Extraction of Peak Velocity Profiles from Doppler Echocardiography Using Image Processing
Abstract
:1. Introduction
2. Materials and Methods
- Step 1: Load the raw echocardiographic image (such as the one shown in Figure 2a).
- Step 2: Define a region of interest (ROI) that encompasses the gray pixels containing the blood velocity information (1 < x < m, nup < y < nlo), where nup and nlo are the upper and lower borders of the ROI, respectively (Figure 2a) then remove pixels outside the ROI. For example, all pixels above nup = 575 and below nlo = 1030 in Figure 2a are removed. Figure 2b shows the resulting image. The histogram of the ROI is shown in Figure 2c. Once the ROI is defined, calculate the gray-scale intensity of pixels, µ, at pixel (X ∈ x, Y ∈ y).
- Step 3: Find the maximum intensity, µ, at each vertical line (i.e., at each X ∈ x) for nup < y < nlo, which was called µmax,X.
- Step 4: Detect gray pixel edges. Here, two different thresholding methods are attempted to detect the edge of the gray pixels in the ROI. In the first method (Figure 3a), edge search starts at the upper and lower borders of the ROI and moves toward the baseline. The upper and lower edges of the Doppler shift at each X are chosen as the smallest and largest Y ∈ (nup < y < nlo) such that µ(X, Y) > θ1 µmax,X, where θ1 is the threshold value, µ(X, Y) is the intensity of the pixel located at (X, Y), and µmax,X is the maximum intensity at time X. This method is designed to provide a lower limit of the velocity magnitude.
- Step 5: Construct the positive peak velocity profile by connecting the upper edges detected in Step 4 above. Then construct the negative peak velocity profile by connecting the lower edges. The pseudo-code for the proposed algorithm is provided in Algorithm 1. The code for the proposed algorithm in this paper is available online at: https://github.com/mirtatae/DopplerVelocityProfileExtraction.
Algorithm 1. Extraction of peak velocity profiles from Doppler echocardiographic images. | |
1: | Input: Doppler echo image, img[n × m], upper and lower borders of ROI, nup and nlo |
2: | Output: Upper and lower velocity profiles, Pup and Plo |
3: | µ = Intensity |
4: | θ1 and θ2 = Thresholds |
5: | Calculate µ at each pixel (X,Y) where X ∈ x = [1, …, m] and Y ∈ y = [1, …, n] |
6: | |
7: | # first criteria |
8: | for ∀ (X,Y) | X ∈ x and nup < Y < nlo |
9: | µmax,X ← max( µ(X,:) ) |
10: | if µ(X,Y) < θ1 × µmax,X |
11: | µ(X,Y) ← 0 |
12: | end if |
13: | k ← find all Y that µ(X,Y) > 0 |
14: | P1,up ← min(k) |
15: | P1,lo ← max(k) |
16: | end for |
17: | |
18: | # second criteria |
19: | a = search window |
20: | for ∀ X ∈ x |
21: | µmax,X,up ← max( µ(X,Ybase − a:Ybase) ) |
22: | iup ← Y | µ(X,Y) = µmax,X,up |
23: | kup ← find all Y that µ(X, nup: iup + Ybase − a) < θ2 × µmax,X,up |
24: | P2,up ← max(kup) |
25: | |
26: | µmax,X,lo ← max( µ(X,Ybase:Ybase + a) ) |
27: | ilo ← Y | µ(X,Y) = µmax,X,lo |
28: | klo ← find all Y that µ(X, ilo + Ybase : nlo) < θ2 × µmax,X,lo |
29: | P2,lo ← min(klo) |
30: | end for |
3. Results and Discussion
4. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Cardiovascular Diseases (CVDs). Fact Sheets; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Ommen, S.R.; Nishimura, R.A.; Appleton, C.P.; Miller, F.A.; Oh, J.K.; Redfield, M.M.; Tajik, A.J. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: A comparative simultaneous Doppler-catheterization study. Circulation 2000, 102, 1788–1794. [Google Scholar] [CrossRef] [PubMed]
- Hozumi, T.; Akasaka, T.; Yoshida, K.; Yoshikawa, J. Noninvasive estimation of coronary flow reserve by transthoracic Doppler echocardiography with a high-frequency transducer. J. Cardiol. 2001, 37 (Suppl. 1), 43–50. [Google Scholar]
- Hozumi, T.; Yoshida, K.; Akasaka, T.; Asami, Y.; Ogata, Y.; Takagi, T.; Kaji, S.; Kawamoto, T.; Ueda, Y.; Morioka, S. Noninvasive assessment of coronary flow velocity and coronary flow velocity reserve in the left anterior descending coronary artery by Doppler echocardiography: Comparison with invasive technique. J. Am. Coll. Cardiol. 1998, 32, 1251–1259. [Google Scholar] [CrossRef] [Green Version]
- Choong, C.Y.; Abascal, V.M.; Thomas, J.D.; Luis Guerrero, J.; McGlew, S.; Weyman, A.E. Combined influence of ventricular loading and relaxation on the transmitral flow velocity profile in dogs measured by Doppler echocardiography. Circulation 1988, 78, 672–683. [Google Scholar] [CrossRef] [PubMed]
- Taebi, A.; Sandler, R.H.; Kakavand, B.; Mansy, H.A. Seismocardiographic Signal Timing with Myocardial Strain. In Proceedings of the Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia, PA, USA, 2 December 2017; pp. 1–2. [Google Scholar]
- Taebi, A. Characterization, Classification, and Genesis of Seismocardiographic Signals. Ph.D. Thesis, University of Central Florida, Orlando, FL, USA, 2018. [Google Scholar]
- Taebi, A.; Solar, B.; Bomar, A.; Sandler, R.; Mansy, H. Recent Advances in Seismocardiography. Vibration 2019, 2, 64–86. [Google Scholar] [CrossRef] [Green Version]
- Khalili, F.; Gamage, P.P.T.; Mansy, H.A. Prediction of Turbulent Shear Stresses through Dysfunctional Bileaflet Mechanical Heart Valves using Computational Fluid Dynamics. In Proceedings of the 3rd Thermal and Fluids Engineering Conference (TFEC), Fort Lauderdale, FL, USA, 4–7 March 2018; pp. 1–9. [Google Scholar]
- Khalili, F.; Gamage, P.; Sandler, R.; Mansy, H. Adverse Hemodynamic Conditions Associated with Mechanical Heart Valve Leaflet Immobility. Bioengineering 2018, 5, 74. [Google Scholar] [CrossRef] [PubMed]
- Kuecherer, H.F.; Muhiudeen, I.A.; Kusumoto, F.M.; Lee, E.; Moulinier, L.E.; Cahalan, M.K.; Schiller, N.B. Estimation of mean left atrial pressure from transesophageal pulsed Doppler echocardiography of pulmonary venous flow. Circulation 1990, 82, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Greenspan, H.; Shechner, O.; Scheinowitz, M.; Feinberg, M.S. Doppler echocardiography flow-velocity image analysis for patients with atrial fibrillation. Ultrasound Med. Biol. 2005, 31, 1031–1040. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Zhou, S.K.; Jackson, J.; Comaniciu, D. Automatic mitral valve inflow measurements from doppler echocardiography. Med. Image Comput. Comput. Assist. Interv. 2008, 11 Pt 1, 983–990. [Google Scholar]
- Dhutia, N.M.; Cole, G.D.; Willson, K.; Rueckert, D.; Parker, K.H.; Hughes, A.D.; Francis, D.P. A new automated system to identify a consistent sampling position to make tissue Doppler and transmitral Doppler measurements of E, E′ and E/E′. Int. J. Cardiol. 2012, 155, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, E.; Kadem, L.; Pibarot, P.; Durand, L.-G. Optimization of Doppler velocity echocardiographic measurements using an automatic contour detection method. In Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009, Minneapolis, MN, USA, 3–6 September 2009. [Google Scholar]
- Dhutia, N.M.; Zolgharni, M.; Mielewczik, M.; Negoita, M.; Sacchi, S.; Manoharan, K.; Francis, D.P.; Cole, G.D. Open-source, vendor-independent, automated multi-beat tissue Doppler echocardiography analysis. Int. J. Cardiovasc. Imaging 2017, 33, 1135–1148. [Google Scholar] [CrossRef] [PubMed]
- Taebi, A.; Sandler, R.H.; Kakavand, B.; Mansy, H.A. Estimating Peak Velocity Profiles from Doppler Echocardiography using Digital Image Processing. In Proceedings of the 2018 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia, PA, USA, 1 December 2018; pp. 1–4. [Google Scholar]
- Maini, R.; Aggarwal, H. Study and comparison of various image edge detection techniques. Int. J. Image Process. 2009, 147002, 1–12. [Google Scholar]
- Biradar, N.; Dewal, M.L.; Rohit, M.K. Automated delineation of Doppler echocardiographic images using texture filters. In Proceedings of the 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 11–13 March 2015; pp. 1903–1907. [Google Scholar]
- Zolgharni, M.; Dhutia, N.M.; Cole, G.D.; Bahmanyar, M.R.; Jones, S.; Sohaib, S.M.A.; Tai, S.B.; Willson, K.; Finegold, J.A.; Francis, D.P. Automated aortic Doppler flow tracing for reproducible research and clinical measurements. IEEE Trans. Med. Imaging 2014, 33, 1071–1082. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Slabaugh, G.; Zhou, M.; Fang, T. Automatic tracing of blood flow velocity in pulsed Doppler images. In Proceedings of the 2008 IEEE International Conference on Automation Science and Engineering, Washington, DC, USA, 23–26 August 2008; pp. 218–222. [Google Scholar]
Difference between the Two Methods (Bias ± Margin of Error, 95% Confidence Interval) [cm/s] | |
---|---|
Negative profile | 3.10 ± 10.77 |
Positive profile | −1.12 ± 22.96 |
Negative profile after smoothing | 5.20 ± 9.47 |
Positive profile after smoothing | −3.82 ± 20.62 |
Method | E Waves [cm/s] | A Waves [cm/s] | Bias ± 1.96 SD [cm/s] |
---|---|---|---|
Study specialists | 62.33 ± 12.50 | 69.00 ± 7.94 | |
Raw image, method 1 | 67.93 ± 2.69 | 71.61 ± 1.96 | 4.10 ± 17.77 |
Raw image, method 2 | 66.78 ± 7.25 | 73.33 ± 1.11 | 4.39 ± 10.68 |
Smoothed image, method 1 | 61.38 ± 7.70 | 68.96 ± 3.10 | −0.5 ± 12.11 |
Smoothed image, method 2 | 66.90 ± 7.08 | 73.33 ± 1.11 | 4.45 ± 10.82 |
Averaged profiles, Pavg, Equation (2) | 64.14 ± 7.30 | 71.15 ± 1.73 | 1.98 ± 11.20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taebi, A.; Sandler, R.H.; Kakavand, B.; Mansy, H.A. Extraction of Peak Velocity Profiles from Doppler Echocardiography Using Image Processing. Bioengineering 2019, 6, 64. https://doi.org/10.3390/bioengineering6030064
Taebi A, Sandler RH, Kakavand B, Mansy HA. Extraction of Peak Velocity Profiles from Doppler Echocardiography Using Image Processing. Bioengineering. 2019; 6(3):64. https://doi.org/10.3390/bioengineering6030064
Chicago/Turabian StyleTaebi, Amirtahà, Richard H. Sandler, Bahram Kakavand, and Hansen A. Mansy. 2019. "Extraction of Peak Velocity Profiles from Doppler Echocardiography Using Image Processing" Bioengineering 6, no. 3: 64. https://doi.org/10.3390/bioengineering6030064
APA StyleTaebi, A., Sandler, R. H., Kakavand, B., & Mansy, H. A. (2019). Extraction of Peak Velocity Profiles from Doppler Echocardiography Using Image Processing. Bioengineering, 6(3), 64. https://doi.org/10.3390/bioengineering6030064