Tissue Engineering Applied to Skeletal Muscle: Strategies and Perspectives
Abstract
:1. Introduction
2. Materials and Methods
3. State of Art
3.1. Cells with Myogenic Potential
3.1.1. Satellite Cells
3.1.2. Embryonic Stem Cells (ESCs)
3.1.3. Multipotent Stem Cells
Mesenchymal Stem Cells (MSCs)
Markers | Cell Types | References | |||
---|---|---|---|---|---|
Satellite Cells | BM-MSCs | ADSCs | HSC | ||
CD73 | + | [33,37,38] | |||
CD90 | + | + | + | + | [34,35,37,38,40] |
CD 105 | + | [33,37,40] | |||
Stro-1 | + | + | [32,33,35,38] | ||
CD 73 | + | [33,38] | |||
CD 146 | + | [32,38,40] | |||
SSEA-4 | + | [32] | |||
GD 2 | + | + | [32] | ||
CD 49D | + | [34] | |||
CD 49F | + | [32] | |||
CD34 | + | + | + | [35,37,38,39,40] | |
CD45 | + | [35,37,38,40] | |||
HLA-DR | + | [37] | |||
CD 38 | + | [35] | |||
CD 117 | + | [35] | |||
CD 133 | + | [35] | |||
CD 56 | + | [35] | |||
Myf5 | + | [35] | |||
Desmin | + | [35] | |||
M-Cadherin | + | [35] | |||
CD106 | + | + | [34,35,38] | ||
Flk-1 | + | [35] | |||
VEGFR | + | [35] | |||
MyoD | + | [35] | |||
CD146 | + | [35] | |||
CD73 | + | [33,37,38] |
Adipose Derived Stem Cells (ADSCs)
Bone Marrow Mesenchymal Stem Cells (BM-MSCs)
3.2. The Three-Dimensional Environment for Myogenesis
3.2.1. Methods for Obtaining a 3D Environment
3.2.2. Natural Polymers
3.2.3. Decellularized Extracellular Matrices (dECM)
3.2.4. Bioresorbable Synthetic Polymers
3.2.5. Bioprinting
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Junqueira, L.C.U.; Carneiro, J. Histologia Básica, 13rd ed.; Guanabara Koogan: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- Trovato, F.M.; Imbesi, R.; Conway, N.; Castrogiovanni, P. Morphological and functional aspects of human skeletal muscle. J. Funct. Morphol. Kinesiol. 2016, 1, 289–302. [Google Scholar] [CrossRef]
- Li, E.W.; Mckee-Muir, O.C.; Gilbert, P.M. Cellular biomechanics in skeletal muscle regeneration. Curr. Top. Dev. Biol. 2018, 126, 125–176. [Google Scholar] [CrossRef] [PubMed]
- Dumont, N.A.; Bentzinger, C.F.; Sincennes, M.C.; Rudnicki, M.A. Satellite cells and skeletal muscle regeneration. Compr. Physiol. 2015, 5, 1027–1059. [Google Scholar] [CrossRef]
- Pantelic, M.N.; Larkin, L.M. Stem cells for skeletal muscle tissue engineering. Tissue Eng. Part B Rev. 2018, 24, 373–391. [Google Scholar] [CrossRef] [PubMed]
- Schultz, E. Satellite cell proliferative compartments in growing skeletal muscles. Dev. Biol. 1996, 175, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Price, F.; Rudnicki, M.A. Satellite cells and the muscle stem cell niche. Physiol Rev. 2013, 93, 23–67. [Google Scholar] [CrossRef] [Green Version]
- Frontera, W.R.; Ochala, J. Skeletal muscle: A brief review of structure and function. Calcif. Tissue Int. 2015, 96, 183–195. [Google Scholar] [CrossRef]
- Wang, H.D.; Lough, D.M.; Kurlander, D.E.; Lopez, J.; Quan, A.; Kumar, A.R. Muscle-derived stem cell-enriched scaffolds are capable of enhanced healing of a murine volumetric muscle loss defect. Plast. Reconstr. Surg. 2019, 143, 329e–339e. [Google Scholar] [CrossRef]
- Martins, A.L.L.; Santos Jr, A.R.; Giorno, L.P. Tissue engineering applied to skeletal muscle injuries: An overview of therapeutic perspectives. J. Bio. Med. Open Access 2021, 2, 121. Available online: https://gnoscience.com/uploads/journals/articles/472274214263.pdf (accessed on 10 October 2021).
- Di Rocco, G.; Iachininoto, M.G.; Tritarelli, A.; Straino, S.; Zacheo, A.; Germani, A.; Crea, F.; Capogrossi, M.C. Myogenic potential of adipose-tissue-derived cells. J. Cell Sci. 2006, 119, 2945–2952. [Google Scholar] [CrossRef] [Green Version]
- Sarrafian, T.L.; Bodine, S.C.; Murphy, B.; Grayson, J.K.; Stover, S.M. Extracellular matrix scaffolds for treatment of large volume muscle injuries: A review. Vet. Surg. 2018, 47, 524–535. [Google Scholar] [CrossRef] [PubMed]
- Claeys, K.G. Congenital myopathies: An update. Dev. Med. Child Neurol. 2020, 62, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Baioni, M.T.C.; Ambiel, C.R. Spinal muscular atrophy: Diagnosis, treatment and future prospects. J. Pediatr. 2010, 86, 261–270. Available online: https://www.scielo.br/j/jped/a/wfPCsMcS4z6xcRVNxct8btf/?format=pdf&lang=pt (accessed on 10 October 2021). [CrossRef] [PubMed]
- Santos, A.R., Jr.; Zavaglia, C.A.C. Tissue Engineering Concepts. In Reference Module in Materials Science and Materials Engineering; Hashmi, S., Ed.; Elsevier: Oxford, UK, 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Kwee, B.J.; Mooney, D.J. Biomaterials for skeletal muscle tissue engineering. Curr. Opi. Biotechnol. 2017, 47, 16–22. [Google Scholar] [CrossRef]
- Borselli, C.; Storrie, H.; Benesch-Lee, F.; Shvartsman, D.; Cezar, C.; Lichtman, J.W.; Vandenburgh, H.H.; Mooney, D.J. Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc. Natl. Acad. Sci. USA 2010, 107, 3287–3292. [Google Scholar] [CrossRef] [Green Version]
- Pumberger, M.; Qazi, T.H.; Ehrentraut, M.C.; Textor, M.; Kueper, J.; Stoltenburg-Didinger, G.; Winkler, T.; Von Roth, P.; Reinke, S.; Borselli, C. Synthetic niche to modulate regenerative potential of MSCs and enhance skeletal muscle regeneration. Biomaterials 2016, 99, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Madden, L.; Juhas, M.; Kraus, W.E.; Truskey, G.A.; Bursac, N. Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. eLife 2015, 4, e04885. [Google Scholar] [CrossRef] [Green Version]
- Syverud, B.C.; Lee, J.D.; Vandusen, K.W.; Larkin, L.M. Isolation and purification of satellite cells for skeletal muscle tissue engineering. J. Regen. Med. 2014, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Bose, W.E.; Yao, C.-C.; Kramer, R.H.; Blau, H.M. Purification of mouse primary myoblasts based on α7 integrin expression. Exp. Cell Res. 2001, 265, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.G.; Moon, J.H.; Kim, J.A. Comparative study of magnetic-activated cell sorting, cytotoxicity and preplating for the purification of human myoblasts. Yonsei Med. J. 2006, 47, 179. [Google Scholar] [CrossRef]
- Ilic, D.; Ogilvie, C. Concise Review: Human embryonic stem cells—What have we done? What are we doing? Where are we going? Stem Cells 2016, 35, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuge, T.; Liu, Z.; Liu, X.; Ang, B.C.; Andriyana, A.; Metselaar, H.S.C.; Hoque, M.E. Recent advances in scaffolding from natural-based polymers for volumetric muscle injury. Molecules 2021, 26, 699. [Google Scholar] [CrossRef] [PubMed]
- Brasil. Lei nº 11.105, de 24 de Março de 2005. Dispõe Sobre a Política Nacional de Biossegurança. Diário Oficial da União, Brasília, DF. Available online: http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2005/lei/l11105.htm (accessed on 10 October 2021).
- Brasil. Resolução RDC No. 505, de 27 de Maio de 2021. Dispõe Sobre o Registro de Produto de Terapia Avançada e dá Outras Providências. Edição: 101. Seção: 1. p. 129. Available online: https://www.in.gov.br/en/web/dou/-/resolucao-rdc-n-505-de-27-de-maio-de-2021-323002775 (accessed on 10 October 2021).
- Brasil. Resolução RDC No. 506, de 27 de Maio de 2021. Dispõe Sobre as Regras para a Realização de Ensaios Clínicos com Produto de Terapia Avançada Investigacional no Brasil, e dá Outras Providências. Edição: 101. Seção: 1. p. 132. Available online: https://www.in.gov.br/en/web/dou/-/resolucao-rdc-n-506-de-27-de-maio-de-2021-323008725 (accessed on 10 October 2021).
- Brasil. Resolução RDC No. 508, de 27 de Maio de 2021. Dispõe Sobre as Boas Práticas em Células Humanas para Uso Terapêutico e Pesquisa Clínica, e dá Outras Providências. Edição: 101. Seção: 1. p. 136. Available online: https://www.in.gov.br/en/web/dou/-/resolucao-rdc-n-508-de-27-de-maio-de-2021-323013606#:~:text=Disp%C3%B5e%20sobre%20as%20Boas%20Pr%C3%A1ticas,que%20lhe%20conferem%20os%20arts (accessed on 10 October 2021).
- Ramasamy, T.S.; Velaithan, V.; Yeow, Y.; Sarkar, F.H. Stem cells derived from amniotic fluid: A potential pluripotent-like cell source for cellular therapy? Curr. Stem Cell Res. Ther. 2018, 13, 252–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volarevic, V.; Markovic, B.S.; Gazdic, M.; Volarevic, A.; Jovicic, N.; Arsenijevic, N.; Armstrong, L.; Djonov, V.; Lako, M.; Stojkovic, M. Ethical and safety issues of stem cell-based therapy. Int. J. Med. Sci. 2018, 15, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Lv, F.-J.; Tuan, R.S.; Cheung, K.M.C.; Leung, V.Y.L. Concise review: The surface markers and identity of human mesenchymal stem cells. Stem Cells 2014, 32, 1408–1419. [Google Scholar] [CrossRef]
- Kolf, C.M.; Cho, E.; Tuan, R.S. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells. Regulation of niche, self-renewal and differentiation. Arthritis Res. Ther. 2007, 9, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bydlowski, S.P.; Debes, A.A.; Maselli, L.M.F.; Janz, F.L. Características biológicas das células-tronco mesenquimais. R. Bras. Hematol. Hemoter. 2009, 31, 25–35. [Google Scholar] [CrossRef]
- Sidney, L.E.; Branch, M.J.; Dunphy, S.E.; Dua, H.S.; Hopkinson, A. Concise review: Evidence for CD34 as a common marker for diverse progenitors. Stem Cells 2014, 32, 1380–1389. [Google Scholar] [CrossRef] [Green Version]
- Dupas, T.; Rouaud, T.; Rouger, K.; Lieubeau, B.; Cario-Toumaniantz, C.; Fontaine-Pérus, J.; Gardahaut, M.-F.; Auda-Boucher, G. Fetal muscle contains different CD34+ cell subsets that distinctly differentiate into adipogenic, angiogenic and myogenic lineages. Stem Cell Res. 2011, 7, 230–243. [Google Scholar] [CrossRef]
- Horwitz, E.M.; Le Blanc, K.; Domicini, M.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Deans, R.J.; Krause, D.S.; Keating, A. Clarification of the nomenclature for MSC: The international society for cellular therapy position statement. Cytotherapy 2005, 7, 393–395. [Google Scholar] [CrossRef]
- Li, H.; Ghazanfari, R.; Zacharaki, D.; Lim, H.C.; Scheding, S. Isolation and characterization of primary bone marrow mesenchymal stromal cells. Ann. N. Y. Acad. Sci. 2016, 1370, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-S.; Xin, Z.-C.; Dai, J.; Lue, T.F. Commonly used mesenchymal stem cell markers and tracking labels: Limitations and challenges. Histol. Histopathol. 2013, 28, 1109–1116. [Google Scholar] [CrossRef]
- Yoshimura, K.; Shigeura, T.; Matsumoto, D.; Sato, T.; Takaki, Y.; Aiba-Kojima, E.; Sato, K.; Inoue, K.; Nagase, T.; Koshima, I.; et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J. Cel. Physiol. 2006, 208, 64–76. [Google Scholar] [CrossRef]
- Zuk, P.A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J.W.; Katz, A.J.; Benhaim, P.; Lorenz, P.; Hedrick, M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tis. Eng. 2001, 7, 211–228. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.S.; Lin, G.; Lue, T.F. Allogeneic and xenogeneic transplantation of adipose-derived stem cells in immunocompetent recipients without immunosuppressants. Stem Cells Dev. 2012, 21, 2770–2778. [Google Scholar] [CrossRef] [Green Version]
- Chamberlain, G.; Fox, J.; Ashton, B.; Middleton, J. Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007, 25, 2739–2749. [Google Scholar] [CrossRef] [Green Version]
- Javazon, E.H.; Beggs, K.J.; Flake, A.W. Mesenchymal stem cells: Paradoxes of passaging. Exp. Hematol. 2004, 32, 414–425. [Google Scholar] [CrossRef]
- Machado, L.; Santos Jr, A.R. Stem cells and cell therapy: From basic sciences to clinical perspectives. J. Biomed. Sci. Eng. 2013, 6, 683–692. [Google Scholar] [CrossRef] [Green Version]
- Yilgor Huri, P.; Cook, C.A.; Hutton, D.L.; Goh, B.C.; Gimble, J.M.; Digirolamo, D.J.; Grayson, W.L. Biophysical cues enhance myogenesis of human adipose derived stem/stromal cells. Biochem. Biophys. Res. Commun. 2013, 438, 180–185. [Google Scholar] [CrossRef]
- Kesireddy, V. Evaluation of adipose-derived stem cells for tissue-engineered muscle repair construct-mediated repair of a murine model of volumetric muscle loss injury. Int. J. Nanomed. 2016, 11, 1461–1473. [Google Scholar] [CrossRef] [Green Version]
- Kulesza, A.; Burdzinska, A.; Szczepanska, I.; Zarychta-Wisniewska, W.; Pajak, B.; Bojarczuk, K.; Dybowski, B.; Paczek, L. The mutual interactions between mesenchymal stem cells and myoblasts in an autologous co-culture model. PLoS ONE 2016, 11, e0161693. [Google Scholar] [CrossRef] [Green Version]
- Witt, R.; Weigand, A.; Boos, A.M.; Cai, A.; Dippold, D.; Boccaccini, A.R.; Schubert, D.W.; Hardt, M.; Lange, C.; Arkudas, A.; et al. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. BMC Cell Biology 2017, 18, 15. [Google Scholar] [CrossRef] [Green Version]
- Nesmith, A.P.; Wagner, M.A.; Pasqualini, F.S.; O’connor, B.B.; Pincus, M.J.; August, P.R.; Parker, K.K. A human in vitro model of Duchenne muscular dystrophy muscle formation and contractility. J. Cell Biol. 2016, 215, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Stefanova, N.; Reindl, M.; Poewe, W.; Wenning, G.K. In vitro models of multiple system atrophy. Mov. Disord. 2005, 20 (Suppl. 12), S53–S56. [Google Scholar] [CrossRef]
- Nerli, E.; Roggero, O.M.; Baj, G.; Tongiorgi, E. In vitro modeling of dendritic atrophy in Rett syndrome: Determinants for phenotypic drug screening in neurodevelopmental disorders. Sci. Rep. 2020, 10, 2491. [Google Scholar] [CrossRef] [Green Version]
- Fuoco, C.; Petrilli, L.L.; Cannata, S.; Gargioli, C. Matrix scaffolding for stem cell guidance toward skeletal muscle tissue engineering. J. Orthop. Surg. Res. 2016, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.S.; Lee, S.H.; Park, W.J.; Lee, J.E.; Kim, B.; Han, D.-W. Advanced techniques for skeletal muscle tissue engineering and regeneration. Bioengineering 2020, 7, 99. [Google Scholar] [CrossRef]
- Rodrigues, I.C.P.; Woigt, L.F.; Pereira, K.D.; Luchessi, A.D.; Lopes, É.S.N.; Webster, T.J.; Gabriel, L.P. Low-cost hybrid scaffolds based on polyurethane and gelatin. J. Mater. Res. Technol. 2020, 9, 7777–7785. [Google Scholar] [CrossRef]
- Badrossamay, M.R.; Balachandran, K.; Capulli, A.K.; Golecki, H.M.; Agarwal, A.; Goss, J.A.; Kim, H.; Shin, K.; Parker, K.K. Engineering hybrid polymer-protein super-aligned nanofibers via rotary jet spinning. Biomaterials 2014, 35, 3188–3197. [Google Scholar] [CrossRef]
- MacQqueen, L.A.; Alver, C.G.; Chantre, C.O.; Ahn, S.; Cera, L.; Gonzalez, G.M.; O’connor, B.B.; Drennan, D.J.; Peters, M.M.; Motta, S.E.; et al. Muscle tissue engineering in fibrous gelatin: Implications for meat analogs. NPJ Sci. Food 2019, 3, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambrosi, A.; Pumera, M. 3D-Printing technologies for electrochemical applications. Chem. Soc. Rev. 2016, 45, 2740–2755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, H.; Nowicki, M.; Fisher, J.P.; Zhang, L.G. 3D Bioprinting for organ regeneration. Adv. Healthc. Mater. 2017, 6, 1601118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, T.V.; Malmonge, S.M.; Santos Jr, A.R. Bioprinting and stem cells: The new frontier of tissue engineering and regenerative medicine. J. Stem Cell Res. Ther. 2018, 4, 49–51. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Seol, Y.J.; Ko, I.K.; Kang, H.W.; Lee, Y.K.; Yoo, J.J.; Atala, A.; Lee, S.J. 3D Bioprinted human skeletal muscle constructs for muscle function restoration. Sci. Rep. 2018, 8, 12307. [Google Scholar] [CrossRef] [Green Version]
- Bour, R.; Presnell, S.; Shepherd, B.; Christ, G.; Peirce, S. Using bioprinting to tissue engineer microvascularized constructs for skeletal muscle repair. FASEB J. 2019, 33, lb449. [Google Scholar] [CrossRef]
- Giorno, L.P.; Santos Jr, A.R. Substitutos tissulares aplicado ao tecido ósseo. In Coleção Desafios das Engenharias: Engenharia Biomédica, 1st ed.; Ayres, C., Ed.; Atena Editora: Ponta Grossa, Brazil, 2021; pp. 62–87. [Google Scholar]
- Zha, Z.; Teng, W.; Markle, V.; Dai, Z.; Wu, X. Fabrication of gelatin nanofibrous scaffolds using ethanol/phosphate buffer saline as a benign solvent. Biopolymers 2012, 97, 1026–1036. [Google Scholar] [CrossRef]
- Klumpp, D.; Horch, R.E.; Kneser, U.; Beier, J.P. Engineering skeletal muscle tissue—New perspectives in vitro and in vivo. J. Cell. Mol. Med. 2010, 14, 2622–2629. [Google Scholar] [CrossRef]
- Gilbert-Honick, J.; Ginn, B.; Zhang, Y.; Salehi, S.; Wagner, K.R.; Mao, H.; Grayson, W.L. Adipose-derived stem/stromal cells on electrospun fibrin microfiber bundles enable moderate muscle reconstruction in a volumetric muscle loss model. Cell Transplant. 2018, 27, 1644–1656. [Google Scholar] [CrossRef] [Green Version]
- Reddy, M.S.B.; Ponnamma, D.; Choudhary, R.; Sadasivuni, K.K. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers 2021, 13, 1105. [Google Scholar] [CrossRef]
- Chen, P.-H.; Liao, H.-C.; Hsu, S.-H.; Chen, R.-S.; Wu, M.-C.; Yang, Y.-F.; Wu, C.-C.; Chen, M.-H.; Su, W.-F. A novel polyurethane/cellulose fibrous scaffold for cardiac tissue engineering. RSC Adv. 2015, 5, 6932–6939. [Google Scholar] [CrossRef]
- Zhou, Z.; Yan, H.; Liu, Y.; Xiao, D.; Li, W.; Wang, Q. Adipose-derived stem-cell-implanted poly(ϵ-caprolactone)/chitosan scaffold improves bladder regeneration in a rat model. Regen. Med. 2018, 13, 331–342. [Google Scholar] [CrossRef]
- Abatangelo, C.; Vindigni, V.; Avruscio, G.; Pandis, L.; Brun, P. Hyaluronic acid: Redefining its role. Cells 2020, 9, 1743. [Google Scholar] [CrossRef] [PubMed]
- Lev, R.; Seliktar, D. Hydrogel biomaterials and their therapeutic potential for muscle injuries and muscular dystrophies. J. R. Soc. Interface 2018, 15, 20170380. [Google Scholar] [CrossRef] [PubMed]
- Pollot, B.E.; Rathbone, C.R.; Wenke, J.C.; Guda, T. Natural polymeric hydrogel evaluation for skeletal muscle tissue engineering. J. Biomed. Mater. Res. Part B Appl. Biomat. 2017, 106, 672–679. [Google Scholar] [CrossRef]
- Marcinczyk, M.; Elmashhady, H.; Talovic, M.; Dunn, A.; Bugis, F.; Garg, K. Laminin-111 enriched fibrin hydrogels for skeletal muscle regeneration. Biomaterials 2017, 141, 233–242. [Google Scholar] [CrossRef]
- Matthias, N.; Hunt, S.D.; Wu, J.; Lo, J.; Smith, L.A.; Li, Y.; Huard, J.; Darabi, R. Volumetric muscle loss injury repair using in situ fibrin gel cast seeded with muscle-derived stem cells (MDSCs). Stem Cell Res. 2018, 27, 65–73. [Google Scholar] [CrossRef]
- Gattazzo, F.; De Maria, C.; Rimessi, A.; Donà, S.; Braghetta, P.; Pinton, P.; Bonaldo, P. Gelatin-genipin-based biomaterials for skeletal muscle tissue engineering. J. Biomed. Mater. Res. Part B Appl. Biomat. 2018, 106, 2763–2777. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, X.; Hong, H.; Hu, R.; Liu, J.; Liu, C. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact. Mater. 2022, 10, 15–31. [Google Scholar] [CrossRef]
- Clarke, K.M.; Lantz, G.C.; Salisbury, S.K.; Badylak, S.F.; Hiles, M.C.; Voytik, S.L. Intestine submucosa and polypropylene mesh for abdominal wall repair in dogs. J. Surg. Res. 1996, 60, 107–114. [Google Scholar] [CrossRef]
- Perniconi, B.; Costa, A.; Aulino, P.; Teodori, L.; Adamo, S.; Coletti, D. The pro-myogenic environment provided by whole organ scale acellular scaffolds from skeletal muscle. Biomaterials 2011, 32, 7870–7882. [Google Scholar] [CrossRef] [PubMed]
- Aurora, A.; Roe, J.L.; Corona, B.T.; Walters, T.J. An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury. Biomaterials 2015, 67, 393–407. [Google Scholar] [CrossRef] [PubMed]
- Mahdy, M.A.A. Skeletal muscle fibrosis: An overview. Cell Tissue Res. 2019, 375, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Shi, C.; Hou, X.; Zhang, W.; Li, L. Bladder acellular matrix conjugated with basic fibroblast growth factor for bladder regeneration. Tissue Eng. Part A 2014, 20, 2234–2242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakayama, K.H.; Shayan, M.; Huang, N.F. Engineering Biomimetic Materials for Skeletal Muscle Repair and Regeneration. Adv. Healthc. Mater. 2019, 8, e1801168. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.J.; Melrose, J. Glycans and glycosaminoglycans in neurobiology: Key regulators of neuronal cell function and fate. Biochem. J. 2018, 475, 2511–2545. [Google Scholar] [CrossRef]
- Shandalov, Y.; Egozi, D.; Koffler, J.; Dado-Rosenfeld, D.; Ben-Shimol, D.; Freiman, A.; Shor, E.; Kabala, A.; Levenberg, S. An engineered muscle flap for reconstruction of large soft tissue defects. Proc. Natl. Acad. Sci. USA 2014, 111, 6010–6015. [Google Scholar] [CrossRef] [Green Version]
- Boldrin, L.; Malerba, A.; Vitiello, L.; Cimetta, E.; Piccoli, M.; Messina, C.; Gamba, P.G.; Elvassore, N.; De Coppi, P. Efficient delivery of human single fiber-derived muscle precursor cells via biocompatible scaffold. Cell Transplant. 2008, 17, 577–584. [Google Scholar] [CrossRef]
- Lee, P.H.U.; Vandenburgh, H.H. Skeletal muscle atrophy in bioengineered skeletal muscle: A new model system. Tissue Eng. Part A 2013, 19, 2147–2155. [Google Scholar] [CrossRef]
- Shansky, J.; Creswick, B.; Lee, P.; Wang, X.; Vandenburgh, H. Paracrine release of insulin-like growth factor 1 from a bioengineered tissue stimulates skeletal muscle growth in vitro. Tissue Eng. 2006, 12, 1833–1841. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, A.L.L.; Giorno, L.P.; Santos, A.R., Jr. Tissue Engineering Applied to Skeletal Muscle: Strategies and Perspectives. Bioengineering 2022, 9, 744. https://doi.org/10.3390/bioengineering9120744
Martins ALL, Giorno LP, Santos AR Jr. Tissue Engineering Applied to Skeletal Muscle: Strategies and Perspectives. Bioengineering. 2022; 9(12):744. https://doi.org/10.3390/bioengineering9120744
Chicago/Turabian StyleMartins, Ana Luisa Lopes, Luciana Pastena Giorno, and Arnaldo Rodrigues Santos, Jr. 2022. "Tissue Engineering Applied to Skeletal Muscle: Strategies and Perspectives" Bioengineering 9, no. 12: 744. https://doi.org/10.3390/bioengineering9120744
APA StyleMartins, A. L. L., Giorno, L. P., & Santos, A. R., Jr. (2022). Tissue Engineering Applied to Skeletal Muscle: Strategies and Perspectives. Bioengineering, 9(12), 744. https://doi.org/10.3390/bioengineering9120744