|
Japan | 156 | / | / |
Armenia | 15 | 1 | / |
Austria | 20 | 6 | / |
Belgium | 14 | 3 | / |
China, Hong Kong | 1 | 2 | / |
Croatia | 10 | 0 | / |
Cyprus | 6 | 3 | / |
French Polynesia | 1 | 1 | / |
Germany | 113 | 25 | / |
Iceland | 0 | 0 | 0 |
Italy | 174 | 60 | / |
Lithuania | 21 | / | / |
Madagascar | 47 | 1 | 0 |
Malaysia | 648 | 101 | 0 |
Maldives | 64 | 14 | / |
Myanmar | 195 | 36 | / |
New Caledonia | 1 | 0 | / |
Panama | 12 | 0 | / |
Paraguay | 975 | 50 | 0 |
Poland | 98 | 26 | 0 |
Saint Kitts and Nevis | 1 | 0 | / |
Saudi Arabia | 4732 | 2631 | 0 |
Slovakia | 19 | 3 | 0 |
Slovenia | 1 | 0 | / |
Sudan | 224 | 0 | 0 |
Suriname | 44 | 2 | / |
Switzerland | 3 | 6 | / |
Togo | 270 | 12 | / |
Ukraine | 271 | 0 | / |
UK | 28 | 10 | 0 |
Varieties | Purpose | Category | Formulation (Including TC)/Main Formulation | Registration Number |
---|---|---|---|---|
Nicotine | Insecticide | alkaloid | 2/aqueous solutions, AS | 8 |
Matrine | Bactericide | alkaloid | 5/aqueous solutions, AS | 122 |
Berberine | Insecticide | alkaloid | 5/aqueous solutions, AS | 8 |
Veratrine | Insecticide | alkaloid | 2/aqueous solutions, AS | 8 |
Azadirachtin | Insecticide | Terpenoids | 1/soluble concentrate, SL | 26 |
Celastrus angulatus | Insecticide | Terpenoids | 6/emulsifiable concentrate, EC | 7 |
Triptolide | Rodenticide | Terpenoids | 3/emulsion in water, EW | 2 |
Curcumol | Rodenticide | Terpenoids | 2/Granules | 2 |
d-Limonene | Insecticide | Terpenoids | 2/Bait, RB | 2 |
Eucalyptol | Insecticide | Terpenoids | 2 | |
Cresol | Bactericide | Terpenoids | 2/soluble concentrate, SL | 7 |
Luowei | Insecticide | Terpenoids | 3/aqueous solutions, AS | 2 |
Saponin | Insecticide | Terpenoid saponins | 2/dust powder, DP | 1 |
Allicin | Bactericide | Organic sulfur | 1/aqueous solutions, AS | 36 |
Pyrethrin | Insecticide | Esters | 2/microemulsion, ME | 27 |
Eugenol | Bactericide | Phenols | 5/emulsion in water, EW | 9 |
Osthole | Bactericide | Coumarins | 2/soluble concentrate, SL | 21 |
physcion | Bactericide | Anthraquinones | 6/emulsion in water, EW | 6 |
Neochamaejasmin A | Insecticide | Flavonoids | 4/aqueous solutions, AS | 2 |
Isobavachalcone | Bactericide | Flavonoids | 2/emulsion in water, EW | 2 |
Rotenone | Insecticide | Isoflavones | 2/microemulsion, ME | 23 |
Item | Purpose | Technique | Application |
---|---|---|---|
Recombinant DNA Technique | Gene testing and analysis; Site-directed mutagenesis | PCR | Eg. Limonene biosynthesis: synthetic gene screening [64] |
Gibson assembly | |||
Modular Metabolic Engineering | Optimize metabolic pathways | Modular metabolic engineering | Eg. Pyrethrin biosynthesis: Reconstructed the chrysanthemic acid biosynthetic pathway in tomato fruit [62]; Rhodopsin biosynthesis: co-fermentation of C. tigrinum with strain T-34, optimizing the fermentation and extraction conditions [50] |
Genome Editing | Edit Genes | Zinc-finger nuclease, ZFN | Eg. Pyrethrin biosynthesis: overexpressed the gene encoding the synthase of pyrethroid acid ligands in Chrysanthemum morifolium [52] |
Transcription activator-like effector nuclease, TALEN | |||
Clustered regulatory interspaced short palindromic repeat, CRISPR | |||
multiplex automated genome engineering, MAGE/conjugative assembly genome engineering, CAGE |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Liang, D.; Li, W.; Yan, X.; Qiao, J.; Caiyin, Q. Research Progress on the Synthetic Biology of Botanical Biopesticides. Bioengineering 2022, 9, 207. https://doi.org/10.3390/bioengineering9050207
Zhao J, Liang D, Li W, Yan X, Qiao J, Caiyin Q. Research Progress on the Synthetic Biology of Botanical Biopesticides. Bioengineering. 2022; 9(5):207. https://doi.org/10.3390/bioengineering9050207
Chicago/Turabian StyleZhao, Jianbo, Dongmei Liang, Weiguo Li, Xiaoguang Yan, Jianjun Qiao, and Qinggele Caiyin. 2022. "Research Progress on the Synthetic Biology of Botanical Biopesticides" Bioengineering 9, no. 5: 207. https://doi.org/10.3390/bioengineering9050207
APA StyleZhao, J., Liang, D., Li, W., Yan, X., Qiao, J., & Caiyin, Q. (2022). Research Progress on the Synthetic Biology of Botanical Biopesticides. Bioengineering, 9(5), 207. https://doi.org/10.3390/bioengineering9050207