Photobiomodulation Modulates the Response of Zoledronic-Acid-Treated Osteoblast-like SaOs-2 Cells: Implications for Bisphosphonate-Related Osteonecrosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Determination of Ideal Concentration of ZA
2.3. Laser Photobiomodulation Therapy (LPT)
2.4. Metabolic Activity Assessment—MTT Assay
2.5. Analysis of Cell Apoptosis—Flow Cytometry
2.6. Gene Expression
2.7. Statistical Analysis
3. Results
3.1. Determination of Ideal Concentration of ZA
3.2. Metabolic Activity Assessment
3.3. Cell Apoptosis
3.4. Gene Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PBM | Photobiomodulation |
| ZA | Zoledronic acid |
| ONJ | Osteonecrosis of the jaw |
| BRONJ | Bisphosphonate-related osteonecrosis of the jaw |
| ATP | Adenosine triphosphate |
| ROS | Reactive oxygen species |
| NO | Nitric oxide |
| NF-κB | Nuclear factor κB |
| USA | United States of America |
| FBS | Fetal bovine serum |
| CO2 | Carbon dioxide |
| C | Celcius |
| MTT | 3-(4,5-dimethyltriazol-2yl)-2,5-diphenyl tetrazoline bromide |
| PBS | Phosphate-buffered saline |
| DMSO | Dimethylsulfoxide |
| OD | Optical density |
| t | Treatment |
| b | Blank |
| c | Control |
| RT-qPCR | Real-time polymerase chain reaction |
| RNA | Ribonucleic acid |
| DNA | Deoxyribonucleic acid |
| H2O | Water |
References
- Mϕller, A.M.J.; Delaisse, J.M.; Olesen, J.B.; Bechmann, T.; Madsen, J.S.; S√∏e, K. Zoledronic acid is not equally potent on osteoclasts generated from different individuals. JBMR Plus 2020, 4, e10412. [Google Scholar] [CrossRef] [PubMed]
- Macedo, F.; Ladeira, K.; Pinho, F.; Saraiva, N.; Bonito, N.; Pinto, L.; Gonçalves, F. Bone metastases: An overview. Oncol. Rev. 2017, 11, 321. [Google Scholar] [CrossRef]
- Kendler, D.L.; Cosman, F.; Stad, R.K.; Ferrari, S. Denosumab in the treatment of osteoporosis: 10 years later-A narrative review. Adv. Ther. 2022, 39, 58–74. [Google Scholar] [CrossRef] [PubMed]
- Ayers, C.; Kansagara, D.; Lazur, B.; Fu, R.; Kwon, A.; Harrod, C. Effectiveness and safety of treatments to prevent fractures in people with low bone mass or primary osteoporosis: A living systematic review and network meta-analysis for the American College of Physicians. Ann. Intern. Med. 2023, 176, 182–195. [Google Scholar] [CrossRef]
- Gehrke, B.; Coelho, M.C.A.; D’Alva, C.B.; Madeira, M. Long-term consequences of osteoporosis therapy with bisphosphonates. Arch. Endocrinol. Metab. 2023, 68, e220334. [Google Scholar] [CrossRef] [PubMed]
- Reid, I.R.; Sharma, S.; Kalluru, R.; Eagleton, C. Treatment of Paget’s disease of bone with denosumab: Case report and literature review. Calcif. Tissue Int. 2016, 99, 322–325. [Google Scholar] [CrossRef]
- Corral-Gudino, L.; Tan, A.J.H.; del Pino-Montes, J.; Ralston, S.H. Bisphosphonates for Paget’s disease of bone in adults. Cochrane Database Syst. Rev. 2017, 12, CD004956. [Google Scholar] [CrossRef]
- Liu, L.; Geng, H.; Mei, C.; Chen, L. Zoledronic acid enhanced the antitumor effect of cisplatin on orthotopic osteosarcoma by ROS-PI3K/AKT signaling and attenuated osteolysis. Oxid. Med. Cell. Longev. 2021, 30, 6661534. [Google Scholar] [CrossRef]
- Lipton, A. Denosumab in breast cancer. Curr. Oncol. Rep. 2011, 13, 1–4. [Google Scholar] [CrossRef]
- Goldvaser, H.; Amir, E. Role of bisphosphonates in breast cancer therapy. Curr. Treat. Options Oncol. 2019, 20, 26. [Google Scholar] [CrossRef]
- Galvano, A.; Scaturro, D.; Badalamenti, G.; Incorvaia, L.; Rizzo, S.; Castellana, L.; Cusenza, S.; Cutaia, S.; Santini, D.; Guadagni, F.; et al. Denosumab for bone health in prostate and breast cancer patients receiving endocrine therapy: A systematic review and meta-analysis of randomized trials. J. Bone Oncol. 2019, 18, 100252. [Google Scholar] [CrossRef]
- Jakob, T.; Tesfamariam, Y.M.; Macherey, S.; Kuhr, K.; Adams, A.; Monsef, I.; Heidenreich, A.; Skoetz, N. Bisphosphonates or RANK-ligand inhibitors for men with prostate cancer and bone metastases: A network meta-analysis. Cochrane Database Syst. Rev. 2020, 12, CD013020. [Google Scholar]
- Gavaldá, C.; Bagan, J.V. Concept, diagnosis and classification of bisphosphonate-associated osteonecrosis of the jaws: A review of the literature. Med. Oral Patol. Oral Cir. Bucal 2016, 21, e260–e270. [Google Scholar] [CrossRef] [PubMed]
- Jiang, A.; Zhang, Z.; Qiu, X.; Guo, Q. Medication-related osteonecrosis of the jaw (MRONJ): A review of pathogenesis hypothesis and therapy strategies. Arch. Toxicol. 2024, 98, 689–708. [Google Scholar] [CrossRef] [PubMed]
- Campisi, G.; Fedele, S.; Fusco, V.; Pizzo, G.; Di Fede, O.; Bedogni, A. Epidemiology, clinical manifestations, risk reduction and treatment strategies of jaw osteonecrosis in cancer patients exposed to antiresorptive agents. Future Oncol. 2014, 10, 257–275. [Google Scholar] [CrossRef]
- AlRowis, R.; Aldawood, A.; AlOtaibi, M.; Alnasser, E.; AlSaif, I.; Aljaber, A.; Natto, Z. Medication-related osteonecrosis of the jaw (MRONJ): A review of pathophysiology, risk factors, preventive measures and treatment strategies. Saudi Dent. J. 2022, 34, 202–210. [Google Scholar] [CrossRef]
- Monteiro, L.; Vasconcelos, C.; Pacheco, J.-J.; Salazar, F. Photobiomodulation laser therapy in a lenvatinib-related osteonecrosis of the jaw: A case report. J. Clin. Exp. Dent. 2021, 13, 626–629. [Google Scholar] [CrossRef]
- Goker, F.; Grecchi, E.; Grecchi, F.; Francetti, L.; Del Fabbro, M. Treatment of medication-related osteonecrosis of the jaw (MRONJ): A systematic review. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 2662–2673. [Google Scholar]
- Momesso, G.A.C.; Lemos, C.A.A.; Santiago-J√∫nior, J.F.; Faverani, L.P.; Pellizzer, E.P. Laser surgery in management of medication-related osteonecrosis of the jaws: A meta-analysis. Oral Maxillofac. Surg. 2020, 24, 133–144. [Google Scholar] [CrossRef]
- Govaerts, D.; Piccart, F.; Ockerman, A.; Coropciuc, R.; Politis, C.; Jacobs, R. Adjuvant therapies for MRONJ: A systematic review. Bone 2020, 141, 115676. [Google Scholar] [CrossRef]
- Renno, A.C.M.; McDonnell, P.A.; Crovace, M.C.; Zanotto, E.D.; Laakso, L. Effect of 830 nm laser phototherapy on osteoblasts grown in vitro on Biosilicate scaffolds. Photomed. Laser Surg. 2010, 28, 131–133. [Google Scholar] [CrossRef]
- Bashardoust Tajali, S.; MacDermid, J.C.; Houghton, P.; Grewal, R. Effects of low-power laser irradiation on bone healing in animals: A meta-analysis. J. Orthop. Surg. Res. 2010, 5, 1. [Google Scholar] [CrossRef]
- Kocherova, I.; Bryja, A.; Blochowiak, K.; Kaczmarek, M.; Stefanska, K.; Matys, J.; Grzech-Leśniak, K.; Dominiak, M.; Mozdziak, P.; Kempisty, B.; et al. Photobiomodulation with red and near-infrared light improves viability and modulates expression of mesenchymal and apoptotic-related markers in human gingival fibroblasts. Materials 2021, 14, 3427. [Google Scholar] [CrossRef]
- Karu, T.I. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem. Photobiol. 2008, 84, 1091–1099. [Google Scholar] [CrossRef]
- Karu, T.I.; Pyatibrat, L.V.; Afanasyeva, N.I. Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg. Med. 2005, 36, 307–314. [Google Scholar] [CrossRef]
- Tam, S.Y.; Tam, V.C.W.; Ramkumar, S.; Khaw, M.L.; Law, H.K.W.; Lee, S.W.Y. Review on the cellular mechanisms of low-level laser therapy use in oncology. Front. Oncol. 2020, 10, 1255. [Google Scholar] [CrossRef]
- Petros, A.M.; Olejniczak, E.T.; Fesik, S.W. Structural biology of the Bcl-2 family of proteins. Biochim. Biophys. Acta Mol. Cell Res. 2004, 1644, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, L.; Yuan, X.; Ou, Y.; Zhu, X.; Cheng, Z.; Zhang, P.; Wu, X.; Meng, Y.; Zhang, L. The relationship between the Bcl-2/Bax proteins and the mitochondria-mediated apoptosis pathway in the differentiation of adipose-derived stromal cells into neurons. PLoS ONE 2016, 11, e0163327. [Google Scholar] [CrossRef] [PubMed]
- Moazami-Goudarzi, M.; Farshdousti-Hagh, M.; Hoseinpour-Feizi, A.; Talebi, M.; Movassaghpour-Akbari, A.A.; Shams-Asanjan, K.; Eyvazi-Ziyaee, J.; Seifi, M. The acute lymphoblastic leukemia prognostic scoring: Whether it is possible by BCL-2, BAX gene promoter genotyping. Casp. J. Intern. Med. 2016, 7, 105–113. [Google Scholar]
- Sun, M.; Zhou, C.; Zeng, H.; Puebla-Osorio, N.; Damiani, E.; Chen, J.; Wang, H.; Li, G.; Yin, F.; Shan, L.; et al. Hiporfin-mediated photodynamic therapy in preclinical treatment of osteosarcoma. Photochem. Photobiol. 2015, 91, 533–544. [Google Scholar] [CrossRef]
- Nowak, S.M.; Sacco, R.; Mitchell, F.L.; Patel, V.; Gurzawska-Comis, K. The Effectiveness of Autologous Platelet Concentrates in Prevention and Treatment of Medication-Related Osteonecrosis of the Jaws: A Systematic Review. J. Cranio-Maxillofac. Surg. 2024, 52, 671–691. [Google Scholar] [CrossRef] [PubMed]
- de Pontes, J.C.X.; de Figueiredo, L.S.; Lima, W.J.M.; Araújo, R.S.; Dos Santos, A.B.R.; de Almeida, L.F.D.; Alves, A.F. Photodynamic Therapy Repairs Medication-Related Osteonecrosis of the Jaw by Reducing NF-KB Protein in Rats. J. Appl. Oral Sci. 2024, 32, e20230447. [Google Scholar] [CrossRef] [PubMed]
- Da Guarda, M.G.; Paraguassú, G.M.; Cerqueira, N.S.; Cury, P.R.; Farias, J.G.; Ramalho, L.M.P. Laser GaAlAs (Λ860nm) Photobiomodulation for the Treatment of Bisphosphonate-Induced Osteonecrosis of the Jaw. Photomed. Laser Surg. 2012, 30, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Chandra, P.A.; Chandra, A.B.; Todd, G.K. Avascular Osteonecrosis of the Mandible Following Bisphosphonate Therapy. Am. J. Ther. 2009, 16, 65–67. [Google Scholar] [CrossRef]
- Scoletta, M.; Arduino, P.G.; Reggio, L.; Dalmasso, P.; Mozzati, M. Effect of Low-Level Laser Irradiation on Bisphosphonate Induced Osteonecrosis of the Jaws: Preliminary Results of a Prospective Study. Photomed. Laser Surg. 2010, 28, 179–184. [Google Scholar] [CrossRef]
- International Organization for Standardization. A Practical Guide to ISO 10993-5: Cytotoxicity Medical Device and Diagnostic Industry; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- Berridge, M.V.; Herst, P.M.; Tan, A.S. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnol. Annu. Rev. 2005, 11, 127–152. [Google Scholar]
- Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc. 2006, 1, 2315–2319. [Google Scholar] [CrossRef]
- Hadad, H.; de Jesus, L.K.; da Silva, M.P.; Oliveira, M.E.F.S.; Guastaldi, F.P.S.; Nilsson, O.; Okamoto, R.; Souza, F.A. A Systematic Review of the Effects of Bisphosphonates on Osteoblasts In Vitro. Calcif. Tissue. Int. 2025, 116, 86. [Google Scholar] [CrossRef]
- Heymann, P.G.B.; Ziebart, T.; Kämmerer, P.W.; Mandic, R.; Saydali, A.; Braun, A.; Neff, A.; Draenert, G.F. The enhancing effect of a laser photochemotherapy with cisplatin or zolendronic acid in primary human osteoblasts and osteosarcoma cells in vitro. J. Oral Pathol. Med. 2016, 45, 803–809. [Google Scholar] [CrossRef]
- Zhang, H.; Weber, S.G. Teflon AF Materials. Top. Curr. Chem. 2011, 308, 307–338. [Google Scholar]
- Castro, M.; Torres, P.; Solano, L.; Córdova, L.A.; Torres, V.A. Histatin-1 counteracts the cytotoxic and antimigratory effects of zoledronic acid in endothelial and osteoblast-like cells. J. Periodontol. 2019, 90, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Ravosa, M.J.; Ning, J.; Liu, Y.; Stack, M.S. Bisphosphonate effects on the behavior of oral epithelial cells and oral fibroblasts in vitro. J. Oral Maxillofac. Surg. 2011, 69, 251–261. [Google Scholar]
- Akens, M.K.; Wise-Milestone, L.; Won, E.; Schwock, J.; Yee, A.J.M.; Wilson, B.C.; Whyne, C.M. In vitro and in vivo effects of photodynamic therapy on metastatic breast cancer cells pre-treated with zoledronic acid. Photodiagnosis Photodyn Ther. 2014, 11, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Pansani, T.N.; Faloppa, F.; de Faveri, M.; de Almeida, A.L.P.F.; de Faveri, D.; de Souza, S.L.S. Effects of photobiomodulation on human gingival fibroblasts treated with zoledronic acid. Lasers Med. Sci. 2021, 36, 1735–1743. [Google Scholar]
- Karabulut, B.; Erten, C.; Gul, M.K.; Cengiz, E.; Karaca, B.; Kucukzeybek, Y.; Gorumlu, G.; Atmaca, H.; Uzunoglu, S.; Sanli, U.A.; et al. Docetaxel/zoledronic acid combination triggers apoptosis synergistically through downregulating antiapoptotic Bcl-2 protein level in hormone-refractory prostate cancer cells. Cell. Bio. Int. 2009, 33, 239–246. [Google Scholar] [CrossRef]
- Wang, Z.; Ding, Y.; Wang, X.; Lu, S.; Chen, Y. Zoledronic acid induces apoptosis and autophagy in cervical cancer cells through modulation of BCL-2 and BAX. Biomed. Pharmacother. 2018, 107, 993–1001. [Google Scholar]
- Hamblin, M.R.; Demidova, T.N. Mechanisms of low level light therapy. Proc. SPIE 2006, 6140, 614001. [Google Scholar]
- Schartinger, V.H.; Galvan, O.; Riechelmann, H.; Dudas, J. Differential responses of fibroblasts, epithelial cells, and endothelial cells to low-level laser therapy. Lasers Med. Sci. 2012, 27, 479–486. [Google Scholar]
- Werneck, C.E.; Barbosa, A.L.P.; Pacheco, M.T.T.; Pacheco, C.S.; Freire, J.L.C. Laser light is capable of inducing proliferation of carcinoma cells in culture: A spectroscopic in vitro study. Photomed. Laser Surg. 2005, 23, 300–303. [Google Scholar] [CrossRef]





| Beam spot size at target (cm2) | 0.0324 |
| Irradiance (mW/cm2) | 3086.4 |
| Time exposure (s) | 10–50–100–200 |
| Fluence (J/cm2) | 33–166–333–666 |
| Energy delivered (J) | 1–5–10–20 |
| Number of points irradiated | 1 |
| Irradiated area (cm2) | 0.33 |
| Distance from the laser tip (cm) | 1 |
| Number and frequency of treatment sessions | 1 application (24 h) |
| Total energy delivered (J) | 1–5–10–20 |
| Group | Treatment Description |
|---|---|
| C | Negative control—cells not treated with ZA and not irradiated. |
| ZA | Cells treated with ZA at the ideal concentration determined in Section 2.2. |
| ZA+660nm-1J | Cells treated with ZA and irradiated at a wavelength of 660 nm with an energy dose of 1 J. |
| ZA+660nm-5J | Cells treated with ZA and irradiated at a wavelength of 660 nm with an energy dose of 5 J. |
| ZA+660nm-10J | Cells treated with ZA and irradiated at a wavelength of 660 nm with an energy dose of 10 J. |
| ZA+660nm-20J | Cells treated with ZA and irradiated at a wavelength of 660 nm with an energy dose of 20 J. |
| ZA+808nm-1J | Cells treated with ZA and irradiated at a wavelength of 808 nm with an energy dose of 1 J. |
| ZA+808nm-5J | Cells treated with ZA and irradiated at a wavelength of 808 nm with an energy dose of 5 J. |
| ZA+808nm-10J | Cells treated with ZA and irradiated at a wavelength of 808 nm with an energy dose of 10 J. |
| ZA+808nm-20J | Cells treated with ZA and irradiated at a wavelength of 808 nm with an energy dose of 20 J. |
| Gene | Oligonucleotide Sequence |
|---|---|
| BAX | Forward 5′-TGA AGA CAG GGG CCT TTT TG-3′ Reverse 5′ AAT TCG CCG GAG ACA CTC G-3′ |
| BCL-2 | Forward 5′-GGAGGCTGGGATGCCTTTGT Reverse 5′ AAAGCCAGCTTCCCCAATGA |
| GAPDH | Forward 5′-TCGACAGTCAGCCGCATCTTCTTT Reverse 5′ ACCAAATCCGT GACTCCGACCTT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Andraus, R.A.C.; Oliveira, A.F.S.S.d.; Lopes, M.C.T.; Marques, D.C.; Marques, V.G.G.; Oliveira, D.A.d.A.P.d.; Oliveira, R.F.d.; Guedes, O.A.; Oliveira, H.F.d.; Afonso, J.P.R.; et al. Photobiomodulation Modulates the Response of Zoledronic-Acid-Treated Osteoblast-like SaOs-2 Cells: Implications for Bisphosphonate-Related Osteonecrosis. Bioengineering 2026, 13, 88. https://doi.org/10.3390/bioengineering13010088
Andraus RAC, Oliveira AFSSd, Lopes MCT, Marques DC, Marques VGG, Oliveira DAdAPd, Oliveira RFd, Guedes OA, Oliveira HFd, Afonso JPR, et al. Photobiomodulation Modulates the Response of Zoledronic-Acid-Treated Osteoblast-like SaOs-2 Cells: Implications for Bisphosphonate-Related Osteonecrosis. Bioengineering. 2026; 13(1):88. https://doi.org/10.3390/bioengineering13010088
Chicago/Turabian StyleAndraus, Rodrigo Antonio Carvalho, Ana Flávia Spadaccini Silva de Oliveira, Mário Celso Teixeira Lopes, Diego César Marques, Vanessa Gabriela Gonzales Marques, Deise Aparecida de Almeida Pires de Oliveira, Rodrigo Franco de Oliveira, Orlando Aguirres Guedes, Helder Fernandes de Oliveira, João Pedro Ribeiro Afonso, and et al. 2026. "Photobiomodulation Modulates the Response of Zoledronic-Acid-Treated Osteoblast-like SaOs-2 Cells: Implications for Bisphosphonate-Related Osteonecrosis" Bioengineering 13, no. 1: 88. https://doi.org/10.3390/bioengineering13010088
APA StyleAndraus, R. A. C., Oliveira, A. F. S. S. d., Lopes, M. C. T., Marques, D. C., Marques, V. G. G., Oliveira, D. A. d. A. P. d., Oliveira, R. F. d., Guedes, O. A., Oliveira, H. F. d., Afonso, J. P. R., Silva, I. O., Oliveira, L. V. F. d., Oliveira, C. S., Poli, R. C., & Maia, L. P. (2026). Photobiomodulation Modulates the Response of Zoledronic-Acid-Treated Osteoblast-like SaOs-2 Cells: Implications for Bisphosphonate-Related Osteonecrosis. Bioengineering, 13(1), 88. https://doi.org/10.3390/bioengineering13010088

