Finite Element Simulation and Additive Manufacturing of Stiffness-Matched NiTi Fixation Hardware for Mandibular Reconstruction Surgery
Abstract
:1. Introduction
2. Finite Element Model for Implant Evaluation
3. Fixation Hardware Design
4. Fabrication of Patient-Specific NiTi Fixation Hardware
5. Validation and Results
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Andani, M.T.; Moghaddam, N.S.; Haberland, C.; Dean, D.; Miller, M.J.; Elahinia, M. Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomater. 2014, 10, 4058–4070. [Google Scholar] [CrossRef] [PubMed]
- Elahinia, M.; Moghaddam, N.S.; Andani, M.T.; Amerinatanzi, A.; Bimber, B.A.; Hamilton, R.F. Fabrication of NiTi through additive manufacturing: A review. Prog. Mater. Sci. 2016, 83, 630–663. [Google Scholar] [CrossRef]
- Haberland, C.; Elahinia, M.; Walker, J.; Meier, H. Visions, concepts and strategies for smart nitinol actuators and complex nitinol structures produced by additive manufacturing. In Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Snowbird, UT, USA, 16–18 September 2013.
- Amerinatanzi, A.; Zamanian, H.; Moghaddam, N.S.; Ibrahim, H.; Hefzy, M.S.; Elahinia, M. On the Advantages of Superelastic Niti in Ankle Foot Orthoses. In Proceedings of the ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Stowe, VT, USA, 28–30 September 2016.
- Hadi, A.; Alipour, K.; Kazeminasab, S.; Amerinatanzi, A.; Elahinia, M. Design and Prototyping of a Wearable Assistive Tool for Hand Rehabilitation using Shape Memory Alloys. In Proceedings of the ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Stowe, VT, USA, 28–30 September 2016.
- Mahtabi, M.; Shamsaei, N.; Mitchell, M. Fatigue of nitinol: The state-of-the-art and ongoing challenges. J. Mech. Behav. Biomed. Mater. 2015, 50, 228–254. [Google Scholar] [CrossRef] [PubMed]
- Mahtabi, M.; Shamsaei, N.; Rutherford, B. Mean strain effects on the fatigue behavior of superelastic nitinol alloys: An experimental investigation. Procedia Eng. 2015, 133, 646–654. [Google Scholar] [CrossRef]
- Mahtabi, M.; Shamsaei, N. Multiaxial fatigue modeling for nitinol shape memory alloys under in-phase loading. J. Mech. Behav. Biomed. Mater. 2015, 55, 236–249. [Google Scholar] [CrossRef] [PubMed]
- Esfahani, S.N.; Andani, M.T.; Moghaddam, N.S.; Mirzaeifar, R.; Elahinia, M. Independent tuning of stiffness and toughness of additively manufactured titanium-polymer composites: Simulation, fabrication, and experimental studies. J. Mater. Process. Technol. 2016, 238, 22–29. [Google Scholar] [CrossRef]
- Moghaddam, N.S.; Elahinia, M.; Miller, M.; Dean, D. Enhancement of bone implants by substituting nitinol for titanium (Ti-6Al-4V): A modeling comparison. In Proceedings of the ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Newport, RI, USA, 8–10 September 2014.
- Rahmanian, R.; Moghaddam, N.S.; Haberland, C.; Dean, D.; Miller, M.; Elahinia, M. Load Bearing and Stiffness Tailored Niti Implants Produced by Additive Manufacturing: A Simulation Study. In Behavior and Mechanics of Multifunctional Materials and Composites 2014; SPIE Press: Bellingham, WA, USA, 9–13 March 2014. [Google Scholar]
- Hadi, A.; Qasemi, M.; Elahinia, M.; Moghaddam, N. Modeling and experiment of a flexible module actuated by shape memory alloy wire. In Proceedings of the ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Newport, RI, USA, 8–10 September 2014.
- Skoracki, R.; Miller, M.; Jahadakbar, A.; Taheri Andani, M.; Shayesteh Moghaddam, N.; Haberland, C.; Dean, D.; Walker, J.; Karaca, H.; Elahinia, M. Additive Manufacturing of Nitinol Fixation Hardware for Reconstructing Mandibular Segmental Defects; ASM International: Almere, The Netherlands, 2015. [Google Scholar]
- Amerinatanzi, A.; Moghaddam, N.S.; Ibrahim, H.; Elahinia, M. Evaluating a Niti Implant Under Realistic Loads: A Simulation Study. In Proceedings of the ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Stowe, VT, USA, 28–30 September 2016.
- Amerinatanzi, A.; Moghaddam, N.S.; Ibrahim, H.; Elahinia, M. The Effect of Porosity Type on the Mechanical Performance of Porous Niti Bone Implants. In Proceedings of the ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Stowe, VT, USA, 28–30 September 2016.
- Moghaddam, N.S.; Amerinatanzi, A.; Saedi, S.; Turabi, A.S.; Karaca, H.; Elahinia, M. Stiffness Tuning of Niti Implants Through Aging. In Proceedings of the ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Stowe, VT, USA, 28–30 September 2016.
- Habijan, T.; Haberland, C.; Meier, H.; Frenzel, J.; Wittsiepe, J.; Wuwer, C.; Greulich, C.; Schildhauer, T.; Köller, M. The biocompatibility of dense and porous nickel–titanium produced by selective laser melting. Mater. Sci. Eng. C 2013, 33, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, N.S.; Andani, M.T.; Amerinatanzi, A.; Haberland, C.; Huff, S.; Miller, M.; Elahinia, M.; Dean, D. Metals for bone implants: Safety, design, and efficacy. Biomanuf. Rev. 2016, 1, 1. [Google Scholar] [CrossRef]
- Es-Souni, M.; Es-Souni, M.; Fischer-Brandies, H. Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal. Bioanal. Chem. 2005, 381, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, N.S.; Jahadakbar, A.; Elahinia, M.; Dean, D.; Miller, M. The effect of adding dental implants to the reconstructed mandible comparing the effect of using Ti-6Al-4V and NiTi hardware. In Tissue Engineering Part A; Mary Ann Liebert, Inc.: New Rochelle, NY, USA, 2015; p. S398. [Google Scholar]
- Martola, M.; Lindqvist, C.; Hänninen, H.; Al-Sukhun, J. Fracture of titanium plates used for mandibular reconstruction following ablative tumor surgery. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 80, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Spencer, K.; Sizeland, A.; Taylor, G.; Wiesenfeld, D. The use of titanium mandibular reconstruction plates in patients with oral cancer. Int. J. Oral Maxillofac. Surg. 1999, 28, 288–290. [Google Scholar] [CrossRef]
- Wei, F.-C.; Celik, N.; Yang, W.-G.; Chen, I.-H.; Chang, Y.-M.; Chen, H.-C. Complications after reconstruction by plate and soft-tissue free flap in composite mandibular defects and secondary salvage reconstruction with osteocutaneous flap. Plast. Reconstr. Surg. 2003, 112, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Mariani, P.; Kowalski, L.; Magrin, J. Reconstruction of large defects postmandibulectomy for oral cancer using plates and myocutaneous flaps: A long-term follow-up. Int. J. Oral Maxillofac. Surg. 2006, 35, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, N.; Ahmadi, M.; Webb, J.; Rahmani, M.; Sadegi, H.; Musavi, M.; Ismail, R. Modeling of graphene nano-ribbon schottky diodes in the parabolic band structure limit. In Proceedings of the Sixth Global Conference on Power Control and Optimization, Las Vegas, NV, USA, 6–8 August 2012; AIP Publishing: College Park, MD, USA, 2012; pp. 268–271. [Google Scholar]
- Yilmaz, M.; Vayvada, H.; Menderes, A.; Demirdover, C.; Kizilkaya, A. A comparison of vascularized fibular flap and iliac crest flap for mandibular reconstruction. J. Cranio-fac. Surg. 2008, 19, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, M.; Ahmadi, M.; Kiani, M.J.; Ismail, R. Monolayer graphene nanoribbon p–n junction. J. Nanoeng. Nanomanuf. 2012, 2, 375–378. [Google Scholar] [CrossRef]
- Nagasao, T.; Miyamoto, J.; Tamaki, T.; Kawana, H. A comparison of stresses in implantation for grafted and plate-and-screw mandible reconstruction. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2010, 109, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Johansson, B.; Grepe, A.; Wannfors, K.; Hirsch, J. A clinical study of changes in the volume of bone grafts in the atrophic maxilla. Dentomaxillofac. Radiol. 2001, 30, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Goh, B.T.; Lee, S.; Tideman, H.; Stoelinga, P.J. Mandibular reconstruction in adults: A review. Int. J. Oral Maxillofac. Surg. 2008, 37, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Bagby, G.W.; Janes, J.M. The effect of compression on the rate of fracture healing using a special plate. Am. J. Surg. 1958, 95, 761–771. [Google Scholar] [CrossRef]
- Ayache, N.; Delingette, H. Surgery simulation and soft tissue modeling. In Proceeding of the International Symposium, IS4TM 2003, Juan-Les-Pins, France, 12–13 June 2003; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003; Volume 2673. [Google Scholar]
- Elahinia, M.; Moghaddam, N.S.; Andani, M.T.; Skoracki, R.; Valerio, I.; Miller, M.; Dean, D. Mitigating implant failure through design and manufacturing of nitinol fixation hardware. In Tissue Engineering Part A; Mary Ann Liebert, Inc.: New Rochelle, NY, USA, 2015; p. S10. [Google Scholar]
- Binger, T.; Hell, B. Resorption of microsurgically vascularized bone grafts after augmentation of the mandible. J. Cranio-Maxillofac. Surg. 1999, 27, 82–85. [Google Scholar] [CrossRef]
- Li, L.; Blake, F.; Heiland, M.; Schmelzle, R.; Pohlenz, P. Long-term evaluation after mandibular reconstruction with fibular grafts versus microsurgical fibular flaps. J. Oral Maxillofac. Surg. 2007, 65, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Bidabadi, M.; Natanzi, A.H.A.; Mostafavi, S.A. Thermophoresis effect on volatile particle concentration in micro-organic dust flame. Powder Technol. 2012, 217, 69–76. [Google Scholar] [CrossRef]
- Amerinatanzi, A.; Summers, R.; Ahmadi, K.; Goel, V.K.; Hewett, T.E.; Nyman, E. A novel 3d approach for determination of frontal and coronal plane tibial slopes from mr imaging. The Knee 2016. [Google Scholar] [CrossRef] [PubMed]
- Kunchur, M.; Dean, C.; Moghadam, N.S.; Knight, J.; He, Q.; Liu, H.; Wang, J.; Lortz, R.; Sou, I.; Gurevich, A. Current-induced depairing in the Bi2Te3/FeTe interfacial superconductor. Phys. Rev. B 2015, 92, 094502. [Google Scholar] [CrossRef]
- Kunchur, M.N.; Dean, C.; Liang, M.; Moghaddam, N.S.; Guarino, A.; Nigro, A.; Grimaldi, G.; Leo, A. Depairing current density of Nd2−xCexCuO4−δ superconducting films. Phys. C Supercond. 2013, 495, 66–68. [Google Scholar] [CrossRef]
- Rahmani, M.; Ahmadi, M.T.; Shayesteh, N.; Amin, N.A.; Rahmani, K.; Ismail, R. Current-voltage modeling of bilayer graphene nanoribbon schottky diode. In Proceedings of the 2011 IEEE Regional Symposium on Micro and Nanoelectronics (RSM), Kota Kinabalu, Malaysia, 28–30 September 2011; pp. 256–258.
- Schileo, E.; Dall’Ara, E.; Taddei, F.; Malandrino, A.; Schotkamp, T.; Baleani, M.; Viceconti, M. An accurate estimation of bone density improves the accuracy of subject-specific finite element models. J. Biomech. 2008, 41, 2483–2491. [Google Scholar] [CrossRef] [PubMed]
- Schileo, E.; Taddei, F.; Cristofolini, L.; Viceconti, M. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J. Biomech. 2008, 41, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Zannoni, C.; Mantovani, R.; Viceconti, M. Material properties assignment to finite element models of bone structures: A new method. Med. Eng. Phys. 1999, 20, 735–740. [Google Scholar] [CrossRef]
- Taddei, F.; Pancanti, A.; Viceconti, M. An improved method for the automatic mapping of computed tomography numbers onto finite element models. Med. Eng. Phys. 2004, 26, 61–69. [Google Scholar] [CrossRef]
- Morgan, E.F.; Bayraktar, H.H.; Keaveny, T.M. Trabecular bone modulus–density relationships depend on anatomic site. J. Biomech. 2003, 36, 897–904. [Google Scholar] [CrossRef]
- Korioth, T.W.; Romilly, D.P.; Hannam, A.G. Three-dimensional finite element stress analysis of the dentate human mandible. Am. J. Phys. Anthropol. 1992, 88, 69–96. [Google Scholar] [CrossRef] [PubMed]
- Lovald, S.T.; Wagner, J.D.; Baack, B. Biomechanical optimization of bone plates used in rigid fixation of mandibular fractures. J. Oral Maxillofac. Surg. 2009, 67, 973–985. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, M.; Ahmadi, M.; Webb, J.; Shayesteh, N.; Mousavi, S.; Sadeghi, H.; Ismail, R. Trilayer graphene nanoribbon carrier statistics in degenerate and non degenerate limits. In Proceedings of the Sixth Global Conference on Power Control and Optimization, Las Vegas, NV, USA, 6–8 August 2012; AIP Publishing: College Park, MD, USA, 2012; pp. 272–275. [Google Scholar]
- Nagasao, T.; Miyamoto, J.; Kawana, H. Biomechanical evaluation of implant placement in the reconstructed mandible. Int. J. Oral Maxillofac. Implant. 2008, 24, 999–1005. [Google Scholar]
- Shetty, P.P.; Meshramkar, R.; Patil, K.N.; Nadiger, R.K. A finite element analysis for a comparative evaluation of stress with two commonly used esthetic posts. Eur. J. Dent. 2013, 7, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, N.S. Toward Patient Specific Long Lasting Metallic Implants for Mandibular Segmental Defects. Ph.D. Thesis, The University of Toledo, Toledo, OH, USA, August 2015. [Google Scholar]
- Moghaddam, N.S.; Jahadakbar, A.; Amerinatanzi, A.; Elahinia, M.; Miller, M.; Dean, D. Metallic fixation of mandibular segmental defects: Graft immobilization and orofacial functional maintenance. Plast. Reconstr. Surg. Glob. Open 2016, 4, e858. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, E.; Koolstra, J. Biomechanics of the temporomandibular joint. J. Dent. Res. 2008, 87, 989–991. [Google Scholar] [CrossRef] [PubMed]
- Amerinatanzi, A.; Moghaddam, N.S.; Jahadakbar, A.; Dean, D.; Elahinia, M. On the effect of screw preload on the stress distribution of mandibles during segmental defect treatment using an additively manufactured hardware. In Proceedings of the ASME 2016 11th International Manufacturing Science and Engineering Conference, Blacksburg, VA, USA, 27 June–1 July 2016.
- Raad, B.; Moghaddam, N.S.; Elahinia, M. A numerical simulation of the effect of using porous superelastic nitinol and stiff titanium fixation hardware on the bone remodeling. In Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2016; SPIE Press: Bellingham, WA, USA, 2016. [Google Scholar]
- Saedi, S.; Turabi, A.; Taheri Andani, M.; Elahinia, M.; Karaca, H. Thermo-mechanical characterization of NiTi alloys manufactured by selective laser melting. In Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS), Colorado Springs, CO, USA, 21–23 September 2015; ASME: Colorado Springs, CO, USA, 2015. [Google Scholar]
- Saedi, S.; Turabi, A.S.; Andani, M.T.; Haberland, C.; Karaca, H.; Elahinia, M. The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting. J. Alloy. Compd. 2016, 677, 204–210. [Google Scholar] [CrossRef]
- Ahmadi, A.; Mirzaeifar, R.; Moghaddam, N.S.; Turabi, A.S.; Karaca, H.E.; Elahinia, M. Effect of manufacturing parameters on mechanical properties of 316l stainless steel parts fabricated by selective laser melting: A computational framework. Mater. Des. 2016, 112, 328–338. [Google Scholar] [CrossRef]
- Ahmadi, A.; Moghaddam, N.S.; Elahinia, M.; Karaca, H.E.; Mirzaeifar, R. Finite element modeling of selective laser melting 316l stainless steel parts for evaluating the mechanical properties. In Proceedings of the ASME 2016 11th International Manufacturing Science and Engineering Conference, Blacksburg, VA, USA, 27 June–1 July 2016.
- Shayesteh Moghaddam, N.; Dean, D.; Miller, M.; Elahinia, M. Improving bone implant success by using nitinol as a substitute for titanium: A modeling comparison. In Proceedings of the ASME 2014 Smart Materials, Adaptive Structures and Intelligent Systems, Newport, RI, USA, 8–10 September 2014.
- Elahinia, M.H.; Hashemi, M.; Tabesh, M.; Bhaduri, S.B. Manufacturing and processing of NiTi implants: A review. Prog. Mater. Sci. 2012, 57, 911–946. [Google Scholar] [CrossRef]
- Haberland, C.; Elahinia, M.; Walker, J.M.; Meier, H.; Frenzel, J. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing. Smart Mater. Struct. 2014, 23, 104002. [Google Scholar] [CrossRef]
- Dadbakhsh, S.; Speirs, M.; Kruth, J.-P.; Van Humbeeck, J. Influence of SLM on shape memory and compression behaviour of NiTi scaffolds. CIRP Ann. Manuf. Technol. 2015, 64, 209–212. [Google Scholar] [CrossRef]
- Dadbakhsh, S.; Speirs, M.; Kruth, J.P.; Schrooten, J.; Luyten, J.; Van Humbeeck, J. Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts. Adv. Eng. Mater. 2014, 16, 1140–1146. [Google Scholar] [CrossRef]
- Dadbakhsh, S.; Vrancken, B.; Kruth, J.-P.; Luyten, J.; van Humbeeck, J. Texture and anisotropy in selective laser melting of NiTi alloy. Mater. Sci. Eng. A 2016, 650, 225–232. [Google Scholar] [CrossRef]
- Lee, W.-S.; Lin, C.-F. Plastic deformation and fracture behaviour of Ti-6Al-4V alloy loaded with high strain rate under various temperatures. Mater. Sci. Eng. A 1998, 241, 48–59. [Google Scholar] [CrossRef]
- Mehrabi, R.; Kadkhodaei, M.; Ghaei, A. Numerical implementation of a thermomechanical constitutive model for shape memory alloys using return mapping algorithm and microplane theory. Adv. Mater. Res. 2012, 516, 351–354. [Google Scholar] [CrossRef]
- Mehrabi, R.; Kadkhodaei, M.; Andani, M.T.; Elahinia, M. Microplane modeling of shape memory alloy tubes under tension, torsion, and proportional tension–torsion loading. J. Intell. Mater. Syst. Struct. 2014, 26, 144–155. [Google Scholar] [CrossRef]
- Mehrabi, R.; Kadkhodaei, M. 3D phenomenological constitutive modeling of shape memory alloys based on microplane theory. Smart Mater. Struct. 2013, 22, 025017. [Google Scholar] [CrossRef]
- Andani, M.T.; Haberland, C.; Walker, J.M.; Karamooz, M.; Turabi, A.S.; Saedi, S.; Rahmanian, R.; Karaca, H.; Dean, D.; Kadkhodaei, M. Achieving biocompatible stiffness in NiTi through additive manufacturing. J. Intell. Mater. Syst. Struct. 2016, 4, 2661–2671. [Google Scholar] [CrossRef]
- Andani, M.T.; Alipour, A.; Eshghinejad, A.; Elahinia, M. Modifying the torque–angle behavior of rotary shape memory alloy actuators through axial loading: A semi-analytical study of combined tension–torsion behavior. J. Intell. Mater. Syst. Struct. 2013, 24, 1524–1535. [Google Scholar] [CrossRef]
- Taheri, A.M. Modeling, simulation, additive manufacturing, and experimental evaluation of solid and porous NiTi. Ph.D. Thesis, The University of Toledo, Toledo, OH, USA, August 2015. [Google Scholar]
- Van Eijden, T. Biomechanics of the mandible. Crit. Rev. Oral Boil. Med. 2000, 11, 123–136. [Google Scholar] [CrossRef]
- Ichim, I.; Kieser, J.; Swain, M. Functional significance of strain distribution in the human mandible under masticatory load: Numerical predictions. Arch. Oral Biol. 2007, 52, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Raad, B.; Moghaddam, N.S.; Elahinia, M. A comparison between porous NiTi and Ti-6Al-4V fixation hardware on bone remodeling after a reconstruction surgery. In Proceedings of the ASME 2016 11th International Manufacturing Science and Engineering Conference, Blacksburg, VA, USA, 27 June–1 July 2016.
- Elahinia, M.; Moghaddam, N.S.; Andani, M.T.; Rahmanian, R.; Walker, J.; Miller, M.J.; Dean, D. Site-Specific Material Properties and the Additive Manufacturing of Nitinol Musculoskeletal Implants. In Tissue Engineering Part A; Mary Ann Liebert, Inc.: New Rochelle, NY, USA, 2014; Volume 20, pp. S120–S121. [Google Scholar]
Model Component | Number of Elements |
---|---|
Resected mandible | 218,328 |
Teeth (13 total) | 65,179 |
Ligaments (13 total) | 21,053 |
Top graft | 42,065 |
Lower graft | 45,037 |
Fixation hardware(s) | 58,327 |
Screws (10 total) | 67,027 |
Material | (MPa) | (MPa) | (MPa) | |||
---|---|---|---|---|---|---|
Cortical bone-symphysis region | 23,000 | 15,000 | 10,000 | 0.3 | 0.3 | 0.3 |
Cortical bone-angle region | 20,000 | 12,000 | 11,000 | 0.3 | 0.3 | 0.3 |
Cortical bone-rest of mandible | 17,000 | 8200 | 6900 | 0.315 | 0.325 | 0.31 |
Cancellous bone | 960 | 390 | 320 | 0.3 | 0.3 | 0.3 |
Cortical-fibular graft | 26,800 | 26,800 | 26,800 | 0.3 | 0.3 | 0.3 |
Cancellous-fibular graft | 1650 | 1650 | 1650 | 0.3 | 0.3 | 0.3 |
Teeth | 17,600 | 17,600 | 17,600 | 0.25 | 0.25 | 0.25 |
Periodontal ligament | 2.7 | 2.7 | 2.7 | 0.45 | 0.45 | 0.45 |
Ti-6Al-4V | 112,000 | 112,000 | 112,000 | 0.3 | 0.3 | 0.3 |
NiTi | 37,000–42,000 * | 37,000–42,000 * | 37,000–42,000 * | 0.3 | 0.3 | 0.3 |
Effective Laser Power (W) | Layer Thickness (m) | Scanning Velocity (m/s) | Hatch Distance (m) | Energy Input (J/ |
---|---|---|---|---|
250 | 30 | 1.25 | 120 | 55.5 |
Material | E (GPa) | Yield Strength (MPa) |
---|---|---|
NiTi | 37 | 1011 [3] |
Ti-6Al-4V | 112 | 970–1030 [66] |
Parameter | (GPa) | (GPa) | [72] | (K) | (K) | (K) | (K) |
---|---|---|---|---|---|---|---|
Value | 37 | 42 | 0.33 | 263 | 243 | 270 | 280 |
Fixations Type | Highest Bite Loading | Pretension + REST | Pretension + Highest Biting Load |
---|---|---|---|
Porous NiTi fixation plate | 328 | 485 | 594 |
Ti-6Al-4V fixation plate | 98 | 132 | 299 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jahadakbar, A.; Shayesteh Moghaddam, N.; Amerinatanzi, A.; Dean, D.; Karaca, H.E.; Elahinia, M. Finite Element Simulation and Additive Manufacturing of Stiffness-Matched NiTi Fixation Hardware for Mandibular Reconstruction Surgery. Bioengineering 2016, 3, 36. https://doi.org/10.3390/bioengineering3040036
Jahadakbar A, Shayesteh Moghaddam N, Amerinatanzi A, Dean D, Karaca HE, Elahinia M. Finite Element Simulation and Additive Manufacturing of Stiffness-Matched NiTi Fixation Hardware for Mandibular Reconstruction Surgery. Bioengineering. 2016; 3(4):36. https://doi.org/10.3390/bioengineering3040036
Chicago/Turabian StyleJahadakbar, Ahmadreza, Narges Shayesteh Moghaddam, Amirhesam Amerinatanzi, David Dean, Haluk E. Karaca, and Mohammad Elahinia. 2016. "Finite Element Simulation and Additive Manufacturing of Stiffness-Matched NiTi Fixation Hardware for Mandibular Reconstruction Surgery" Bioengineering 3, no. 4: 36. https://doi.org/10.3390/bioengineering3040036
APA StyleJahadakbar, A., Shayesteh Moghaddam, N., Amerinatanzi, A., Dean, D., Karaca, H. E., & Elahinia, M. (2016). Finite Element Simulation and Additive Manufacturing of Stiffness-Matched NiTi Fixation Hardware for Mandibular Reconstruction Surgery. Bioengineering, 3(4), 36. https://doi.org/10.3390/bioengineering3040036