WeReview: CRISPR Tools—Live Repository of Computational Tools for Assisting CRISPR/Cas Experiments
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- “Name”: Name of the tool and link to its web site.
- “Available?”: Indicates whether the tool was available the last time checked. In principle, tools unavailable at a given time are not automatically removed since they can eventually become functional again (i.e., a temporary failure). The most recent date the tool was checked for availability is also shown.
- “Purpose”: Main goal of the tool: “Oligo designer,” “database” (database of pre-designed sets of oligos), “post-analysis” (computational analysis of genomic data associated to a CRISPR/Cas experiment) or “other.”
- “Platform”: The way the user can access the tool: “Web” (web interface), “command-line” (local command-line text-based tool), “desktop” (local desktop application with user graphical interface), “webapp” (web service programmatically accessible through an Application Programming Interface (API)).
- “Off-targets”: This indicates whether the tool is able to locate/score potential off-targets for the gRNA.
- “Score oligos”: It shows whether the tool is able to predict the binding efficiency of the gRNA to the intended target(s) in the genome.
- “Search by”: How the intended genomic target has to be specified as input for the tool; e.g., DNA sequence, gene ID or genomic coordinates.
- “Enzyme”: List of Cas nucleases or other enzymes admitted by the system.
- “PAM”: List of “protospacer adjacent motifs” allowed by the tool to be incorporated in the gRNA being designed.
- “Organisms”: List of organisms whose genomes are incorporated into the tool, so that they can be scanned for possible off-targets, etc.
- “Citations”: Total number of articles citing the tool in PubMed Central. A plot representing the yearly citation profile is also shown, so that temporal trends related to the popularity of the tool can be assessed.
- “Reference”: Bibliographic reference of the tool. It includes a link to the corresponding record in PubMed.
- “Comments”: Free-text area to store generic data that do not fit in any of the other fields. For example, it can be used to mention other system objectives besides those formalized in the “Purpose” column, or to indicate that the system is apparently unavailable forever.
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Urnov, F.D. Ctrl-Alt-inDel: Genome editing to reprogram a cell in the clinic. Curr. Opin. Genet. Dev. 2018, 52, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Sander, J.D.; Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 2014, 32, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Mojica, F.J.M.; Montoliu, L. On the Origin of CRISPR-Cas Technology: From Prokaryotes to Mammals. Trends Microbiol. 2016, 24, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Zetsche, B.; Gootenberg, J.S.; Abudayyeh, O.O.; Slaymaker, I.M.; Makarova, K.S.; Essletzbichler, P.; Volz, S.E.; Joung, J.; van der Oost, J.; Regev, A.; et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015, 163, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Nishimasu, H.; Cong, L.; Yan, W.X.; Ran, F.A.; Zetsche, B.; Li, Y.; Kurabayashi, A.; Ishitani, R.; Zhang, F.; Nureki, O. Crystal Structure of Staphylococcus aureus Cas9. Cell 2015, 162, 1113–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shmakov, S.; Abudayyeh, O.O.; Makarova, K.S.; Wolf, Y.I.; Gootenberg, J.S.; Semenova, E.; Minakhin, L.; Joung, J.; Konermann, S.; Severinov, K.; et al. Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Mol. Cell 2015, 60, 385–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Xu, X.; Nguyen, C.M.; Liu, Y.; Gao, Y.; Lin, X.; Daley, T.; Kipniss, N.H.; La Russa, M.; Qi, L.S. CRISPR-Mediated Programmable 3D Genome Positioning and Nuclear Organization. Cell 2018, 175, 1405–1417. [Google Scholar] [CrossRef] [PubMed]
- Anton, T.; Karg, E.; Bultmann, S. Applications of the CRISPR/Cas system beyond gene editing. Biol. Methods Protoc. 2018, 3. [Google Scholar] [CrossRef]
- Hilton, I.B.; D’Ippolito, A.M.; Vockley, C.M.; Thakore, P.I.; Crawford, G.E.; Reddy, T.E.; Gersbach, C.A. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 2015, 33, 510–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickar-Oliver, A.; Gersbach, C.A. The next generation of CRISPR–Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 2019, 20, 490–507. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Mice made easy. Science 2016, 354, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Seruggia, D.; Fernández, A.; Cantero, M.; Pelczar, P.; Montoliu, L. Functional validation of mouse tyrosinase non-coding regulatory DNA elements by CRISPR-Cas9-mediated mutagenesis. Nucleic Acids Res. 2015, 43, 4855–4867. [Google Scholar] [CrossRef] [PubMed]
- Carroll, D. Collateral damage: benchmarking off-target effects in genome editing. Genome Biol. 2019, 20, 114. [Google Scholar] [CrossRef]
- Iyer, V.; Shen, B.; Zhang, W.; Hodgkins, A.; Keane, T.; Huang, X.; Skarnes, W.C. Off-target mutations are rare in Cas9-modified mice. Nat. Methods 2015, 12, 479. [Google Scholar] [CrossRef]
- Periwal, V. A comprehensive overview of computational resources to aid in precision genome editing with engineered nucleases. Brief. Bioinform. 2017, 18, 698–711. [Google Scholar] [CrossRef]
- Yan, J.; Chuai, G.; Zhou, C.; Zhu, C.; Yang, J.; Zhang, C.; Gu, F.; Xu, H.; Wei, J.; Liu, Q. Benchmarking CRISPR on-target sgRNA design. Brief. Bioinform. 2018, 19, 721–724. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Xu, J.; Cheng, M.; Liao, X.; Peng, S. Review of CRISPR/Cas9 sgRNA Design Tools. Interdiscip. Sci. Comput. Life Sci. 2018, 10, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.O.W.; O’Brien, A.R.; Bauer, D.C. The Current State and Future of CRISPR-Cas9 gRNA Design Tools. Front. Pharmacol. 2018, 9, 749. [Google Scholar] [CrossRef] [PubMed]
- Chagoyen, M.; Pazos, F. Characteristics and evolution of the ecosystem of software tools supporting research in molecular biology. Brief. Bioinform. 2018. [Google Scholar] [CrossRef]
- Henry, V.J.; Bandrowski, A.E.; Pepin, A.S.; Gonzalez, B.J.; Desfeux, A. OMICtools: An informative directory for multi-omic data analysis. Database 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Perez, R.; Garcia-Martin, J.A.; Montoliu, L.; Oliveros, J.C.; Pazos, F. WeReview: CRISPR Tools—Live Repository of Computational Tools for Assisting CRISPR/Cas Experiments. Bioengineering 2019, 6, 63. https://doi.org/10.3390/bioengineering6030063
Torres-Perez R, Garcia-Martin JA, Montoliu L, Oliveros JC, Pazos F. WeReview: CRISPR Tools—Live Repository of Computational Tools for Assisting CRISPR/Cas Experiments. Bioengineering. 2019; 6(3):63. https://doi.org/10.3390/bioengineering6030063
Chicago/Turabian StyleTorres-Perez, Rafael, Juan A. Garcia-Martin, Lluis Montoliu, Juan C. Oliveros, and Florencio Pazos. 2019. "WeReview: CRISPR Tools—Live Repository of Computational Tools for Assisting CRISPR/Cas Experiments" Bioengineering 6, no. 3: 63. https://doi.org/10.3390/bioengineering6030063
APA StyleTorres-Perez, R., Garcia-Martin, J. A., Montoliu, L., Oliveros, J. C., & Pazos, F. (2019). WeReview: CRISPR Tools—Live Repository of Computational Tools for Assisting CRISPR/Cas Experiments. Bioengineering, 6(3), 63. https://doi.org/10.3390/bioengineering6030063