Endometrial Stem Cells in Farm Animals: Potential Role in Uterine Physiology and Pathology
Abstract
:1. Introduction
2. Functional Morphology of Uterine Compartments
3. Role and Biology of Endometrial Stem Cells
4. Stem Cells in the Endometrium of Farm Animals
4.1. Endometrial Stem Cells during the Oestrous Cycle in Farm Animals: What Do They Show?
4.2. Stem Cells and Critical Periods of Endometrial Regeneration in Farm Animals
4.2.1. Endometrial Stem Cells during Pregnancy and Puerperium
4.2.2. Stem Cells in the Endometrium in Uterine Pathology
4.2.3. Effects of Different Effector Molecules on Endometrial Stem Cells
4.2.4. Mesenchymal Stem Cells and Endometrial Regeneration
5. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weissman, I. Stem cells: Units of development, units of regeneration, and units in evolution. Cell 2000, 100, 157–168. [Google Scholar] [CrossRef]
- Maruyama, T.; Masuda, H.; Ono, M.; Kajitani, T.; Yoshimura, Y. Human uterine stem/progenitor cells: Their possible role in uterine physiology and pathology. Reproduction 2010, 140, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xie, T. Stem cell niche: Structure and function. Annu. Rev. Cell Dev. Biol. 2005, 21, 605–631. [Google Scholar] [CrossRef] [PubMed]
- Szotek, P.; Chang, H.; Zhang, L.; Preffer, F.; Dombkowski, D.; Donahoe, P.; Teixeira, J. Adult mouse myometrial label-retaining cells divide in response to gonadotropin stimulation. Stem Cells 2007, 25, 1317–1325. [Google Scholar] [CrossRef]
- Gargett, C.; Chan, R.; Schwab, K. Hormone and growth factor signaling in endometrial renewal: Role of stem/progenitor cells. Mol. Cell. Endocrinol. 2008, 288, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Gargett, C. Uterine stem cells: What is the evidence? Hum. Reprod. Update 2007, 13, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Spencer, T. Progesterone and Placental hormone actions on the uterus: Insights from domestic animals. Biol. Reprod. 2004, 71, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Gargett, C.; Masuda, H. Adult stem cells in the endometrium. Mol. Hum. Reprod. 2010, 16, 818–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gargett, C. Identification and characterisation of human endometrial stem/progenitor cells. Aust. N. Z. J. Obstet. Gynaecol. 2006, 46, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.; Schwab, K.; Gargett, C. Clonogenicity of human endometrial epithelial and stromal cells. Biol. Reprod. 2004, 70, 1738–1750. [Google Scholar] [CrossRef] [PubMed]
- Miernik, K.; Karasinski, J. Porcine uterus contains a population of mesenchymal stem cells. Reproduction 2012, 143, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabezas, J.; Lara, E.; Pacha, P.; Rojas, D.; Veraguas, D.; Saravia, F.; Castro, F. The endometrium of cycling cows contains populations of putative mesenchymal progenitor cells. Reprod. Domest. Anim. 2014, 49, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Letouzey, V.; Tan, K.; Deane, J.; Ulrich, D. Isolation and characterisation of mesenchymal stem/stromal cells in the ovine endometrium. PLoS ONE 2015, 10, e0127531. [Google Scholar] [CrossRef] [PubMed]
- Tamadon, A.; Mehrabani, D.; Zarezadeh, Y.; Rahmanifar, F.; Dianatpour, M.; Zare, S. Caprine endometrial mesenchymal stromal stem cell: Multilineage potential, characterization, and growth kinetics in breeding and anestrous stages. Vet. Med. Int. 2017, 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Cabezas, J.; Rojas, D.; Navarrete, F.; Ortiz, R.; Rivera, G.; Saravia, F.; Rodriguez-Alvarez, L.; Castro, F. Equine mesenchymal stem cells derived from endometrial or adipose tissue share significant biological properties, but have distinctive pattern of surface markers and migration. Theriogenology 2018, 15, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Dellmann, H.D. Textbook of Veterinary Histology; Lea & Febiger: Philadelphia, PA, USA, 1993; pp. 279–281. [Google Scholar]
- Gargett, C.; Schwab, K.; Deane, J. Endometrial stem/progenitor cells: The first 10 years. Hum. Reprod. Update 2016, 22, 137–163. [Google Scholar] [CrossRef]
- Ross, M.H.; Pawlina, W.; Negrete, J.H. Histología: Texto Y Atlas Color Con Biología Celular y Molecular, 5th ed.; Edición Médica Panamericana: Madrid, Spain, 2007. [Google Scholar]
- Uduwela, A.S.; Perera, M.A.K.; Aiqing, L.; Fraser, I.S. Endometrial-Myometrial Interface: Relationship to Adenomyosis and Changes in Pregnancy; Lippincott Williams & Wilkins Ltd.: Philadelphia, PA, USA, 2000; pp. 390–400. [Google Scholar]
- Yin, Y.; Ma, L. Development of the mammalian female reproductive tract. J. Biochem. 2005, 137, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Spencer, T.E.; Hayashi, K.; Hu, J.; Carpenter, K.D. Comparative developmental biology of the mammalian uterus. Curr. Top. Dev. Biol. 2005, 68, 85–122. [Google Scholar] [PubMed]
- Spencer, T.E.; Dunlap, K.A.; Filant, J. Comparative developmental biology of the uterus: Insights into mechanisms and developmental disruption. Mol. Cell. Endocrinol. 2012, 354, 34–53. [Google Scholar] [CrossRef] [PubMed]
- Kenney, R. Cyclic and pathologic changes of mare endometrium as detected by biopsy, with a note on early embryonic death. J. Am. Vet. Med. Assoc. 1978, 172, 241–262. [Google Scholar] [PubMed]
- Bazer, F.W.; Song, G.; Kim, J.; Dunlap, K.A.; Satterfield, M.C.; Johnson, G.A.; Wu, G. Uterine biology in pigs and sheep. J. Anim. Sci. Biotechnol. 2012, 3, 23. [Google Scholar] [CrossRef] [PubMed]
- Eckfeldt, C.; Mendenhall, E.; Verfaillie, C. The molecular repertoire of the “almighty” stem cell. Nat. Rev. Mol. Cell Biol. 2005, 6, 726–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, N.; Park, K.; Kim, T. Lifetime expression of stem cell markers in the uterine endometrium. Fertil. Steril. 2004, 81, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Crisan, M.; Yap, S.; Casteilla, L.; Chen, C.; Corselli, M.; Park, T.S.; Pe, B.A. Perivascular origin for mesenchymal stem cells in multiple human organs. Stem Cells 2008, 3, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Taylor, H. Stem cells and reproduction. Curr. Opin. Obstet. Gynecol. 2010, 22, 235–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cervelló, I.; Mas, A.; Gil-Sanchis, C.; Peris, L.; Faus, A.; Saunders, P.T.K.; Simón, C. Reconstruction of endometrium from human endometrial side population cell lines. PLoS ONE 2011, 6, 21221. [Google Scholar] [CrossRef] [PubMed]
- Khatun, M.; Sorjamaa, A.; Kangasniemi, M.; Sutinen, M.; Salo, T.; Liakka, A.; Lehenkari, P.; Tapanainen, J.S.; Vuolteenaho, O.; Chen, J.C.; et al. Niche matters: The comparison between bone marrow stem cells and endometrial stem cells and stromal fibroblasts reveal distinct migration and cytokine profiles in response to inflammatory stimulus. PLoS ONE 2017, 12, 0175986. [Google Scholar] [CrossRef] [PubMed]
- Kyurkchiev, D.; Bochev, I.; Ivanova-Todorova, E.; Mourdjeva, M.; Oreshkova, T.; Belemezova, K.; Kyurkchiev, S. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J. Stem Cell. 2014, 6, 552–570. [Google Scholar] [CrossRef] [PubMed]
- Figueira, P.G.; Abrao, M.S.; Krikun, G.; Taylor, H.S. Stem cells in endometrium and their role in the pathogenesis of endometriosis. Ann. N. Y. Acad. Sci. 2011, 1221, 10–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, F.; Boucher, S.; Koh, S.; Sastry, K.S.; Chase, L.; Lakshmipathy, U.; Choong, C.; Yang, Z.; Vemuri, M.C.; Rao, M.S.; et al. PDGF, TGF-beta and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): Transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood 2008, 112, 295–307. [Google Scholar] [PubMed]
- Lakshmipathy, U.; Verfaillie, C. Stem cell plasticity. Blood Rev. 2005, 19, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Masuda, H.; Anwar, S.; Bühring, H.; Rao, J.; Gargett, C.A. Novel marker of human endometrial mesenchymal stem-like cells. Cell. Transplant. 2012, 21, 2201–2214. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Ichim, T.; Zhong, J.; Rogers, A.; Yin, Z.; Jackson, J.; Riordan, N. Endometrial regenerative cells: A novel stem cell population. J. Transl. Med. 2007, 5, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwab, K.; Gargett, C. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum. Reprod. 2007, 22, 2903–2911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caplan, A.; Hariri, R. Body management: Mesenchymal stem cells control the internal regenerator. Stem Cell. Transl. Med. 2015, 4, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Darzi, S.; Werkmeister, J.; Deane, J.; Gargett, C. Identification and characterization of human endometrial mesenchymal stem/stromal cells and their potential for cellular therapy. Stem Cell. Transl. Med. 2016, 5, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Gargett, C.; Nguyen, H.; Ye, L. Endometrial regeneration and endometrial stem/progenitor cells. Rev. Endocr. Metab. Disord. 2012, 13, 235–251. [Google Scholar] [CrossRef] [PubMed]
- Cervelló, I.; Mas, A.; Gil-Sanchis, C.; Simón, C. Somatic stem cells in the human endometrium. Semin. Reprod. Med. 2013, 31, 69–76. [Google Scholar] [PubMed]
- Mitko, K.; Ulbrich, S.; Wenigerkind, H.; Sinowatz, F.; Blum, H.; Wolf, E.; Bauersachs, S. Dynamic changes in messenger RNA profiles of bovine endometrium during the oestrous cycle. Reproduction 2008, 135, 225–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, C.; Rogers, P. Pregnancy after planned partial endometrial resection. Aust. N. Z. J. Obstet. Gynaecol. 1993, 33, 316–318. [Google Scholar] [CrossRef] [PubMed]
- Bodek, G.; Bukowska, J.; Wisniewska, J.; Ziecik, A. Evidence for the presence of stem/progenitor cells in porcine endometrium. Mol. Reprod. Dev. 2015, 82, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Donofrio, G.; Franceschi, V.; Capocefalo, A.; Cavirani, S.; Sheldon, I.M.; Capocefalo, A.; Cavirani, S. Bovine endometrial stromal cells display osteogenic properties. Reprod. Biol. Endocrinol. 2008, 6, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehrabani, D.; Rahmanifar, F.; Mellinejad, M.; Tamadon, A.; Dianatpour, M.; Zare, S.; Ghobadi, F. Isolation, culture, characterization, and adipogenic differentiation of heifer endometrial mesenchymal stem cells. Comp. Clin. Pathol. 2015, 24, 1159–1164. [Google Scholar] [CrossRef]
- Łupicka, M.; Bodek, G.; Shpigel, N.; Elnekave, E.; Korzekwa, A. Identification of pluripotent cells in bovine uterus: In situ and in vitro studies. Reproduction 2015, 149, 317–327. [Google Scholar] [CrossRef] [PubMed]
- De Moraes, C.N.; Maia, L.; Dias, M.C.; Dell’Aqua, C.P.F.; Da Mota, L.S.L.S.; Chapwanya, A.; Landim-Alvarenga, F.C.; Oba, E. Bovine endometrial cells: A source of mesenchymal stem/progenitor cells. Cell. Biol. Int. 2016, 40, 1332–1339. [Google Scholar] [CrossRef] [PubMed]
- Lara, E.; Rivera, N.; Rojas, D.; Rodríguez-Alvarez, L.; Castro, F. Characterization of mesenchymal stem cells in bovine endometrium during follicular phase of oestrous cycle. Reprod. Domest. Anim. 2017, 52, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Lara, E. Identificación Y Caracterización de Células Madre Mesenquimales en Endometrio Bovino Durante el Ciclo Estral Y Postparto Sano Y Con Endometritis. Ph.D. Thesis, Universidad de Concepción, Concepción, Chile, 2017. [Google Scholar]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Adams, G.; Pierson, R. Promise of new imaging technologies for assessing ovarian function. Anim. Reprod. Sci. 2003, 78, 371–399. [Google Scholar] [CrossRef] [Green Version]
- Ireland, J.; Murphee, R.; Coulson, P. Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum. J. Dairy Sci. 1980, 63, 155–160. [Google Scholar] [CrossRef]
- Snyder, E.; Loring, J. A role for stem cell biology in the physiological and pathological aspects of aging. J. Am. Geriatr. Soc. 2005, 53, 2879. [Google Scholar] [CrossRef] [PubMed]
- Janzen, D.; Cheng, D.; Schafenacker, A.; Paik, D.; Goldstein, A.; Witte, O.; Jaroszewicz, A.; Pellegrini, M.; Memarzadeh, S. Estrogen and progesterone together expand murine endometrial epithelial progenitor cells. Stem Cells 2013, 31, 808–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.; Orvis, G.; Wang, Y.; Behringer, R. Stromal-to-epithelial transition during postpartum endometrial regeneration. PLoS ONE 2012, 7, 44285. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Plikus, M.V.; Komarova, N.L. The role of symmetric stem cell divisions in tissue homeostasis. PLoS Comput. Biol. 2015, 11, 1004629. [Google Scholar] [CrossRef] [PubMed]
- Booth, B.; Smith, G. Estrogen receptor-alpha and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands. Breast Cancer Res. 2006, 8, R49. [Google Scholar] [CrossRef] [PubMed]
- Fazleabas, A.; Strakova, Z. Endometrial function: Cell specific changes in the uterine environment. Mol. Cell. Endocrinol. 2002, 186, 143–147. [Google Scholar] [CrossRef]
- Salamonsen, L. Tissue injury and repair in the female human reproductive tract. Reproduction 2003, 125, 301–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, M.; Chan, R.; Yeung, W. Label-retaining stromal cells in mouse endometrium awaken for expansion and repair after parturition. Stem Cell. Dev. 2015, 24, 768–780. [Google Scholar] [CrossRef] [PubMed]
- Bratincsák, A.; Brownstein, M.; Cassiani-Ingoni, R.; Pastorino, S.; Szalayova, I.; Tóth, Z.; Key, S.; Néemeth, K.; Pickel, J.; Mezey, E. CD45-positive blood cells give rise to uterine epithelial cells in mice. Stem Cells 2007, 25, 2820–2826. [Google Scholar] [CrossRef] [PubMed]
- Chapwanya, A.; Meade, K.; Foley, C.; Narciandi, F.; Evans, A.; Doherty, M.; Callanan, J.; O’Farrelly, C. The postpartum endometrial inflammatory response: A normal physiological event with potential implications for bovine fertility. Reprod. Fertil. Dev. 2012, 24, 1028–1039. [Google Scholar] [CrossRef] [PubMed]
- Bauersachs, S.; Mitko, K.; Ulbrich, S.; Blum, H.; Wolf, E. Transcriptome studies of bovine endometrium reveal molecular profiles characteristic for specific stages of estrous cycle and early pregnancy. Exp. Clin. Endocr. Diab. 2008, 116, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Forde, N.; Carter, F.; Fair, T.; Crowe, M.; Evans, A.; Spencer, T.; Bazer, F.; McBride, R.; Boland, M.; O’Gaora, P.; et al. Progesterone-regulated changes in endometrial gene expression contribute to advanced conceptus development in cattle. Biol. Reprod. 2009, 81, 784–794. [Google Scholar] [CrossRef] [PubMed]
- Mansouri-Attia, N.; Sandra, O.; Aubert, J.; Degrelle, S.; Everts, R.E.; Giraud-Delville, C.; Heyman, Y.; Galio, L.; Hue, I.; Yang, X.; et al. Endometrium as an early sensor of in vitro embryo manipulation technologies. Proc. Natl. Acad. Sci. USA 2009, 106, 5687–5692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lara, E.; Velásquez, A.; Cabezas, J.; Rivera, N.; Pacha, P.; Rodríguez-Alvarez, L.; Saravia, F.; Castro, F.O. Endometritis and In Vitro PGE(2) Challenge Modify Properties of Cattle Endometrial Mesenchymal Stem Cells and Their Transcriptomic Profile. Stem Cells Int. 2017, 2017, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Dobson-Hill, B. Uterine Involution in the Dairy Cow: Comparative Study between Organic and Conventional Dairy Cows. Master’s Thesis, Massey University, Palmerston North, New Zealand, 2009. [Google Scholar]
- Sheldon, I.; Dobson, H. Postpartum uterine health in cattle. Anim. Reprod. Sci. 2004, 82–83, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Kørbling, M.; Estrov, Z. Adult stem cells for tissue repair—A new therapeutic concept? N. Engl. J. Med. 2003, 349, 570–582. [Google Scholar] [CrossRef] [PubMed]
- Mambelli, L.; Winter, G.; Kerkis, A.; Malschitzky, E.; Mattos, R.; Kerkis, I. A novel strategy of mesenchymal stem cells delivery in the uterus of mares with endometrosis. Theriogenology 2013, 79, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Łupicka, M.; Socha, B.; Szczepanska, A.; Korzekwa, A. Expression of pluripotency markers in the bovine uterus with adenomyosis. Reprod. Biol. Endocrinol. 2015, 13, 110. [Google Scholar] [CrossRef] [PubMed]
- Hyodo, S.; Matsubara, K.; Kameda, K.; Matsubara, Y. Endometrial injury increases side population cells in the uterine endometrium: A decisive role of estrogen. Tohoku J. Exp. Med. 2011, 224, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Alongi, D.; Yamaza, T.; Song, Y.; Fouad, A.; Romberg, E.; Shi, S.; Huang, G. Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regen. Med. 2010, 5, 617–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carneiro, L.; Cronin, J.; Sheldon, I. Mechanisms linking bacterial infections of the bovine endometrium to disease and infertility. Reprod. Biol. 2016, 16, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Grompe, M. Tissue stem cells: New tools and functional diversity. Stem Cells 2012, 10, 685–689. [Google Scholar] [CrossRef] [PubMed]
- Gargett, C.; Ye, L. Endometrial reconstruction from stem cells. Fertil. Steril. 2012, 98, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Gronthos, S.; Simmons, P. The growth factor requirements of STRO-1-positive human bone marrow stromal precursors under serum-deprived conditions in vitro. Blood 1995, 85, 929–940. [Google Scholar] [PubMed]
- De Moraes, C.N.; Maia, L.; De Oliveira, E.; Dell’Aqua, C.P.F.; Chapwanya, A.; Landim-Alvarenga, F.C.; Oba, E. Shotgun proteomic analysis of the secretome of bovine endometrial mesenchymal progenitor/stem cells challenged or not with bacterial lipopolysaccharide. Vet. Immunol. Immunopathol. 2017, 187, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Wagers, A. The stem cell niche in regenerative medicine. Stem Cells 2012, 10, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Healy, L.; Cronin, J.; Sheldon, I. Endometrial cells sense and react to tissue damage during infection of the bovine endometrium via interleukin 1. Sci. Rep. 2014, 14, 7060. [Google Scholar] [CrossRef] [PubMed]
- Kizil, C.; Kyritsis, N.; Brand, M. Effects of inflammation on stem cells: Together they strive? EMBO Rep. 2015, 16, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, M.; Rosenberg, D. Multifaceted roles of PGE2 in inflammation and cancer. Semin. Immunopathol. 2013, 35, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Goessling, W.; North, T.; Loewer, S.; Lord, A.; Lee, S.; Stoick-Cooper, C.; Zon, L. Genetic interaction of PGE2 and wnt signaling regulates developmental specification of stem cells and regeneration. Cell 2009, 136, 1136–1147. [Google Scholar] [CrossRef] [PubMed]
- Durand, E.M.; Li, Z. Newly emerging roles for prostaglandin E2 regulation of hematopoiesis and hematopoietic stem cell engraftment. Curr. Opin. Hematol. 2010, 17, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Cutler, C.; Ballen, K. Improving outcomes in umbilical cord blood transplantation: State of the art. Blood Rev. 2012, 26, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Hoggatt, J.; Singh, P.; Sampath, J.; Pelus, L. Prostaglandin E2 enhances hematopoietic stem cell homing, survival and proliferation. Blood 2009, 113, 5444–5455. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.C.; Kim, H.S.; Shin, T.H.; Kang, I.; Lee, Y.J.; Kim, J.J.; Kang, H.K.; Seo, Y.; Lee, S.; Yu, K.R.; et al. PGE 2 maintains self-renewal of human adult stem cells via EP2-mediated autocrine signaling and its production is regulated by cell-to-cell contact. Sci. Rep. 2016, 6, 26298. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, O.; Sullivan, M.H.; Elder, M.G. Differences of metabolism of prostaglandin E2 and F2 alpha by decidual stromal cells and macrophages in culture. Eicosanoids 1991, 4, 203–207. [Google Scholar] [PubMed]
- North, T.; Goessling, W.; Walkley, C.; Lengerke, C.; Kopani, K.; Lord, A.; Weber, G.; Bowman, T.; Jang, I.; Grosser, T.; et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 2007, 447, 1007–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagedorn, E.J.; Durand, E.M.; Fast, E.M.; Li, Z. Getting more for your marrow: Boosting hematopoietic stem cell numbers with PGE2. Exp. Cell. Res. 2014, 329, 220–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Susheelamma, C.; Pillai, S.; Asha Nair, S. Oestrogen, progesterone and stem cells: The discordant trio in endometriosis? Expert Rev. Mol. Med. 2018, 20, E2. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.Y.; Ge, T.X.; Opan, Y.B.; Zhang, S.Y. Advanced role of hippo signaling in endometrial fibrosis: implications for intrauterine adhesion. Chin. Med. J. 2017, 130, 2732–2737. [Google Scholar] [PubMed]
- Matsuzaki, S.; Darcha, C. Involvement of the Wnt/β-catenin signaling pathway in the cellular and molecular mechanisms of fibrosis in endometriosis. PLoS ONE 2013, 8, 76808. [Google Scholar] [CrossRef] [PubMed]
- Chaitanya, B.N.; Sonal, Y.; Panchal, H.P. Endometrial regeneration using autologous adult stem cells followed by conception by in vitro fertilization in a patient of severe Asherman’s síndrome. J. Hum. Reprod. Sci. 2011, 4, 43–48. [Google Scholar]
- Cervelló, I. Human CD133+ bone marrow-derived stem cells promote endometrial proliferation in a murine model of asherman síndrome. Fertil. Steril. 2015, 104, 1552–1560. [Google Scholar] [CrossRef] [PubMed]
- Sahin, E.G.; Zolbin, M.M.; Cosar, E.; Moridi, I.; Mamillapalli, R.; Taylor, H.S. CXCL12 Promotes stem cell recruitment and uterine repair after Injury in Asherman’s syndrome. Mol. Ther.-Meth. Clin. Dev. 2017, 4, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhang, Q.; Wang, Y.; Li, Y. Uterine infusion with bone marrow mesenchymal stem cells improves endometrium thickness in a rat model of thin endometrium. Reprod. Sci. 2015, 22, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.H.; Lan, C.W.; Liao, C.Y.; Hung, S.C.; Li, H.Y.; Sung, Y.J. Mesenchymal stem cells and their conditioned medium can enhance the repair of uterine defects in a rat model. J. Chin. Med. Assoc. 2018, 81, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Jianmei, W.; Baohui, J.; Caijun, P.; Yangu, Y.; Zhang, L.; Sun, B.; Zhang, Y. Application of bone marrow-derived mesenchymal stem cells in the treatment of intrauterine adhesions in rats. Cell. Physiol. Biochem. 2016, 39, 1553–1560. [Google Scholar]
- Yi-Qun, T.; Lu, G.; Qian, X.; Sha, W.; Jin-Jiao, L.; Hua, D. Effects of human umbilical cord mesenchymal stem cells on intrauterine adhesions in a rat model. Int. J. Clin. Exp. Pathol. 2016, 9, 12119–12129. [Google Scholar]
- Sabry, D.; Mostafa, A.; Marzouk, S.; Ibrahim, W.; Ali, H.H.M.; Hassan, A.; Shamaa, A. Neupogen and mesenchymal stem cells are the novel therapeutic agents in regeneration of induced endometrial fibrosis in experimental rats. Biosci. Rep. 2017, 37, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Y.; Guan, C.-Y.; Tian, S.; Lv, X.-D.; Li, J.-H.; Xia, H. Therapeutic effect of human umbilical cord-derived mesenchymal stem cells on injured rat endometrium during its chronic phase. Stem Cell Res. Ther. 2018, 9, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferris, R.A.; Frisbie, D.D.; McCue, P.M. Use of mesenchymal stem cells or autologous conditioned serum to modulate the inflammatory response to spermatozoa in mares. Theriogenology 2014, 82, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, M.A.; Carmo, M.T.; Segabinazzi, L.G.; Guastali, M.D.; Maia, L.; Alvarenga, L. Feasibility and safety of endometrial injection of autologous bone marrow mesenchymal stem cells in mares. J. Equine Vet. Sci. 2016, 42, 12–18. [Google Scholar] [CrossRef]
- Rink, B.E.; Beyer, T.; French, H.M.; Watson, E.; Aurich, C.; Donadeu, F.X. The Fate of autologous endometrial mesenchymal stromal cells after application in the healthy equine uterus. Stem Cells Dev. 2018, 27, 1046–1052. [Google Scholar] [CrossRef] [PubMed]
- Serrato, L.A.G.; Montesinos, M.J.J.; Anzaldúa, A.S.R. The endometrium as a source of mesenchymal stem cells in domestic animals and possible applications in veterinary medicine. Vet. México OA 2017, 4, 2448–6760. [Google Scholar] [CrossRef]
- Bockeria, L.; Bogin, V.; Bockeria, O.; Le, T.; Alekyan, B.; Woods, E.J.; Patel, A.N. Endometrial regenerative cells for treatment of heart failure: A new stem cell enters the clinic. J. Transl. Med. 2013, 11, 1. [Google Scholar] [CrossRef] [PubMed]
Species | Endometrial Stem Cell Candidates | Reference | |
---|---|---|---|
Type | Characteristics | ||
Swine | MSCs | MSC marker expression Osteogenic and adipogenic differentiation | [11] |
Swine | SP | Embryonic and mesenchymal marker expression Chondrogenic and osteogenic differentiation | [43] |
Sheep | MSCs | CD271+ CD49f− population with high clonogenic efficiency, serial clonogenic ability and differentiation into adipogenic, myogenic, chondrogenic and osteogenic lineages | [13] |
Goat | MSCs | High proliferation potential and differentiation into adipogenic, chondrogenic and osteogenic lineages | [14] |
Bovine | Stromal | Bone marrow mesenchymal cell-like phenotype Ability to differentiate into osteogenic lineage | [44] |
Bovine | Progenitor/mesenchymal | Pluripotency and multipotency marker expression Multilineage differentiation, clonogenicity and high proliferation abilities | [12] |
Bovine | MSCs | CD73+ marker expression Differentiation into adipogenic lineage and high proliferation ability | [45] |
Bovine | Pluripotent | Pluripotency marker expression Multilineage differentiation ability | [46] |
Bovine | MSCs | Mesenchymal marker expression Clonogenicity Differentiation into osteogenic and adipogenic lineages | [47] |
Bovine | MSCs | Fibroblast-like morphology and adherence to plastic Multilineage differentiation, alkaline phosphatase activity, clonogenicity and high proliferation ability Pluripotency and multipotency marker expression | [48] |
Equine | MSCs | Fibroblast-like morphology and adherence to plastic Multilineage differentiation, fast doubling, and migration abilities Expression of CD44, CD90 and MHCI surface markers | [15] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lara, E.; Rivera, N.; Cabezas, J.; Navarrete, F.; Saravia, F.; Rodríguez-Alvarez, L.; Castro, F.O. Endometrial Stem Cells in Farm Animals: Potential Role in Uterine Physiology and Pathology. Bioengineering 2018, 5, 75. https://doi.org/10.3390/bioengineering5030075
Lara E, Rivera N, Cabezas J, Navarrete F, Saravia F, Rodríguez-Alvarez L, Castro FO. Endometrial Stem Cells in Farm Animals: Potential Role in Uterine Physiology and Pathology. Bioengineering. 2018; 5(3):75. https://doi.org/10.3390/bioengineering5030075
Chicago/Turabian StyleLara, Evelyn, Nathaly Rivera, Joel Cabezas, Felipe Navarrete, Fernando Saravia, Lleretny Rodríguez-Alvarez, and Fidel Ovidio Castro. 2018. "Endometrial Stem Cells in Farm Animals: Potential Role in Uterine Physiology and Pathology" Bioengineering 5, no. 3: 75. https://doi.org/10.3390/bioengineering5030075
APA StyleLara, E., Rivera, N., Cabezas, J., Navarrete, F., Saravia, F., Rodríguez-Alvarez, L., & Castro, F. O. (2018). Endometrial Stem Cells in Farm Animals: Potential Role in Uterine Physiology and Pathology. Bioengineering, 5(3), 75. https://doi.org/10.3390/bioengineering5030075