Lymphatic Tissue Bioengineering for the Treatment of Postsurgical Lymphedema
Abstract
:1. Introduction
1.1. Lymphatic System
1.2. Lymphangiogenesis
2. Lymphedema and Lymphatic Tissue Bioengineering
3. Stem Cells
3.1. Embryonic Stem Cells (ESCs)
3.2. Human Induced Pluripotent Stem Cells (hiPSCs)
3.3. Multipotent Adult Progenitor Cells (MAPCs)
3.4. Adipose Tissue-Derived Stem Cells (ADSCs)
3.5. Hematopoietic Stem Cells (HSCs)
3.6. Endothelial Colony-Forming Cells (ECFCs)
4. Prolymphangiogenic Factors
4.1. VEGF-C
4.2. TGF-β
4.3. FGF
4.4. PDGF
4.5. Retinoic Acid
4.6. Other Factors
5. Scaffolds
5.1. Hydrogels
5.2. Non-Biodegradable Synthetic
5.3. Biodegradable Synthetic
5.4. Biocompatible Natural (Fibrin, Collagen)
5.5. Cell-Based
5.6. Decellularization/Recellularization
5.7. 3D Bioprinting
6. Mechanical Stimuli
6.1. Interstitial Flow
6.2. Extracorporeal Shock Wave Therapy
7. Current State of Lymphatic Tissue Bioengineering
8. Challenges
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ozdowski, L.; Gupta, V. Physiology, Lymphatic System; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557833/ (accessed on 9 May 2021).
- Huethorst, E.; Krebber, M.M.; Fledderus, J.O.; Gremmels, H.; Xu, Y.J.; Pei, J.; Verhaar, M.C.; Cheng, C. Lymphatic Vascular Regeneration: The Next Step in Tissue Engineering. Tissue Eng. Part B Rev. 2016, 22, 1–14. [Google Scholar] [PubMed]
- Wiig, H.; Swartz, M.A. Interstitial fluid and lymph formation and transport: Physiological regulation and roles in inflammation and cancer. Physiol. Rev. 2012, 92, 1005–1060. [Google Scholar] [PubMed]
- Hansen, K.C.; D’Alessandro, A.; Clement, C.; Santambrogio, L. Lymph formation, composition and circulation: A proteomics perspective. Int. Immunol. 2015, 27, 219–227. [Google Scholar] [PubMed] [Green Version]
- Tammela, T.; Alitalo, K. Lymphangiogenesis: Molecular mechanisms and future promise. Cell 2010, 140, 460–476. [Google Scholar] [PubMed] [Green Version]
- Rockson, S.G. Lymphedema. Am. J. Med. 2001, 110, 288–295. [Google Scholar] [PubMed]
- Park, K.E.; Allam, O.; Chandler, L.; Mozzafari, M.A.; Ly, C.; Lu, X.; Persing, J.A. Surgical management of lymphedema: A review of current literature. Gland Surg. 2020, 9, 503–511. [Google Scholar]
- Campisi, C.; Bellini, C.; Campisi, C.; Accogli, S.; Bonioli, E.; Boccardo, F. Microsurgery for lymphedema: Clinical research and long-term results. Microsurgery 2010, 30, 256–260. [Google Scholar]
- Griffith, L.G.; Swartz, M.A. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 2006, 7, 211–224. [Google Scholar]
- Kolios, G.; Moodley, Y. Introduction to stem cells and regenerative medicine. Respiration 2013, 85, 3–10. [Google Scholar]
- Kono, T.; Kubo, H.; Shimazu, C.; Ueda, Y.; Takahashi, M.; Yanagi, K.; Fujita, N.; Tsuruo, T.; Wada, H.; Yamashita, J.K. Differentiation of lymphatic endothelial cells from embryonic stem cells on OP9 stromal cells. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2070–2076. [Google Scholar]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [PubMed] [Green Version]
- Khan, R.S.; Newsome, P.N. A Comparison of Phenotypic and Functional Properties of Mesenchymal Stromal Cells and Multipotent Adult Progenitor Cells. Front. Immunol. 2019, 10, 1952. [Google Scholar] [PubMed]
- Qi, S.; Pan, J. Cell-based therapy for therapeutic lymphangiogenesis. Stem Cells Dev. 2015, 24, 271–283. [Google Scholar] [PubMed]
- Deng, J.; Dai, T.; Sun, Y.; Zhang, Q.; Jiang, Z.; Li, S.; Cao, W. Overexpression of Prox1 Induces the Differentiation of Human Adipose-Derived Stem Cells into Lymphatic Endothelial-Like Cells In Vitro. Cell. Reprogram. 2017, 19, 54–63. [Google Scholar]
- Forte, A.J.; Boczar, D.; Sarabia-Estrada, R.; Huayllani, M.T.; Avila, F.R.; Torres, R.A.; Guliyeva, G.; Aung, T.; Quiñones-Hinojosa, A. Use of adipose-derived stem cells in lymphatic tissue engineering and regeneration. Arch. Plast. Surg. 2021, 48, 559–567. [Google Scholar]
- Sun, Y.; Lu, B.; Deng, J.; Jiang, Z.; Cao, W.; Dai, T.; Li, S. IL-7 enhances the differentiation of adipose-derived stem cells toward lymphatic endothelial cells through AKT signaling. Cell Biol. Int. 2019, 43, 394–401. [Google Scholar]
- Hayashida, K.; Yoshida, S.; Yoshimoto, H.; Fujioka, M.; Saijo, H.; Migita, K.; Kumaya, M.; Akita, S. Adipose-Derived Stem Cells and Vascularized Lymph Node Transfers Successfully Treat Mouse Hindlimb Secondary Lymphedema by Early Reconnection of the Lymphatic System and Lymphangiogenesis. Plast. Reconstr. Surg. 2017, 139, 639–651. [Google Scholar]
- Toyserkani, N.M.; Jensen, C.H.; Tabatabaeifar, S.; Jørgensen, M.G.; Hvidsten, S.; Simonsen, J.A.; Andersen, D.C.; Sheikh, S.P.; Sørensen, J.A. Adipose-derived regenerative cells and fat grafting for treating breast cancer-related lymphedema: Lymphoscintigraphic evaluation with 1 year of follow-up. J. Plast. Reconstr. Aesthet. Surg. 2019, 72, 71–77. [Google Scholar]
- Bailey, A.S.; Jiang, S.; Afentoulis, M.; Baumann, C.I.; Schroeder, D.A.; Olson, S.B.; Wong, M.H.; Fleming, W.H. Transplanted adult hematopoietic stems cells differentiate into functional endothelial cells. Blood 2004, 103, 13–19. [Google Scholar]
- DiMaio, T.A.; Wentz, B.L.; Lagunoff, M. Isolation and characterization of circulating lymphatic endothelial colony forming cells. Exp. Cell Res. 2016, 340, 159–169. [Google Scholar]
- Kwon, S.G.; Kwon, Y.W.; Lee, T.W.; Park, G.T.; Kim, J.H. Recent advances in stem cell therapeutics and tissue engineering strategies. Biomater. Res. 2018, 22, 36. [Google Scholar] [PubMed] [Green Version]
- Madl, C.M.; Heilshorn, S.C.; Blau, H.M. Bioengineering strategies to accelerate stem cell therapeutics. Nature 2018, 557, 335–342. [Google Scholar] [PubMed]
- Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell 2019, 176, 1248–1264. [Google Scholar] [PubMed] [Green Version]
- Gerber, H.-P.; McMurtrey, A.; Kowalski, J.; Yan, M.; Keyt, B.A.; Dixit, V.; Ferrara, N. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J. Biol. Chem. 1998, 273, 30336–30343. [Google Scholar]
- Benjamin, L.E.; Keshet, E. Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: Induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc. Natl. Acad. Sci. USA 1997, 94, 8761–8766. [Google Scholar]
- Marino, D.; Luginbühl, J.; Scola, S.; Meuli, M.; Reichmann, E. Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. Sci. Transl. Med. 2014, 6, 221ra14. [Google Scholar] [PubMed] [Green Version]
- Rutkowski, J.; Boardman, K.C.; Swartz, M.A. Characterization of lymphangiogenesis in a model of adult skin regeneration. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H1402–H1410. [Google Scholar]
- Yan, A.; Avraham, T.; Zampell, J.C.; Aschen, S.Z.; Mehrara, B.J. Mechanisms of lymphatic regeneration after tissue transfer. PLoS ONE 2011, 6, e17201. [Google Scholar]
- Jeltsch, M.; Kaipainen, A.; Joukov, V.; Meng, X.; Lakso, M.; Rauvala, H.; Swartz, M.; Fukumura, D.; Jain, R.K.; Alitalo, K. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 1997, 276, 1423–1425. [Google Scholar]
- Goldman, J.; Le, T.X.; Skobe, M.; Swartz, M.A. Overexpression of VEGF-C causes transient lymphatic hyperplasia but not increased lymphangiogenesis in regenerating skin. Circ. Res. 2005, 96, 1193–1199. [Google Scholar]
- Saaristo, A.; Veikkola, T.; Enholm, B.; Hytönen, M.; Arola, J.; Pajusola, K.; Turunen, P.; Jeltsch, M.; Karkkainen, M.J.; Kerjaschki, D.; et al. Adenoviral VEGF-C overexpression induces blood vessel enlargement, tortuosity, and leakiness but no sprouting angiogenesis in the skin or mucous membranes. FASEB J. 2002, 16, 1041–1049. [Google Scholar] [PubMed]
- Gousopoulos, E.; Proulx, S.T.; Bachmann, S.B.; Dieterich, L.; Scholl, J.; Karaman, S.; Bianchi, R.; Detmar, M. An Important Role of VEGF-C in Promoting Lymphedema Development. J. Investig. Dermatol. 2017, 137, 1995–2004. [Google Scholar] [PubMed] [Green Version]
- Breslin, J.W.; Yuan, S.Y.; Wu, M.H. VEGF-C Alters Barrier Function of Cultured Lymphatic Endothelial Cells Through a VEGFR-3-Dependent Mechanism. Lymphat. Res. Biol. 2007, 5, 105–114. [Google Scholar]
- Alderfer, L.; Wei, A.; Hanjaya-Putra, D. Lymphatic Tissue Engineering and Regeneration. J. Biol. Eng. 2018, 12, 32. [Google Scholar] [PubMed]
- Kataru, R.P.; Baik, J.E.; Park, H.J.; Ly, C.L.; Shin, J.; Schwartz, N.; Lu, T.T.; Ortega, S.; Mehrara, B.J. Lymphatic-specific intracellular modulation of receptor tyrosine kinase signaling improves lymphatic growth and function. Sci. Signal. 2021, 14, eabc0836. [Google Scholar]
- Mandriota, S.J.; Jussila, L.; Jeltsch, M.; Compagni, A.; Baetens, D.; Prevo, R.; Banerji, S.; Huarte, J.; Montesano, R.; Jackson, D.G.; et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J. 2001, 20, 672–682. [Google Scholar]
- Ohta, Y.; Shridhar, V.; Bright, R.K.; Kalemkerian, G.P.; Du, W.; Carbone, M.; Watanabe, Y.; Pass, H.I. VEGF and VEGF type C play an important role in angiogenesis and lymphangiogenesis in human malig-nant mesothelioma tumours. Br. J. Cancer 1999, 81, 54–61. [Google Scholar]
- Tsurusaki, T.; Kanda, S.; Sakai, H.; Kanetake, H.; Saito, Y.; Alitalo, K.; Koji, T. Vascular endothelial growth factor-C expression in human prostatic carcinoma and its relationship to lymph node metastasis. Br. J. Cancer 1999, 80, 309–313. [Google Scholar]
- Akagi, K.; Ikeda, Y.; Miyazaki, M.; Abe, T.; Kinoshita, J.; Maehara, Y.; Sugimachi, K. Vascular endothelial growth factor-C (VEGF-C) expression in human colorectal cancer tissues. Br. J. Cancer 2000, 83, 887–891. [Google Scholar]
- Kitadai, Y.; Amioka, T.; Haruma, K.; Tanaka, S.; Yoshihara, M.; Sumii, K.; Matsutani, N.; Yasui, W.; Chayama, K. Clinicopathological significance of vascular endothelial growth factor (VEGF)-C in human esophageal squamous cell carcinomas. Int. J. Cancer 2001, 93, 662–666. [Google Scholar]
- Kurebayashi, J.; Otsuki, T.; Kunisue, H.; Mikami, Y.; Tanaka, K.; Yamamoto, S.; Sonoo, H. Expression of vascular endothelial growth factor (VEGF) family members in breast cancer. Jpn. J. Cancer Res. 1999, 90, 977–981. [Google Scholar] [PubMed]
- Niki, T.; Iba, S.; Tokunou, M.; Yamada, T.; Matsuno, Y.; Hirohashi, S. Expression of vascular endothelial growth factors A, B, C, and D and their relationships to lymph node status in lung adenocarcinoma. Clin. Cancer Res. 2000, 6, 2431–2439. [Google Scholar] [PubMed]
- Verrecchia, F.; Mauviel, A. Transforming growth factor-beta and fibrosis. World J. Gastroenterol. 2007, 13, 3056–3062. [Google Scholar] [PubMed]
- Oka, M.; Iwata, C.; Suzuki, H.I.; Kiyono, K.; Morishita, Y.; Watabe, T.; Komuro, A.; Kano, M.R.; Miyazono, K. Inhibition of endogenous TGF-beta signaling enhances lymphangiogenesis. Blood 2008, 111, 4571–4579. [Google Scholar] [PubMed] [Green Version]
- Clavin, N.W.; Avraham, T.; Fernandez, J.; Daluvoy, S.V.; Soares, M.A.; Chaudhry, A.; Mehrara, B.J. TGF-β1 is a negative regulator of lymphatic regeneration during wound repair. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H2113–H2127. [Google Scholar]
- Avraham, T.; Daluvoy, S.; Zampell, J.; Yan, A.; Haviv, Y.S.; Rockson, S.G.; Mehrara, B.J. Blockade of transforming growth factor-β1 accelerates lymphatic regeneration during wound repair. Am. J. Pathol. 2010, 177, 3202–3214. [Google Scholar] [PubMed]
- Suzuki, Y.; Ito, Y.; Mizuno, M.; Kinashi, H.; Sawai, A.; Noda, Y.; Mizuno, T.; Shimizu, H.; Fujita, Y.; Matsui, K.; et al. Transforming growth factor-β induces vascular endothelial growth factor-C expression leading to lymphangiogenesis in rat unilateral ureteral obstruction. Kidney Int. 2012, 81, 865–879. [Google Scholar]
- Liu, D.; Li, L.; Zhang, X.X.; Wan, D.Y.; Xi, B.X.; Hu, Z.; Ding, W.C.; Zhu, D.; Wang, X.L.; Wang, W.; et al. SIX1 promotes tumor lymphangiogenesis by coordinating TGFβ signals that increase expression of VEGF-C. Cancer Res. 2014, 74, 5597–5607. [Google Scholar]
- Jung, Y.J.; Lee, A.S.; Nguyen-Thanh, T.; Kang, K.P.; Lee, S.; Jang, K.Y.; Kim, M.K.; Kim, S.H.; Park, S.K.; Kim, W. Hyaluronan-induced VEGF-C promotes fibrosis-induced lymphangiogenesis via Toll-like receptor 4-dependent signal pathway. Biochem. Biophys. Res. Commun. 2015, 466, 339–345. [Google Scholar]
- Kinashi, H.; Ito, Y.; Sun, T.; Katsuno, T.; Takei, Y. Roles of the TGF-β(-)VEGF-C Pathway in Fibrosis-Related Lymphangiogenesis. Int. J. Mol. Sci. 2018, 19, 2487. [Google Scholar]
- Murakami, M.; Nguyen, L.T.; Zhang, Z.W.; Moodie, K.L.; Carmeliet, P.; Stan, R.V.; Simons, M. The FGF system has a key role in regulating vascular integrity. J. Clin. Investig. 2008, 118, 3355–3366. [Google Scholar] [PubMed] [Green Version]
- Presta, M.; Dell’Era, P.; Mitola, S.; Moroni, E.; Ronca, R.; Rusnati, M. Targeting Fibroblast Growth Factor/Fibroblast Growth Factor Receptor System in Angiogenesis. Cytokine Growth Factor Rev. 2005, 16, 159–178. [Google Scholar] [PubMed] [Green Version]
- Poole, T.J.; Finkelstein, E.B.; Cox, C.M. The role of FGF and VEGF in angioblast induction and migration during vascu-lar development. Dev. Dyn. 2001, 220, 1–17. [Google Scholar] [PubMed]
- Singer, A.J.; Clark, R.A. Cutaneous wound healing. N. Engl. J. Med. 1999, 341, 738–746. [Google Scholar]
- Liu, N.F.; He, Q.L. The regulatory effects of cytokines on lymphatic angiogenesis. Lymphology 1997, 30, 3–12. [Google Scholar]
- Chang, L.K.; Garcia-Cardeña, G.; Farnebo, F.; Fannon, M.; Chen, E.J.; Butterfield, C.; Moses, M.A.; Mulligan, R.C.; Folkman, J.; Kaipainen, A. Dose-dependent response of FGF-2 for lymphangiogenesis. Proc. Natl. Acad. Sci. USA 2004, 101, 11658–11663. [Google Scholar]
- Cao, R.; Ji, H.; Feng, N.; Zhang, Y.; Yang, X.; Andersson, P.; Sun, Y.; Tritsaris, K.; Hansen, A.J.; Dissing, S.; et al. Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis. Proc. Natl. Acad. Sci. USA 2012, 109, 15894–15899. [Google Scholar]
- Kubo, H.; Cao, R.; Bräkenhielm, E.; Mäkinen, T.; Cao, Y.; Alitalo, K. Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth fac-tor-2-induced lymphangiogenesis in mouse cornea. Proc. Natl. Acad. Sci. USA 2002, 99, 8868–8873. [Google Scholar]
- Murakami, M.; Nguyen, L.T.; Hatanaka, K.; Schachterle, W.; Chen, P.-Y.; Zhuang, Z.W.; Black, B.L.; Simons, M. FGF-dependent regulation of VEGF receptor 2 expression in mice. J. Clin. Investig. 2011, 121, 2668–2678762. [Google Scholar]
- Shin, J.W.; Min, M.; Larrieu-Lahargue, F.; Canron, X.; Kunstfeld, R.; Nguyen, L.; Henderson, J.E.; Bikfalvi, A.; Detmar, M.; Hong, Y.K. Prox1 promotes lineage-specific expression of fibroblast growth factor (FGF) receptor-3 in lymphatic en-dothelium: A role for FGF signaling in lymphangiogenesis. Mol. Biol. Cell 2006, 17, 576–584. [Google Scholar]
- Platonova, N.; Miquel, G.; Regenfuss, B.; Taouji, S.; Cursiefen, C.; Chevet, E.; Bikfalvi, A. Evidence for the interaction of fibroblast growth factor-2 with the lymphatic endothelial cell marker LYVE-1. Blood 2013, 121, 1229–1237. [Google Scholar] [PubMed] [Green Version]
- Jitariu, A.A.; Cimpean, A.M.; Kundnani, N.R.; Raica, M. State of the art paper Platelet-derived growth factors induced lymphangiogenesis: Evidence, unanswered questions and upcoming challenges. Arch. Med. Sci. 2015, 1, 57–66. [Google Scholar]
- Onimaru, M.; Yonemitsu, Y.; Fujii, T.; Tanii, M.; Nakano, T.; Nakagawa, K.; Kohno, R.-I.; Hasegawa, M.; Nishikawa, S.-I.; Sueishi, K. VEGF-C regulates lymphangiogenesis and capillary stability by regulation of PDGF-B. Am. J. Physiol. Circ. Physiol. 2009, 297, H1685–H1696. [Google Scholar]
- Cao, R.; Björndahl, M.A.; Religa, P.; Clasper, S.; Garvin, S.; Galter, D.; Meister, B.; Ikomi, F.; Tritsaris, K.; Dissing, S.; et al. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 2004, 6, 333–345. [Google Scholar] [PubMed] [Green Version]
- Ehnman, M.; Missiaglia, E.; Folestad, E.; Selfe, J.; Strell, C.; Thway, K.; Brodin, B.; Pietras, K.; Shipley, J.; Östman, A.; et al. Distinct effects of ligand-induced PDGFRalpha and PDGFRbeta signaling in the human rhabdomyosar-coma tumor cell and stroma cell compartments. Cancer Res. 2013, 73, 2139–2149. [Google Scholar] [PubMed] [Green Version]
- Schoppmann, S.F.; Alidzanovic, L.; Schultheis, A.; Perkmann, T.; Brostjan, C.; Birner, P. Thrombocytes Correlate with Lymphangiogenesis in Human Esophageal Cancer and Mediate Growth of Lymphatic Endothelial Cells In Vitro. PLoS ONE 2013, 8, e66941. [Google Scholar]
- Linares, P.M.; Gisbert, J.P. Role of growth factors in the development of lymphangiogenesis driven by inflammatory bowel disease: A review. Inflamm. Bowel Dis. 2011, 17, 1814–1821. [Google Scholar]
- Williams, S.P.; Karnezis, T.; Achen, M.G.; Stacker, S.A. Targeting lymphatic vessel functions through tyrosine kinases. J. Angiogenesis Res. 2010, 2, 13. [Google Scholar]
- Cao, Y. Direct role of PDGF-BB in lymphangiogenesis and lymphatic metastasis. Cell Cycle 2005, 4, 228–230. [Google Scholar]
- Cadamuro, M.; Brivio, S.; Mertens, J.; Vismara, M.; Moncsek, A.; Milani, C.; Fingas, C.; Malerba, M.C.; Nardo, G.; Dall’Olmo, L.; et al. Platelet-derived growth factor-D enables liver myofibroblasts to promote tumor lymphangiogenesis in cholangiocarcinoma. J. Hepatol. 2019, 70, 700–709. [Google Scholar]
- Das, S.; Ladell, D.S.; Podgrabinska, S.; Ponomarev, V.; Nagi, C.; Fallon, J.; Skobe, M. Vascular endothelial growth factor-C induces lymphangitic carcinomatosis, an extremely aggressive form of lung metastases. Cancer Res. 2010, 70, 1814–1824. [Google Scholar] [PubMed] [Green Version]
- Skobe, M.; Hawighorst, T.; Jackson, D.G.; Prevo, R.; Janes, L.; Velasco, P.; Riccardi, L.; Alitalo, K.; Claffey, K.; Detmar, M. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat. Med. 2001, 7, 192–198. [Google Scholar] [PubMed]
- Choi, I.; Lee, S.; Kyoung Chung, H.; Suk Lee, Y.; Eui Kim, K.; Choi, D.; Park, E.K.; Yang, D.; Ecoiffier, T.; Monahan, J.; et al. 9-cis retinoic acid promotes lymphangiogenesis and enhances lymphatic vessel regeneration: Therapeutic implications of 9-cis retinoic acid for secondary lymphedema. Circulation 2012, 125, 872–882. [Google Scholar]
- Bramos, A.; Perrault, D.; Yang, S.; Jung, E.; Hong, Y.K.; Wong, A.K. Prevention of Postsurgical Lymphedema by 9-cis Retinoic Acid. Ann. Surg. 2016, 264, 353–361. [Google Scholar] [PubMed]
- Daneshgaran, G.; Paik, C.B.; Cooper, M.N.; Sung, C.; Lo, A.; Jiao, W.; Park, S.Y.; Kim, G.H.; Hong, Y.K.; Wong, A.K. Prevention of postsurgical lymphedema via immediate delivery of sustained-release 9-cis retinoic acid to the lymphedenectomy site. J. Surg. Oncol. 2020, 121, 100–108. [Google Scholar] [PubMed] [Green Version]
- Tammela, T.; Saaristo, A.; Lohela, M.; Morisada, T.; Tornberg, J.; Norrmén, C.; Oike, Y.; Pajusola, K.; Thurston, G.; Suda, T.; et al. Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood 2005, 105, 4642–4648. [Google Scholar]
- Mandriota, S.J.; Pepper, M. Regulation of angiopoietin-2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia. Circ. Res. 1998, 83, 852–859. [Google Scholar]
- Gale, N.W.; Thurston, G.; Hackett, S.F.; Renard, R.; Wang, Q.; McClain, J.; Martin, C.; Witte, C.; Witte, M.H.; Jackson, D.; et al. Angiopoietin-2 Is Required for Postnatal Angiogenesis and Lymphatic Patterning, and Only the Latter Role Is Rescued by Angiopoietin-1. Dev. Cell 2002, 3, 411–423. [Google Scholar]
- Eun Kim, K.; Cho, C.H.; Kim, H.Z.; Baluk, P.; McDonald, D.M.; Young Koh, G. In vivo actions of angiopoietins on quiescent and remodeling blood and lymphatic vessels in mouse air-ways and skin. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 564–570. [Google Scholar]
- Fiedler, U.; Reiss, Y.; Scharpfenecker, M.; Grunow, V.; Koidl, S.; Thurston, G.; Gale, N.W. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of in-flammation. Nat. Med. 2006, 12, 235–239. [Google Scholar]
- Tabruyn, S.P.; Colton, K.; Morisada, T.; Fuxe, J.; Wiegand, S.J.; Thurston, G.; Coyle, A.J.; Connor, J.; McDonald, D.M. Angiopoietin-2-driven vascular remodeling in airway inflammation. Am. J. Pathol. 2010, 177, 3233–3244. [Google Scholar] [PubMed]
- Schoppmann, S.F.; Fenzl, A.; Schindl, M.; Bachleitner-Hofmann, T.; Nagy, K.; Gnant, M.; Horvat, R.; Jakesz, R.; Birner, P. Hypoxia inducible factor-1α correlates with VEGF-C expression and lymphangiogenesis in breast cancer. Breast Cancer Res. Treat. 2006, 99, 135–141. [Google Scholar] [PubMed]
- Schindl, M.; Schoppmann, S.F.; Samonigg, H.; Hausmaninger, H.; Kwasny, W.; Gnant, M.; Jakesz, R.; Kubista, E.; Birner, P.; Oberhuber, G. Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin. Cancer Res. 2002, 8, 1831–1837. [Google Scholar] [PubMed]
- Zampell, J.C.; Yan, A.; Avraham, T.; Daluvoy, S.; Weitman, E.S.; Mehrara, B.J. HIF-1α: Coordinates lymphangiogenesis during wound healing and in response to inflammation. FASEB J. 2012, 26, 1027–1039. [Google Scholar]
- Klein, K.R.; Caron, K.M. Adrenomedullin in lymphangiogenesis: From development to disease. Cell. Mol. Life Sci. 2015, 72, 3115–3126. [Google Scholar]
- Nikitenko, L.L.; Shimosawa, T.; Henderson, S.; Mäkinen, T.; Shimosawa, H.; Qureshi, U.; Pedley, R.B.; Rees, M.C.; Fujita, T.; Boshoff, C. Adrenomedullin haploinsufficiency predisposes to secondary lymphedema. J. Investig. Dermatol. 2013, 133, 1768–1776. [Google Scholar]
- Trincot, C.E.; Xu, W.; Zhang, H.; Kulikauskas, M.R.; Caranasos, T.G.; Jensen, B.C.; Sabine, A.; Petrova, T.V.; Caron, K.M. Adrenomedullin Induces Cardiac Lymphangiogenesis after Myocardial Infarction and Regulates Cardiac Edema Via Connexin 43. Circ. Res. 2019, 124, 101–113. [Google Scholar]
- Lee, K.Y.; Mooney, D.J. Hydrogels for tissue engineering. Chem. Rev. 2001, 101, 1869–1879. [Google Scholar]
- Abdalla, S.; Makhoul, G.; Duong, M.; Chiu, R.C.; Cecere, R. Hyaluronic acid-based hydrogel induces neovascularization and improves cardiac function in a rat model of myocardial infarction. Interact. Cardiovasc. Thorac. Surg. 2013, 17, 767–772. [Google Scholar]
- Hughes, C.S.; Postovit, L.M.; Lajoie, G.A. Matrigel: A complex protein mixture required for optimal growth of cell culture. Proteomics 2010, 10, 1886–1890. [Google Scholar]
- Güç, E.; Briquez, P.S.; Foretay, D.; Fankhauser, M.; Hubbell, J.A.; Kilarski, W.W.; Swartz, M.A. Local induction of lymphangiogenesis with engineered fibrin-binding VEGF-C promotes wound healing by increasing immune cell trafficking and matrix remodeling. Biomaterials 2017, 131, 160–175. [Google Scholar] [PubMed]
- Helm, C.-L.E.; Zisch, A.; Swartz, M.A. Engineered blood and lymphatic capillaries in 3-D VEGF-fibrin-collagen matrices with interstitial flow. Biotechnol. Bioeng. 2007, 96, 167–176. [Google Scholar] [PubMed]
- Li, X.; Shou, Y.; Tay, A. Hydrogels for Engineering the Immune System. Adv. NanoBiomed Res. 2021, 1, 2000073. [Google Scholar]
- Giese, C.; Demmler, C.D.; Ammer, R.; Hartmann, S.; Lubitz, A.; Miller, L.; Müller, R.; Marx, U. A human lymph node in vitro? Challenges and progress. Artif. Organs 2006, 30, 803–808. [Google Scholar]
- Baker, A.; Kim, H.; Semple, J.L.; Dumont, D.; Shoichet, M.; Tobbia, D.; Johnston, M. Experimental assessment of pro-lymphangiogenic growth factors in the treatment of post-surgical lymphedema following lymphadenectomy. Breast Cancer Res. 2010, 12, R70. [Google Scholar]
- Beerens, M.; Aranguren, X.L.; Hendrickx, B.; Dheedene, W.; Dresselaers, T.; Himmelreich, U.; Verfaillie, C.; Luttun, A. Multipotent Adult Progenitor Cells Support Lymphatic Regeneration at Multiple Anatomical Levels during Wound Healing and Lymphedema. Sci. Rep. 2018, 8, 3852. [Google Scholar]
- del Río, E.P.; Santos, F.; Rodriguez, X.R.; Martínez-Miguel, M.; Roca-Pinilla, R.; Arís, A.; Garcia-Fruitós, E.; Veciana, J.; Spatz, J.P.; Ratera, I.; et al. CCL21-loaded 3D hydrogels for T cell expansion and differentiation. Biomaterials 2020, 259, 120313. [Google Scholar]
- Kannan, R.Y.; Salacinski, H.J.; Butler, P.E.; Seifalian, A.M. Polyhedral oligomeric silsesquioxane nanocomposites: The next generation material for biomedical applications. Acc. Chem. Res. 2005, 38, 879–884. [Google Scholar]
- Dai, T.T.; Jiang, Z.H.; Li, S.L.; Zhou, G.D.; Kretlow, J.D.; Cao, W.G.; Liu, W.; Cao, Y.L. Reconstruction of lymph vessel by lymphatic endothelial cells combined with polyglycolic acid scaffolds: A pilot study. J. Biotechnol. 2010, 150, 182–189. [Google Scholar]
- Knezevic, L.; Schaupper, M.; Mühleder, S.; Schimek, K.; Hasenberg, T.; Marx, U.; Priglinger, E.; Redl, H.; Holnthoner, W. Engineering Blood and Lymphatic Microvascular Networks in Fibrin Matrices. Front. Bioeng. Biotechnol. 2017, 5, 25. [Google Scholar]
- Hadamitzky, C.; Zaitseva, T.S.; Bazalova-Carter, M.; Paukshto, M.V.; Hou, L.; Strassberg, Z.; Ferguson, J.; Matsuura, Y.; Dash, R.; Yang, P.C.; et al. Aligned nanofibrillar collagen scaffolds–Guiding lymphangiogenesis for treatment of acquired lymphedema. Biomaterials 2016, 102, 259–267. [Google Scholar] [PubMed] [Green Version]
- Gibot, L.; Galbraith, T.; Bourland, J.; Rogic, A.; Skobe, M.; Auger, F.A. Tissue-engineered 3D human lymphatic microvascular network for in vitro studies of lymphangiogenesis. Nat. Protoc. 2017, 12, 1077–1088. [Google Scholar] [PubMed]
- Yang, J.; Dang, H.; Xu, Y. Recent advancement of decellularization extracellular matrix for tissue engineering and bio-medical application. In Artificial Organs; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar]
- Lin, H.-J.; Wang, W.; Huang, Y.-Y.; Liao, W.-T.; Lin, T.-Y.; Lin, S.-Y.; Liu, D.-Z. Decellularized Lymph Node Scaffolding as a Carrier for Dendritic Cells to Induce Anti-Tumor Immunity. Pharmaceutics 2019, 11, 553. [Google Scholar]
- Cuzzone, D.A.; Albano, N.J.; Aschen, S.Z.; Ghanta, S.; Mehrara, B.J. Decellularized Lymph Nodes as Scaffolds for Tissue Engineered Lymph Nodes. Lymphat. Res. Biol. 2015, 13, 186–194. [Google Scholar]
- Buttler, K.; Badar, M.; Seiffart, V.; Laggies, S.; Gross, G.; Wilting, J.; Weich, H.A. De novo hem- and lymphangiogenesis by endothelial progenitor and mesenchymal stem cells in immu-nocompetent mice. Cell. Mol. Life Sci. 2014, 71, 1513–1527. [Google Scholar] [PubMed]
- Shimizu, Y.; Polavarapu, R.; Eskla, K.; Pantner, Y.; Nicholson, C.K.; Ishii, M.; Brunnhoelzl, D.; Mauria, R.; Husain, A.; Naqvi, N.; et al. Impact of Lymphangiogenesis on Cardiac Remodeling After Ischemia and Reperfusion Injury. J. Am. Hear. Assoc. 2018, 7, e009565. [Google Scholar]
- Zhang, J.; Xu, Y.; Liu, T.; Min, J.; Ma, Y.; Song, Y.; Lu, J.; Mi, W.; Wang, Y.; Li, H.; et al. In vivo construction of lymphoid node by implantation of adipose-derived stromal cells with hydroxy-propyl methyl cellulose hydrogel in BALB/c nude mice. Organogenesis 2019, 15, 85–99. [Google Scholar]
- Apoorva, F.; Tian, Y.F.; Pierpont, T.M.; Bassen, D.M.; Cerchietti, L.; Butcher, J.; Weiss, R.S.; Singh, A. Award Winner in the Young Investigator Category, 2017 Society for Biomaterials Annual Meeting and Exposition, Minneapolis, MN, April 05–08, 2017: Lymph node stiffness-mimicking hydrogels regulate human B-cell lymphoma growth and cell surface receptor expression in a molecular subtype-specific manner. J. Biomed. Mater. Res. Part A 2017, 105, 1833–1844. [Google Scholar]
- Kanapathy, M.; Kalaskar, D.; Mosahebi, A.; Seifalian, A.M. Development of a Tissue-Engineered Lymphatic Graft Using Nanocomposite Polymer for the Treat-ment of Secondary Lymphedema. Artif. Organs 2016, 40, E1–E11. [Google Scholar]
- Landau, S.; Newman, A.; Edri, S.; Michael, I.; Ben-Shaul, S.; Shandalov, Y.; Ben-Arye, T.; Kaur, P.; Zheng, M.H.; Levenberg, S. Investigating lymphangiogenesis in vitro and in vivo using engineered human lymphatic vessel net-works. Proc. Natl. Acad. Sci. USA 2021, 118, e2101931118. [Google Scholar]
- Matsusaki, M.; Fujimoto, K.; Shirakata, Y.; Hirakawa, S.; Hashimoto, K.; Akashi, M. Development of full-thickness human skin equivalents with blood and lymph-like capillary networks by cell coating technology. J. Biomed. Mater. Res. A 2015, 103, 3386–3396. [Google Scholar] [PubMed]
- Mazza, G.; Rombouts, K.; Hall, A.R.; Urbani, L.; Luong, T.V.; Al-Akkad, W.; Longato, L.; Brown, D.; Maghsoudlou, P.; Dhillon, A.P.; et al. Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Sci. Rep. 2015, 5, 13079. [Google Scholar] [PubMed]
- Gilpin, S.; Guyette, J.P.; Gonzalez, G.; Ren, X.; Asara, J.M.; Mathisen, D.J.; Vacanti, J.P.; Ott, H.C. Perfusion decellularization of human and porcine lungs: Bringing the matrix to clinical scale. J. Heart Lung Transpl. 2014, 33, 298–308. [Google Scholar]
- Sánchez, P.L.; Santos, M.E.F.; Costanza, S.; Climent, A.M.; Moscoso, I.; Gonzalez-Nicolas, M.A.; Sanz-Ruiz, R.; Rodríguez, H.; Kren, S.M.; Garrido, G.; et al. Acellular human heart matrix: A critical step toward whole heart grafts. Biomaterials 2015, 61, 279–289. [Google Scholar] [PubMed]
- Gilbert, T.W.; Sellaro, T.L.; Badylak, S.F. Decellularization of tissues and organs. Biomaterials 2006, 27, 3675–3683. [Google Scholar]
- Yang, Y.; Yang, J.-T.; Chen, X.-H.; Qin, B.-G.; Li, F.-G.; Chen, Y.-X.; Gu, L.-Q.; Zhu, J.-K.; Li, P. Construction of tissue-engineered lymphatic vessel using human adipose derived stem cells differentiated lymphatic endothelial like cells and decellularized arterial scaffold: A preliminary study. Biotechnol. Appl. Biochem. 2018, 65, 428–434. [Google Scholar] [PubMed]
- Lenti, E.; Bianchessi, S.; Proulx, S.T.; Palano, M.T.; Genovese, L.; Raccosta, L.; Spinelli, A.; Drago, D.; Andolfo, A.; Alfano, M.; et al. Therapeutic Regeneration of Lymphatic and Immune Cell Functions upon Lympho-organoid Transplanta-tion. Stem Cell Rep. 2019, 12, 1260–1268. [Google Scholar]
- Sheridan, W.S.; Duffy, G.P.; Murphy, B.P. Mechanical characterization of a customized decellularized scaffold for vascu-lar tissue engineering. J. Mech. Behav. Biomed. Mater. 2012, 8, 58–70. [Google Scholar]
- Xie, Z.; Gao, M.; Lobo, A.O.; Webster, T.J. 3D Bioprinting in Tissue Engineering for Medical Applications: The Classic and the Hybrid. Polymers 2020, 12, 1717. [Google Scholar]
- Hwang, D.G.; Choi, Y.M.; Jang, J. 3D Bioprinting-Based Vascularized Tissue Models Mimicking Tissue-Specific Archi-tecture and Pathophysiology for in vitro studies. Front. Bioeng. Biotechnol. 2021, 9, 685507. [Google Scholar]
- Kolesky, D.B.; Homan, K.A.; Skylar-Scott, M.A.; Lewis, J.A. Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl. Acad. Sci. USA 2016, 113, 3179–3184. [Google Scholar] [PubMed] [Green Version]
- Jia, W.; Gungor-Ozkerim, P.S.; Zhang, Y.S.; Yue, K.; Zhu, K.; Liu, W.; Pi, Q.; Byambaa, B.; Dokmeci, M.R.; Shin, S.R.; et al. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 2016, 106, 58–68. [Google Scholar] [PubMed] [Green Version]
- Szklanny, A.A.; Machour, M.; Redenski, I.; Chochola, V.; Goldfracht, I.; Kaplan, B.; Epshtein, M.; Yameen, H.S.; Merdler, U.; Feinberg, A.; et al. 3D Bioprinting of Engineered Tissue Flaps with Hierarchical Vessel Networks (VesselNet) for Direct Host-To-Implant Perfusion. Adv. Mater. 2021, 33, 2102661. [Google Scholar]
- Schmid-Schonbein, G.W. Microlymphatics and lymph flow. Physiol. Rev. 1990, 70, 987–1028. [Google Scholar]
- Aukland, K.; Reed, R.K. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol. Rev. 1993, 73, 1–78. [Google Scholar]
- Boardman, K.C.; Swartz, M.A. Interstitial Flow as a Guide for Lymphangiogenesis. Circ. Res. 2003, 92, 801–808. [Google Scholar]
- Goldman, J.; Conley, K.A.; Raehl, A.; Bondy, D.M.; Pytowski, B.; Swartz, M.A.; Rutkowski, J.M.; Jaroch, D.B.; Ongstad, E.L. Regulation of lymphatic capillary regeneration by interstitial flow in skin. Am. J. Physiol. Circ. Physiol. 2007, 292, H2176–H2183. [Google Scholar]
- Auersperg, V.; Trieb, K. Extracorporeal shock wave therapy: An update. EFORT Open Rev. 2020, 5, 584–592. [Google Scholar]
- Ogden, J.A.; Tóth-Kischkat, A.; Schultheiss, R. Principles of Shock Wave Therapy. Clin. Orthop. Relat. Res. 2001, 387, 8–17. [Google Scholar]
- Kubo, M.; Li, T.S.; Kamota, T.; Ohshima, M.; Shirasawa, B.; Hamano, K. Extracorporeal shock wave therapy ameliorates secondary lymphedema by promoting lymphangiogenesis. J. Vasc. Surg. 2010, 52, 429–434. [Google Scholar]
- Serizawa, F.; Ito, K.; Matsubara, M.; Sato, A.; Shimokawa, H.; Satomi, S. Extracorporeal shock wave therapy induces therapeutic lymphangiogenesis in a rat model of secondary lymphoedema. Eur. J. Vasc. Endovasc. Surg. 2011, 42, 254–260. [Google Scholar] [PubMed] [Green Version]
- Cho, H.K.; Sung, W.J.; Lee, Y.J.; Kwak, S.G.; Kim, K.L. Two methods of extracorporeal shock-wave therapy in a rat model of secondary lymphedema: A pilot study. J. Int. Med. Res. 2021, 49, 3000605211024473. [Google Scholar] [PubMed]
- Kim, I.G.; Lee, J.Y.; Lee, D.S.; Kwon, J.Y.; Hwang, J.H. Extracorporeal shock wave therapy combined with vascular endothelial growth factor-c hydrogel for lymphangiogenesis. J. Vasc. Res. 2013, 50, 124–133. [Google Scholar] [PubMed]
- Michelini, S.; Cardone, M.; Failla, A.; Moneta, G.; Fiorentino, A.; Cappellino, F. Treatment of geriatrics lymphedema with shockwave therapy. BMC Geriatr. 2010, 10, A105. [Google Scholar]
- Bae, H.; Kim, H.J. Clinical outcomes of extracorporeal shock wave therapy in patients with secondary lymphedema: A pilot study. Ann. Rehabil. Med. 2013, 37, 229–234. [Google Scholar]
- Cebicci, M.A.; Sutbeyaz, S.T.; Goksu, S.S.; Hocaoglu, S.; Oguz, A.; Atilabey, A. Extracorporeal Shock Wave Therapy for Breast Cancer–Related Lymphedema: A Pilot Study. Arch. Phys. Med. Rehabil. 2016, 97, 1520–1525. [Google Scholar]
- Joos, E.; Vultureanu, I.; Nonneman, T.; Adriaenssens, N.; Hamdi, M.; Zeltzer, A. Low-Energy Extracorporeal Shockwave Therapy as a Therapeutic Option for Patients with a Secondary Late-Stage Fibro-Lymphedema After Breast Cancer Therapy: A Pilot Study. Lymphat. Res. Biol. 2021, 19, 175–180. [Google Scholar]
- Sleigh, B.C.; Manna, B. Lymphedema; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- DiSipio, T.; Rye, S.; Newman, B.; Hayes, S. Incidence of unilateral arm lymphoedema after breast cancer: A systematic review and meta-analysis. Lancet Oncol. 2013, 14, 500–515. [Google Scholar]
Scaffold Material | Model | Structure | Technique/Result | References |
---|---|---|---|---|
Fibrin/collagen hydrogel | In vitro, In vivo | Lymphatic capillaries | hDMECs co-cultured with fibroblasts in fibrin or collagen type I hydrogels to construct skin grafts. | [90] |
Formation of functional lymphatic capillaries observed and growth of lymphatic capillaries and restoration of lymphatic drainage when transplanted to rats. | ||||
In vivo | Lymphatic capillaries | VEGF-C loaded fibrin hydrogels in mouse subcutaneous cartilage replacement wound healing and diabetic wound healing models. | [91] | |
Increased local lymphangiogenesis with immunologic and physiologic functions. | ||||
In vitro | Lymphatic capillaries | BECs and LECs cultured in different compositions of fibrin and collagen hydrogels with matrix-bound VEGF and slow interstitial flow. | [92] | |
Fibrin-only matrix supported LEC organization. | ||||
Gelatin | In vivo | Lymphatic capillaries | VEGF-C loaded gelatin hydrogels in mouse ischemic heart failure model. | [93] |
Increased lymphatic density and transport and attenuated development of ischemia-induced heart failure. | ||||
Hyaluronic acid | In vivo | Lymphatic capillaries | Delivery of hyaluronic acid-based hydrogels to rat myocardial infarction model. | [94] |
Improved ejection fraction, decreased collagen deposition, and increased novel vasculature formation by VEGF staining. | ||||
Hyaluronan and methylcellulose (HAMC) | In vivo | lymphatic capillaries | HAMC with VEGF-C and ANG-2 in sheep hindlimb lymphedema model. | [90] |
Improved lymphatic function and reduced edema. | ||||
Hydroxypropyl methylcellulose (HPMC) | In vivo | Lymph nodes | Delivery of hADSCs from liposuction cultured in differentiation medium, supplemented with TGFβ1 and bFGF to mice. | [95] |
Formation of lymphoid nodes. | ||||
Matrigel | In vitro, In vivo | Lymphatic capillaries and collector vessel | MAPCs and LECs in Matrigel in mouse wound model. | [96] |
Growth of lymphatic capillary in wounds and restoration of lymphatic drainage. | ||||
In vivo | Lymphatic capillaries | MSCs and EPCs in Matrigel and injected into mice. | [97] | |
Growth of blood vessels and lymphatics. Not able to demonstrate functionality of lymphatics | ||||
Non-biodegradable synthetic scaffold | In vitro | Lymphatic vessels | hDLECs in POSS-PCU scaffolds. | [98] |
Biodegradable synthetic scaffold | In vitro, In vivo | Lymphatic vessels | hLECs in PGA scaffolds implanted in mice. | [99] |
Development of tubular structures expressing lymphatic markers. | ||||
Fibrin scaffold | In vitro | Lymphatic capillaries | LECs and BECCs co-cultured with adipose-derived stromal cells (ASCs) and supplemented with VEGF-C in fibrin scaffolds. | [100] |
Development of lymphatic network | ||||
Collagen scaffold | In vivo | Lymphatic collectors | Nanofibrillar collagen scaffolds in porcine lymphedema model. | [101] |
Increase in lymphatic collectors within proximity to the scaffolds. | ||||
In vitro, In vivo | Lymphatic vessel | LECs and DPSCs with PDFGR-β and mechanical cyclin stretch in vitro and implantation into a mouse abdominal wall muscle. | [102] | |
Lymphangiogenesis and formation of anastomosis between host and implant lymphatic vasculatures. | ||||
Fibroblast sheets | In vitro | Lymphatic-like capillaries (skin grafts) | Bioengineered dermis with 8 layers of stacked human umbilical vein ECs, LECs, dermal fibroblast, and keratinocyte. | [103] |
Reconstruction of a full-thickness skin tissue with blood and lymphatic-like capillaries in dermis | ||||
Decellularization | In vivo | Lymph node | Lymph nodes harvested from adult mice decellularized, repopulated with splenocytes, and implanted in submuscular pockets. | [104] |
Observation of preserved extracellular matrix architecture and successful in vivo lymphocyte delivery. | ||||
In vivo | Lymph node | LN stromal progenitors in decellularized lymph nodes upon transplantation at the site of resected LNs. | [105] | |
Integration into the endogenous lymphatic vasculature and restoration of lymphatic drainage and perfusion. Activation of antigen-specific immune responses upon immunization. | ||||
In vitro | Lymphatic vessel | hADSC-differentiated lymphatic endothelial like cells in decellularized arterial scaffold. | [106] | |
Cells proliferated and attached well on the surface layer of the decellularized arterial scaffold. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, C.J.; Gupta, K.; Wang, J.; Wong, A.K. Lymphatic Tissue Bioengineering for the Treatment of Postsurgical Lymphedema. Bioengineering 2022, 9, 162. https://doi.org/10.3390/bioengineering9040162
Sung CJ, Gupta K, Wang J, Wong AK. Lymphatic Tissue Bioengineering for the Treatment of Postsurgical Lymphedema. Bioengineering. 2022; 9(4):162. https://doi.org/10.3390/bioengineering9040162
Chicago/Turabian StyleSung, Cynthia J., Kshitij Gupta, Jin Wang, and Alex K. Wong. 2022. "Lymphatic Tissue Bioengineering for the Treatment of Postsurgical Lymphedema" Bioengineering 9, no. 4: 162. https://doi.org/10.3390/bioengineering9040162
APA StyleSung, C. J., Gupta, K., Wang, J., & Wong, A. K. (2022). Lymphatic Tissue Bioengineering for the Treatment of Postsurgical Lymphedema. Bioengineering, 9(4), 162. https://doi.org/10.3390/bioengineering9040162