Microfabricated and 3-D Printed Soft Bioelectronic Constructs from PAn-PAAMPSA-Containing Hydrogels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Microlithographic Fabrication
2.2.2. 3-D Printing
2.3. Characterization of Hydrogels
2.3.1. Rheological and Optical Characterization of Hydrogel Cocktails
2.3.2. Electrical and Electrochemical Characterization
2.3.3. Morphological Characterization of Electroconductive Hydrogels
2.4. Cell Culture Study
3. Results and Discussion
3.1. Microfabricated and 3-D Printed Hydrogels
3.2. Rheological Characteristics of Hydrogel Cocktails
3.3. Optical, Electrical, and Electrochemical Characterization
3.4. Morpholicial Characterization of Electroconductive Hydrogels
3.5. NIH/3T3 and PC-12 Cells on Hydrogels
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, L.; Pan, L.; Ma, Z.; Yan, K.; Cheng, W.; Shi, Y.; Yu, G. All Inkjet-Printed Amperometric Multiplexed Biosensors Based on Nanostructured Conductive Hydrogel Electrodes. Nano Lett. 2018, 18, 3322–3327. [Google Scholar] [CrossRef] [PubMed]
- Tran, K.T.M.; Nguyen, T.D. Lithography-based methods to manufacture biomaterials at small scales. J. Sci. Adv. Mater. Devices 2017, 2, 1–14. [Google Scholar] [CrossRef]
- Kyle, S.; Jessop, Z.M.; Al-Sabah, A.; Whitaker, I.S. ‘Printability’ of Candidate Biomaterials for Extrusion Based 3D Printing: State-of-the-Art. Adv. Healthc. Mater. 2017, 6, 1700264. [Google Scholar] [CrossRef] [PubMed]
- Cullen, D.K.; Ankur, R.P.; John, F.D.; Douglas, H.S.; Bryan, J.P. Developing a tissue-engineered neural-electrical relay using encapsulated neuronal constructs on conducting polymer fibers. J. Neural Eng. 2008, 5, 374. [Google Scholar] [CrossRef] [PubMed]
- Trojaborg, W. Rate of recovery in motor and sensory fibres of the radial nerve: Clinical and electrophysiological aspects. J. Neurol. Neurosurg. Psychiatry 1970, 33, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Billiet, T.; Gevaert, E.; De Schryver, T.; Cornelissen, M.; Dubruel, P. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 2014, 35, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.-W.; O’Neal, J.; Shao, L.; Lutkenhaus, J.L. Charge storage in polymer acid-doped polyaniline-based layer-by-layer electrodes. ACS Appl. Mater. Interfaces 2013, 5, 10127–10136. [Google Scholar] [CrossRef] [PubMed]
- Bieberich, E.; Guiseppi-Elie, A. Neuronal differentiation and synapse formation of PC12 and embryonic stem cells on interdigitated microelectrode arrays: Contact structures for neuron-to-electrode signal transmission (NEST). Biosens. Bioelectron. 2004, 19, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Gumuscu, B.; Bomer, J.G.; van den Berg, A.; Eijkel, J.C.T. Photopatterning of Hydrogel Microarrays in Closed Microchips. Biomacromolecules 2015, 16, 3802–3810. [Google Scholar] [CrossRef] [PubMed]
- Khan, O.F.; Sefton, M.V. Patterning collagen/poloxamine-methacrylate hydrogels for tissue-engineering-inspired microfluidic and laser lithography applications. J. Biomater. Sci. Polym. Ed. 2011, 22, 2499–2514. [Google Scholar] [CrossRef] [PubMed]
- Hahn, M.S.; Taite, L.J.; Moon, J.J.; Rowland, M.C.; Ruffino, K.A.; West, J.L. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 2006, 27, 2519–2524. [Google Scholar] [CrossRef] [PubMed]
- Khetan, S.; Burdick, J.A. Patterning hydrogels in three dimensions towards controlling cellular interactions. Soft Matter 2011, 7, 830–838. [Google Scholar] [CrossRef]
- He, Y.; Yang, F.; Zhao, H.; Gao, Q.; Xia, B.; Fu, J. Research on the printability of hydrogels in 3D bioprinting. Sci. Rep. 2016, 6, 29977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malda, J.; Visser, J.; Melchels, F.P.; Jüngst, T.; Hennink, W.E.; Dhert, W.J.; Groll, J.; Hutmacher, D.W. 25th anniversary article: Engineering hydrogels for biofabrication. Adv. Mater. 2013, 25, 5011–5028. [Google Scholar] [CrossRef] [PubMed]
- Sarker, M.D.; Naghieh, S.; McInnes, A.D.; Schreyer, D.J.; Chen, X. Regeneration of peripheral nerves by nerve guidance conduits: Influence of design, biopolymers, cells, growth factors, and physical stimuli. Prog. Neurobiol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Simon, D.T.; Gabrielsson, E.O.; Tybrandt, K.; Berggren, M. Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology. Chem. Rev. 2016, 116, 13009–13041. [Google Scholar] [CrossRef] [PubMed]
- Gleissle, W.; Hochstein, B. Validity of the Cox–Merz rule for concentrated suspensions. J. Rheol. 2003, 47, 897–910. [Google Scholar] [CrossRef]
- Habib, A.; Sathish, V.; Mallik, S.; Khoda, B. 3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel. Materials 2018, 11, 454. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wan, M. Polyaniline doped with different sulfonic acids by in situ doping polymerization. J. Polym. Sci. Part A Poly. Chem. 1999, 37, 1277–1284. [Google Scholar] [CrossRef]
- Padmapriya, S.; Harinipriya, S.; Jaidev, K.; Sudha, V.; Kumar, D.; Pal, S. Storage and evolution of hydrogen in acidic medium by polyaniline. Int. J. Energy Res. 2018, 42, 1196–1209. [Google Scholar] [CrossRef]
- Rana, S.; Page, R.H.; McNeil, C.J. Impedance spectra analysis to characterize interdigitated electrodes as electrochemical sensors. Electrochim. Acta 2011, 56, 8559–8563. [Google Scholar] [CrossRef]
- Huang, H.; Li, W.; Wang, H.; Zeng, X.; Wang, Q.; Yang, Y. Conducting Hydrogels of Tetraaniline-g-poly(vinyl alcohol) in Situ Reinforced by Supramolecular Nanofibers. ACS Appl. Mater. Interfaces 2014, 6, 1595–1600. [Google Scholar] [CrossRef] [PubMed]
- Kerry, B.L. Conductive Polymer-Based Functional Structures for Neural Therapeutic Applications. In Conjugated Polymers for Biological and Biomedical Applications; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Bhana, B.; Iyer, R.K.; Chen, W.L.K.; Zhao, R.; Sider, K.L.; Likhitpanichkul, M.; Simmons, C.A.; Radisic, M. Influence of substrate stiffness on the phenotype of heart cells. Biotechnol. Bioeng. 2010, 105, 1148–1160. [Google Scholar] [CrossRef] [PubMed]
- Carter, W.G.; Wayner, E.A.; Bouchard, T.S.; Kaur, P. The role of integrins alpha 2 beta 1 and alpha 3 beta 1 in cell-cell and cell-substrate adhesion of human epidermal cells. J. Cell Biol. 1990, 110, 1387–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Justin, G.; Guiseppi-Elie, A. Electroconductive blends of poly (HEMA-co-PEGMA-co-HMMAco-SPMA) and poly (Py-co-PyBA): In vitro biocompatibility. J. Bioact. Compat. Polym. 2010, 25, 121–140. [Google Scholar] [CrossRef]
Microlithography Formulation | 3-D Printing Formulation | ||||||||
---|---|---|---|---|---|---|---|---|---|
Circuit Parameter | 0.0 | 0.10 | 1.00 | 10.0 | 0.0 | 0.10 | 1.00 | 10.0 | |
Membrane | RM (Ω) | 2.14 × 103 | 1.27 × 103 | 1.05 × 103 | 8.79 × 101 | 3.31 × 103 | 1.83 × 103 | 9.23 × 102 | 3.03 × 102 |
Electrode Geometry | QG (S·sn) | 1.62 × 10−11 | 2.02 × 10−11 | 3.44 × 10−11 | 2.73 × 10−9 | 3.34 × 10−11 | 4.44 × 10−10 | 3.95 × 10−10 | 4.22 × 10−10 |
n (0 < n < 1) | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 | 7.48 × 10−1 | 8.38 × 10−1 | 8.11 × 10−1 | 8.25 × 10−1 | 8.45 × 10−1 | |
RG (Ω) | 9.72 × 105 | 3.92 × 105 | 1.14 × 105 | 1.85 × 104 | 6.64 × 105 | 9.49 × 104 | 3.59 × 104 | 1.58 × 104 | |
Electrode Interface | QDL (S·sn) | 1.06 × 10−6 | 2.23 × 10−6 | 3.79 × 10−6 | 5.76 × 10−6 | 3.88 × 10−7 | 4.26 × 10−7 | 8.61 × 10−7 | 1.29 × 10−6 |
n (0 < n <1) | 7.97 × 10−1 | 7.45 × 10−1 | 7.59 × 10−1 | 5.84 × 10−1 | 5.75 × 10−1 | 6.69 × 10−1 | 5.89 × 10−1 | 6.09 × 10−1 | |
RCT (Ω) | 5.47 × 107 | 2.97 × 107 | 1.76 × 107 | 1.47 × 106 | 8.54 × 107 | 4.76 × 107 | 4.27 × 107 | 5.68 × 106 | |
Χ2 | 6.60 × 10−2 | 3.65 × 10−2 | 8.17 × 10−3 | 4.80 × 10−2 | 1.20 × 10−3 | 6.10 × 10−2 | 4.30 × 10−2 | 9.90 × 10−2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aggas, J.R.; Abasi, S.; Smith, B.; Zimmerman, M.; Deprest, M.; Guiseppi-Elie, A. Microfabricated and 3-D Printed Soft Bioelectronic Constructs from PAn-PAAMPSA-Containing Hydrogels. Bioengineering 2018, 5, 87. https://doi.org/10.3390/bioengineering5040087
Aggas JR, Abasi S, Smith B, Zimmerman M, Deprest M, Guiseppi-Elie A. Microfabricated and 3-D Printed Soft Bioelectronic Constructs from PAn-PAAMPSA-Containing Hydrogels. Bioengineering. 2018; 5(4):87. https://doi.org/10.3390/bioengineering5040087
Chicago/Turabian StyleAggas, John R., Sara Abasi, Blake Smith, Michael Zimmerman, Michael Deprest, and Anthony Guiseppi-Elie. 2018. "Microfabricated and 3-D Printed Soft Bioelectronic Constructs from PAn-PAAMPSA-Containing Hydrogels" Bioengineering 5, no. 4: 87. https://doi.org/10.3390/bioengineering5040087
APA StyleAggas, J. R., Abasi, S., Smith, B., Zimmerman, M., Deprest, M., & Guiseppi-Elie, A. (2018). Microfabricated and 3-D Printed Soft Bioelectronic Constructs from PAn-PAAMPSA-Containing Hydrogels. Bioengineering, 5(4), 87. https://doi.org/10.3390/bioengineering5040087