Adipose-Derived Stromal Cells Seeded on Integra® Dermal Regeneration Template Improve Post-Burn Wound Reconstruction
Abstract
:1. Introduction
2. Materials and Methods
2.1. ASCs and Human Skin Fibroblasts Isolation and Culture
2.2. Preparation of ASC–Integra®DRT Constructs
2.3. Growth Assay
2.4. Confocal Microscopy
2.5. Proteolytic Activity of ASC–Integra®DRT Constructs
2.6. Elasticity of ASC–Integra®DRT Constructs
2.7. Real-Time PCR
2.8. Clinical Validation
Patient
2.9. Advanced Therapy Medicinal Products for Experimental Treatment
2.9.1. Treatment
- (1)
- Approximately 3 mL of subcutaneous adipose tissue was harvested by surgical excision.
- (2)
- Three weeks later, scars were excised, and the wound bed was covered with Integra®DRT (reference area) or Integra®DRT with ASCs (test area) (Figure 5A). During the ongoing excision, the cells were seeded by syringe onto a 10 cm2 fragment of Integra®DRT at a density of 1 × 104/cm2 (Figure 5B). After 15 min of incubation at room temperature, the constructs were placed on the wound bed. Implants were fixed by skin staplers and dressing was applied (Figure 5C).
- (3)
- Four weeks after scar excision, the protective layers from reference and tested places were removed. Integra®DRT was covered by the split-thickness skin grafts and NHK suspension. Finally, the post-operative compression therapy was applied.
2.9.2. Follow-Up
2.10. Ethical Approval
2.11. Statistics
3. Results
3.1. Integra®DRT Facilitates Growth of Adipose-Derived Stromal Cells
3.2. Proangiogenic and Remodeling Factors Produced by ASCs on Integra®DRT
3.3. ASCs Spread among the Integra®DRT
3.4. Decrease in ASC-Integra®DRT Elasticity Correlates with Collagenolytic Activity
3.5. ASC Cellular Therapy Reveals Anti-Fibrotic Healing
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- MacNeil, S. Progress and Opportunities for Tissue-Engineered Skin. Nature 2007, 445, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, J.; Yan, X.; Li, D.; Xu, J. Preliminary Survival Studies on Autologous Cultured Skin Fibroblasts Transplantation by Injection. Cell Transpl. 2008, 17, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Zuk, P.A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J.W.; Katz, A.J.; Benhaim, P.; Lorenz, H.P.; Hedrick, M.H. Multilineage Cells from Human Adipose Tissue, Implications for Cell-Based Therapies. Tissue Eng. 2001, 7, 211–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Olmo, D.; Schwartz, D. Cumulative Evidence That Mesenchymal Stem Cells Promote Healing of Perianal Fistulas of Patients with Crohn’s Disease–Going from Bench to Bedside. Gastroenterology 2015, 149, 853–857. [Google Scholar] [CrossRef]
- Lafosse, A.; Desmet, C.; Aouassar, N.; André, W.; Hanet, M.S.; Beauloye, C.; Vanwijck, R.; Poirel, H.A.; Gallez, B.; Dufrane, D. Autologous Adipose Stromal Cells Seeded onto a Human Collagen Matrix for Dermal Regeneration in Chronic Wounds, Clinical Proof of Concept. Plast. Reconstr. Surg. 2015, 136, 279–295. [Google Scholar] [CrossRef]
- Vériter, S.; André, W.; Aouassar, N.; Poirel, H.A.; Lafosse, A.; Docquier, P.L.; Dufrane, D. Human Adipose-Derived Mesenchymal Stem Cells in Cell Therapy. Safety and Feasibility in Different “Hospital Exemption” Clinical Application. PLoS ONE 2015, 10, e0139566. [Google Scholar] [CrossRef]
- Clark, K.C.; Fierro, F.A.; Ko, E.M.; Walker, N.J.; Arzi, B.; Tepper, C.G.; Dahlenburg, H.; Cicchetto, A.; Kol, A.; Marsh, L.; et al. Human and Feline Adipose-Derived Mesenchymal Stem Cells Have Comparable Phenotype, Immunomodulatory Functions, and Transcriptome. Stem Cell Res. Ther. 2017, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Mustoe, T.A.; Cooter, R.D.; Gold, M.H.; Hobbs, F.D.R.; Ramelet, A.A.; Shakespeare, P.G.; Stella, M.; Téot, L.; Wood, F.M.; Ziegler, U.E. International Clinical Recommendations on Scar Management. Plast. Reconstr. Surg. 2002, 110, 560–571. [Google Scholar] [CrossRef]
- Askari, M.; Cohen, M.J.; Grossman, P.H.; Kulber, D.A. The Use of Acellular Dermal Matrix in Release of Burn Contracture Scars in the Hand. Plast. Reconstr. Surg. 2011, 127, 1593–1599. [Google Scholar] [CrossRef]
- Stiefel, D.; Schiestl, C.; Meuli, M. Integra Artificial Skin® for Burn Scar Revision in Adolescents and Children. Burns 2010, 36, 114–120. [Google Scholar] [CrossRef]
- Heimbach, D.M.; Warden, G.D.; Luterman, A.; Jordan, M.H.; Ozobia, N.; Ryan, C.M.; Voigt, D.W.; Hickerson, W.L.; Saffle, J.R.; DeClement, F.A.; et al. Multicenter Postapproval Clinical Trial of Integra® Dermal Regeneration Template for Burn Treatment. J. Burn Care Rehabil. 2003, 24, 42–48. [Google Scholar] [CrossRef]
- Wainwright, D.J. Use of an Acellular Allograft Dermal Matrix (AlloDerm) in the Management of Full-Thickness Burns. Burns 1995, 21, 243–248. [Google Scholar] [CrossRef]
- Lee, L.F.; Porch, J.V.; Spenler, W.; Garner, W.L. Integra in Lower Extremity Reconstruction after Burn Injury. Plast. Reconstr. Surg. 2008, 121, 1256–1262. [Google Scholar] [CrossRef]
- Dantzer, E.; Braye, F.M. Reconstructive Surgery Using an Artificial Dermis (Integra), Results with 39 Grafts. Br. J. Plast. Surg. 2001, 54, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Dohi, T.; Padmanabhan, J.; Akaishi, S.; Than, P.A.; Terashima, M.; Matsumoto, N.N.; Ogawa, R.; Gurtner, G.C. The Interplay of Mechanical Stress, Strain, and Stiffness at the Keloid Periphery Correlates with Increased Caveolin-1/ROCK Signaling and Scar Progression. Plast. Reconstr. Surg. 2019, 144, 58e–67e. [Google Scholar] [CrossRef]
- Discher, D.E.; Mooney, D.J.; Zandstra, P.W. Growth Factors, Matrices, and Forces Combine and Control Stem Cells. Science 2009, 324, 1673–1677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schubert, T.; Xhema, D.; Vériter, S.; Schubert, M.; Behets, C.; Delloye, C.; Gianello, P.; Dufrane, D. The Enhanced Performance of Bone Allografts Using Osteogenic-Differentiated Adipose-Derived Mesenchymal Stem Cells. Biomaterials 2011, 32, 8880–8891. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.Y.; Xia, Y.; Kim, W.S.; Kim, M.H.; Kim, T.H.; Kim, K.J.; Park, B.S.; Sung, J.H. Hypoxia-Enhanced Wound-Healing Function of Adipose-Derived Stem Cells, Increase in Stem Cell Proliferation and up-Regulation of VEGF and BFGF. Wound Repair Regen. 2009, 17, 540–547. [Google Scholar] [CrossRef]
- Mannello, F.; Tonti, G.A.M.; Bagnara, G.P.; Papa, S. Role and Function of Matrix Metalloproteinases in the Differentiation and Biological Characterization of Mesenchymal Stem Cells. Stem Cells 2006, 24, 475–481. [Google Scholar] [CrossRef]
- Liu, J.; Ren, J.; Su, L.; Cheng, S.; Zhou, J.; Ye, X.; Dong, Y.; Sun, S.; Qi, F.; Liu, Z.; et al. Human Adipose Tissue-Derived Stem Cells Inhibit the Activity of Keloid Fibroblasts and Fibrosis in a Keloid Model by Paracrine Signaling. Burns 2018, 44, 370–385. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piejko, M.; Walczak, P.; Li, X.; Bulte, J.W.M.; Janowski, M. In Vitro Assessment of Fluorine Nanoemulsion-Labeled Hyaluronan-Based Hydrogels for Precise Intrathecal Transplantation of Glial-Restricted Precursors. Mol. Imaging Biol. 2019, 21, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Rehman, J.; Traktuev, D.; Li, J.; Merfeld-Clauss, S.; Temm-Grove, C.J.; Bovenkerk, J.E.; Pell, C.L.; Johnstone, B.H.; Considine, R.V.; March, K.L. Secretion of Angiogenic and Antiapoptotic Factors by Human Adipose Stromal Cells. Circulation 2004, 109, 1292–1298. [Google Scholar] [CrossRef] [PubMed]
- Zvonic, S.; Lefevre, M.; Kilroy, G.; Floyd, Z.E.; DeLany, J.P.; Kheterpal, I.; Gravois, A.; Dow, R.; White, A.; Wu, X.; et al. Secretome of Primary Cultures of Human Adipose-Derived Stem Cells, Modulation of Serpins by Adipogenesis. Mol. Cell. Proteom. 2007, 6, 18–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeLany, J.P.; Floyd, Z.E.; Zvonic, S.; Smith, A.; Gravois, A.; Reiners, E.; Wu, X.; Kilroy, G.; Lefevre, M.; Gimble, J.M. Proteomic Analysis of Primary Cultures of Human Adipose-Derived Stem Cells. Mol. Cell. Proteom. 2005, 4, 731–740. [Google Scholar] [CrossRef] [Green Version]
- Malda, J.; Klein, T.J.; Upton, Z. The Roles of Hypoxia in the in Vitro Engineering of Tissues. Tissue Eng. 2007, 13, 2153–2162. [Google Scholar] [CrossRef]
- Salgado, A.J.B.O.G.; Reis, R.L.G.; Sousa, N.J.C.; Gimble, J.M. Adipose Tissue Derived Stem Cells Secretome, Soluble Factors and Their Roles in Regenerative Medicine. Curr. Stem Cell Res. Ther. 2010, 5, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.; Kosaric, N.; Bonham, C.A.; Gurtner, G.C. Wound Healing, A Cellular Perspective. Physiol. Rev. 2019, 99, 665–706. [Google Scholar] [CrossRef]
- Kim, W.-S.; Park, B.-S.; Sung, J.-H.; Yang, J.-M.; Park, S.-B.; Kwak, S.-J.; Park, J.-S. Wound Healing Effect of Adipose-Derived Stem Cells, A Critical Role of Secretory Factors on Human Dermal Fibroblasts. J. Dermatol. Sci. 2007, 48, 15–24. [Google Scholar] [CrossRef]
- Nagano, T.; Katsurada, M.; Dokuni, R.; Hazama, D.; Kiriu, T.; Umezawa, K.; Kobayashi, K.; Nishimura, Y. Crucial Role of Extracellular Vesicles in Bronchial Asthma. Int. J. Mol. Sci. 2019, 20, 2589. [Google Scholar] [CrossRef] [Green Version]
- Yates, C.C.; Rodrigues, M.; Nuschke, A.; Johnson, Z.I.; Whaley, D.; Stolz, D.; Newsome, J.; Wells, A. Multipotent Stromal Cells/Mesenchymal Stem Cells and Fibroblasts Combine to Minimize Skin Hypertrophic Scarring. Stem Cell Res. Ther. 2017, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Tredget, E.E.; Wu, P.Y.G.; Wu, Y.; Wu, Y. Paracrine Factors of Mesenchymal Stem Cells Recruit Macrophages and Endothelial Lineage Cells and Enhance Wound Healing. PLoS ONE 2008, 3, e1886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, M.N.M.; Wright, K.T.; Fuller, H.R.; MacNeil, S.; Johnson, W.E.B. Mesenchymal Stem Cell-Conditioned Medium Accelerates Skin Wound Healing, An in Vitro Study of Fibroblast and Keratinocyte Scratch Assays. Exp. Cell Res. 2010, 316, 1271–1281. [Google Scholar] [CrossRef]
- Reinke, J.M.; Sorg, H. Wound Repair and Regeneration. Eur. Surg. Res. 2012, 49, 35–43. [Google Scholar] [CrossRef]
- Muhammad, G.; Xu, J.; Bulte, J.W.M.; Jablonska, A.; Walczak, P.; Janowski, M. Transplanted Adipose-Derived Stem Cells Can Be Short-Lived yet Accelerate Healing of Acid-Burn Skin Wounds, A Multimodal Imaging Study. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Später, T.; Frueh, F.S.; Menger, M.D.; Laschke, M.W. Potentials and Limitations of Integra® Flowable Wound Matrix Seeded with Adipose Tissue-Derived Microvascular Fragments. Eur. Cells Mater. 2017, 33, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Foubert, P.; Barillas, S.; Gonzalez, A.D.; Alfonso, Z.; Zhao, S.; Hakim, I.; Meschter, C.; Tenenhaus, M.; Fraser, J.K. Uncultured Adipose-Derived Regenerative Cells (ADRCs) Seeded in Collagen Scaffold Improves Dermal Regeneration, Enhancing Early Vascularization and Structural Organization Following Thermal Burns. Burns 2015, 41, 1504–1516. [Google Scholar] [CrossRef] [PubMed]
- Meruane, M.A.; Rojas, M.; Marcelain, K. The Use of Adipose Tissue-Derived Stem Cells within a Dermal Substitute Improves Skin Regeneration by Increasing Neoangiogenesis and Collagen Synthesis. Plast. Reconstr. Surg. 2012, 130, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Cherubino, M.; Valdatta, L.; Balzaretti, R.; Pellegatta, I.; Rossi, F.; Protasoni, M.; Tedeschi, A.; Accolla, R.S.; Bernardini, G.; Gornati, R. Human Adipose-Derived Stem Cells Promote Vascularization of Collagen-Based Scaffolds Transplanted into Nude Mice. Regen. Med. 2016, 11, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Altman, A.M.; Matthias, N.; Yan, Y.; Song, Y.H.; Bai, X.; Chiu, E.S.; Slakey, D.P.; Alt, E.U. Dermal Matrix as a Carrier for in Vivo Delivery of Human Adipose-Derived Stem Cells. Biomaterials 2008, 29, 1431–1442. [Google Scholar] [CrossRef]
Gene | Forward (5′–3′) | Reverse (5′–3′) |
---|---|---|
COL1A1 | AAGAGGAAGGCCAAGTCGAG | CACACGTCTCGGTCATGGTA |
COL4A1 | GGTATTCCAGGATGCAATGG | GCACATGGCCAAGTATCTCA |
VEGF | TACCTCCACCATGCCAAGT | TGCATTCACATTTGTTGTGC |
KGF | TGCCAACTTTGCTCTACAG | CACTTTCCACCCCTTTGA |
MMP2 | CGCTACGATGGAGGGGCGCTA | AGAAGGTGTTCCAGGTATTTGCACTG |
MMP9 | CGCAGACATCGTCATCCAGT | AACCGAGTTGGAACCACGAC |
IL-6 | GTGAAAGCAGCAAAGAGGCA | TCACCAGGCAAGTCTCCTCA |
Il-8 | TTAGCACTCCTTGGCAAAACTG | CTGGCCGTGGCTCTCTTG |
HGF | TCACGAGCATGACATGACTCC | AGCTTACTTGCATCTGGTTCC |
FGF2 | AAAAACGGGGGCTTCTTCCT | TGTAGCTTGATGTGAGGGTCG |
TGFβ | GGACATCAACGGGTTCACTAC | TGAGAAGCAGGAAAGGCCG |
B2M | GATGAGTATGCCTGCCGTGTG | CAATCCAAATGCGGCATCT |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piejko, M.; Radziun, K.; Bobis-Wozowicz, S.; Waligórska, A.; Zimoląg, E.; Nessler, M.; Chrapusta, A.; Madeja, Z.; Drukała, J. Adipose-Derived Stromal Cells Seeded on Integra® Dermal Regeneration Template Improve Post-Burn Wound Reconstruction. Bioengineering 2020, 7, 67. https://doi.org/10.3390/bioengineering7030067
Piejko M, Radziun K, Bobis-Wozowicz S, Waligórska A, Zimoląg E, Nessler M, Chrapusta A, Madeja Z, Drukała J. Adipose-Derived Stromal Cells Seeded on Integra® Dermal Regeneration Template Improve Post-Burn Wound Reconstruction. Bioengineering. 2020; 7(3):67. https://doi.org/10.3390/bioengineering7030067
Chicago/Turabian StylePiejko, Marcin, Karolina Radziun, Sylwia Bobis-Wozowicz, Agnieszka Waligórska, Eliza Zimoląg, Michał Nessler, Anna Chrapusta, Zbigniew Madeja, and Justyna Drukała. 2020. "Adipose-Derived Stromal Cells Seeded on Integra® Dermal Regeneration Template Improve Post-Burn Wound Reconstruction" Bioengineering 7, no. 3: 67. https://doi.org/10.3390/bioengineering7030067
APA StylePiejko, M., Radziun, K., Bobis-Wozowicz, S., Waligórska, A., Zimoląg, E., Nessler, M., Chrapusta, A., Madeja, Z., & Drukała, J. (2020). Adipose-Derived Stromal Cells Seeded on Integra® Dermal Regeneration Template Improve Post-Burn Wound Reconstruction. Bioengineering, 7(3), 67. https://doi.org/10.3390/bioengineering7030067