A Portable Servoregulation Controller to Automate CO2 Removal in Artificial Lungs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Servoregulation Principle
2.2. Flow Path Design
2.3. Supporting Electronics and Firmware
2.4. In Vitro Testing with Blood and Water
3. Results
3.1. In Vitro Testing with Blood
3.2. Long-Term In Vitro Testing with Water
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AL | Artificial Lung |
Carbon Dioxide | |
p | Partial Carbon Dioxide |
tEG | Target Exhaust Gas Partial Pressure |
References
- Quaderi, S.A.; Hurst, J.R. The unmet global burden of COPD. Glob. Health Epidemiol. Genom. 2018, 3, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vestbo, J.; Hurd, S.S.; Agustí, A.G.; Jones, P.W.; Vogelmeier, C.; Anzueto, A.; Barnes, P.J.; Fabbri, L.M.; Martinez, F.J.; Nishimura, M.; et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med. 2013, 187, 347–365. [Google Scholar] [CrossRef] [PubMed]
- Matheis, G. New technologies for respiratory assist. Perfusion 2003, 18, 245–251. [Google Scholar] [CrossRef]
- Kotloff, R.M.; Thabut, G. Lung transplantation. Am. J. Respir. Crit. Care Med. 2011, 184, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Yusen, R.D.; Christie, J.D.; Edwards, L.B.; Kucheryavaya, A.Y.; Benden, C.; Dipch, A.I.; Dobbels, F.; Kirk, R.; Lund, L.H.; Rahmel, A.O.; et al. The registry of the international society for heart and lung transplantation: Thirtieth adult lung and heart-lung transplant report—2013; Focus theme: Age. J. Heart Lung Transplant. 2013, 32, 965–978. [Google Scholar] [CrossRef] [PubMed]
- Christie, J.D.; Edwards, L.B.; Kucheryavaya, A.Y.; Benden, C.; Dipch, A.I.; Dobbels, F.; Kirk, R.; Rahmel, A.O.; Stehlik, J.; Hertz, M.I.; et al. The Registry of the International Society for Heart and Lung Transplantation: 29th adult lung and heart-lung transplant report-2012. J. Heart Lung Transplant. 2012, 31, 1073–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartlett, R.H.; Gattinoni, L. Current status of extracorporeal life support (ECMO) for cardiopulmonary failure. Minerva Anestesiol. 2010, 76, 534–540. [Google Scholar]
- Lund, L.W.; Federspiel, W.J. Removing extra CO2 in COPD patients. Curr. Respir. Care Rep. 2013, 2, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Kluge, S.; Braune, S.A.; Engel, M.; Nierhaus, A.; Frings, D.; Ebelt, H.; Uhrig, A.; Metschke, M.; Wegscheider, K.; Suttorp, N.; et al. Avoiding invasive mechanical ventilation by extracorporeal carbon dioxide removal in patients failing noninvasive ventilation. Intensive Care Med. 2012, 38, 1632–1639. [Google Scholar] [CrossRef]
- Giraud, R.; Banfi, C.; Assouline, B.; De Charrière, A.; Cecconi, M.; Bendjelid, K. The use of extracorporeal CO2 removal in acute respiratory failure. Ann. Intensive Care 2021, 11, 43. [Google Scholar] [CrossRef]
- Zwischenberger, J.B.; Conrad, S.A.; Alpard, S.K.; Grier, L.R.; Bidani, A. Percutaneous Extracorporeal Arteriovenous CO2 Removal for Severe Respiratory Failure. Ann. Thorac. Surg. 1999, 68, 181–187. [Google Scholar] [CrossRef]
- April, I. Extracorporeal Membrane Oxygenation for 2009 Influenza A(H1N1) Acute Respiratory Distress Syndrome. JAMA 2009, 302, 1888–1895. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Guzman, E.; Hoopes, C.W.; Zwischenberger, J.B. The Evolution of Extracorporeal Life Support as a Bridge to Lung Transplantation. ASAIO J. 2013, 59, 3–10. [Google Scholar] [CrossRef]
- Mangi, A.A.; Mason, D.P.; Yun, J.J.; Murthy, S.C.; Pettersson, G.B. Bridge to lung transplantation using short-term ambulatory extracorporeal membrane oxygenation. J. Thorac. Cardiovasc. Surg. 2010, 140, 713–715. [Google Scholar] [CrossRef] [Green Version]
- Hoopes, C.W.; Kukreja, J.; Golden, J.; Davenport, D.L.; Diaz-Guzman, E.; Zwischenberger, J.B. Extracorporeal membrane oxygenation as a bridge to pulmonary transplantation. J. Thorac. Cardiovasc. Surg. 2013, 145, 862–867; discussion 867–868. [Google Scholar] [CrossRef] [Green Version]
- Medical Advisory Secretariat. Extracorporeal lung support technologies—Bridge to recovery and bridge to lung transplantation in adult patients: An evidence-based analysis. Ont. Health Technol. Assess. Ser. 2010, 10, 1–47. [Google Scholar]
- Bain, J.C.; Turner, D.A.; Rehder, K.J.; Eisenstein, E.L.; Davis, R.D.; Cheifetz, I.M.; Zaas, D.W. Economic Outcomes of Extracorporeal Membrane Oxygenation With and Without Ambulation as a Bridge to Lung Transplantation. Respir. Care 2016, 61, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Javidfar, J. The Challenges Faced with Early Mobilization of Patients on Extracorporeal Membrane Oxygenation. Crit. Care Med. 2018, 46, 161–163. [Google Scholar] [CrossRef]
- Madhani, S.P.; Frankowski, B.J.; Burgreen, G.W.; Antaki, J.F.; Kormos, R.; D’Cunha, J.; Federspiel, W.J. In vitro and in vivo evaluation of a novel integrated wearable artificial lung. J. Heart Lung Transplant. 2017, 36, 806–811, Erratum in: J. Heart Lung Transplant. 2017, 36, 1025. [Google Scholar] [CrossRef]
- Matheis, G.; Novosel, E.; Hammer, T. Final Report Summary—AMBULUNG (Ambulatory Bio-Artificial Lung). 2016. Available online: https://cordis.europa.eu/project/id/304932/reporting (accessed on 20 September 2022).
- Seemungal, T.A.; Donaldson, G.C.; Paul, E.A.; Bestall, J.C.; Jeffries, D.J.; Wedzicha, J.A. Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1998, 157 Pt 1, 1418–1422. [Google Scholar] [CrossRef] [PubMed]
- Wartzek, T.; Walter, M.; Schmitz-Rode, T.; Kowalewski, S.; Rossaint, R.; Leonhardt, S. In vivo validation of an automatic controlled extracorporeal membrane oxygenator. IFMBE Proc. 2009, 25, 118–121. [Google Scholar]
- García, A.M.; Krane, M.; Baumgartner, B.; Sprunk, N.; Schreiber, U.; Eichhorn, S.; Lange, R.; Knoll, A. Automation of a portable extracorporeal circulatory support system with adaptive fuzzy controllers. Med. Eng. Phys. 2014, 36, 981–990. [Google Scholar] [CrossRef] [Green Version]
- Conway, R.G.; Berk, Z.B.; Zhang, J.; Li, T.; Tran, D.; Wu, Z.J.; Griffith, B.P. Evaluation of an autoregulatory ECMO system for total respiratory support in an acute ovine model. Artif. Organs 2020, 44, 478–487. [Google Scholar] [CrossRef]
- Kopp, R.; Bensberg, R.; Stollenwerk, A.; Arens, J.; Grottke, O.; Walter, M.; Rossaint, R. Automatic Control of Veno-Venous Extracorporeal Lung Assist: Automatic Control of ECLA. Artif. Organs 2016, 40, 992–998. [Google Scholar] [CrossRef]
- Fang, Y.; Novak, P.J.; Hozalski, R.M.; Cussler, E.L.; Semmens, M.J. Condensation studies in gas permeable membranes. J. Membr. Sci. 2004, 231, 47–55. [Google Scholar] [CrossRef]
- Witer, L.J.; Howard, R.A.; Trahanas, J.M.; Bryner, B.S.; Alghanem, F.; Hoffman, H.R.; Cornell, M.S.; Bartlett, R.H.; Rojas-Peña, A. Large animal model of pumpless arteriovenous extracorporeal CO2 removal using room air via subclavian vessels. ASAIO J. 2016, 62, 110–113. [Google Scholar] [CrossRef] [Green Version]
- Fernando, U.P.; Thompson, A.J.; Potkay, J.; Cheriyan, H.; Toomasian, J.; Kaesler, A.; Schlanstein, P.; Arens, J.; Hirschl, R.B.; Bull, J.L.; et al. A Membrane Lung Design Based on Circular Blood Flow Paths. ASAIO J. 2017, 63, 637–643. [Google Scholar] [CrossRef]
- Potkay, J.A.; Thompson, A.J.; Toomasian, J.; Lynch, W.; Bartlett, R.H.; Rojas-Peña, A. Toward a Servoregulation Controller to Automate CO2 Removal in Wearable Artificial Lungs. ASAIO J. 2021, 68, 698–706. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services: Guidance for Cardiopulmonary Bypass Oxygenators 510(k) Submissions; Final Guidance for Industry and FDA Staff. 2000. Available online: https://www.fda.gov/medical-devices/guidance-documents-medical-devices-and-radiation-emitting-products/cardiopulmonary-bypass-oxygenators-510k-submissions-final-guidance-industry-and-fda-staff (accessed on 20 September 2022).
- Bartlett, R.H. Critical Care Physiology; Scholarly Publishing Office, University of Michigan Library: Ann Arbor, MI, USA, 2010; pp. 5–10. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaikh, N.; Zhang, A.; Jenter, J.; Nikpreljevic, B.; Toomasian, J.; Lynch, W.; Rojas-Peña, A.; Bartlett, R.H.; Potkay, J.A. A Portable Servoregulation Controller to Automate CO2 Removal in Artificial Lungs. Bioengineering 2022, 9, 593. https://doi.org/10.3390/bioengineering9100593
Shaikh N, Zhang A, Jenter J, Nikpreljevic B, Toomasian J, Lynch W, Rojas-Peña A, Bartlett RH, Potkay JA. A Portable Servoregulation Controller to Automate CO2 Removal in Artificial Lungs. Bioengineering. 2022; 9(10):593. https://doi.org/10.3390/bioengineering9100593
Chicago/Turabian StyleShaikh, Navid, Andrew Zhang, Jesse Jenter, Brandon Nikpreljevic, John Toomasian, William Lynch, Alvaro Rojas-Peña, Robert H. Bartlett, and Joseph A. Potkay. 2022. "A Portable Servoregulation Controller to Automate CO2 Removal in Artificial Lungs" Bioengineering 9, no. 10: 593. https://doi.org/10.3390/bioengineering9100593
APA StyleShaikh, N., Zhang, A., Jenter, J., Nikpreljevic, B., Toomasian, J., Lynch, W., Rojas-Peña, A., Bartlett, R. H., & Potkay, J. A. (2022). A Portable Servoregulation Controller to Automate CO2 Removal in Artificial Lungs. Bioengineering, 9(10), 593. https://doi.org/10.3390/bioengineering9100593